
SCREEN MEDIA SOLUTIONS FOR SAND & AGGREGATE MINING VTCA - 2025

TOPICS

What Affects Screening Efficiency

Types of Screen Media

Strategic Application

WHAT AFFECTS SCREENING EFFICIENCY

- Blasting (Pattern, Sub-Drill, PF, etc.)
- Deposit Consistency/Inconsistency (Dredging, etc.)
- Crushers (Wear parts, settings, etc.)
- Feed Gradations (PSDs)
- Feed Distribution & Depth of Bed
- Material Type (Clay & Sticky Materials)

- Moisture Content
- Water Management (Wet Screening)
- Screening Equipment (Vibratory, static, etc.)
- Equipment (Peak Efficiency, Throughput & Energy)
- Media Selection
- "Effectual" Open Area

IMPORTANCE OF FEED GRADATIONS

River Sand

Sea Sand

Pit Sand

Silty Sand

M-Sand

Artificial/ Recycled Sand

IMPORTANCE OF FEED GRADATIONS

IMPORTANCE OF FEED GRADATIONS

Near-size material concentration - When feed contains high percentages of particles close to the screen opening size (typically within 25% of the aperture), efficiency drops significantly as these "near-size" particles require more time and opportunity to pass through, often blinding or pegging the openings.

Fine particle content and moisture - Excessive fines (particularly minus 100-mesh material) combine with moisture to create adhesive forces that cause agglomeration, block screen openings, and reduce the effective screening area, dramatically decreasing efficiency, especially in wet screening applications.

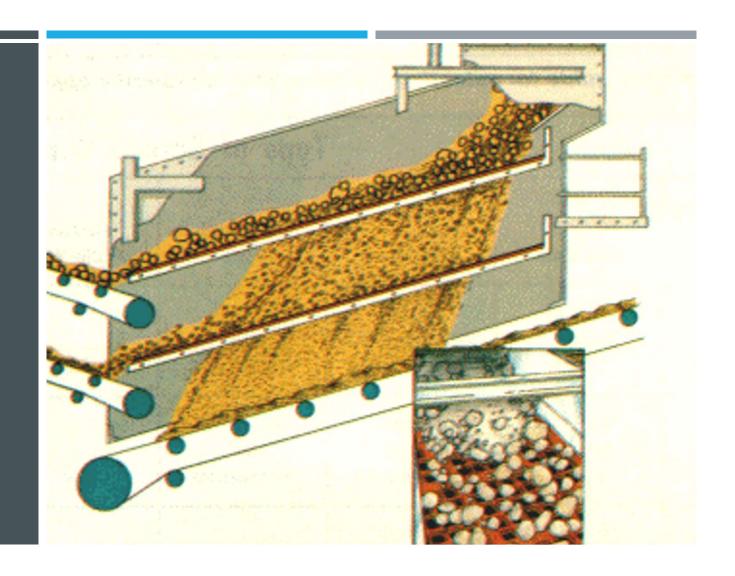
Top size to opening ratio - Feed containing particles larger than 3-4 times the screen opening size can cause impact damage and premature wear while also creating a "trampoline effect" that prevents proper stratification of smaller particles, reducing their chance to reach and pass through the openings.

Distribution uniformity - Uneven particle size distribution or segregated feed creates localized overloading on certain screen areas, leading to reduced retention time and inadequate screening in those zones while underutilizing other areas of the screen surface.

Particle shape factors - Elongated or flat particles (common in crushed materials versus natural sand) orient themselves poorly relative to screen openings, requiring more attempts to pass through compared to cubical particles, thereby reducing overall efficiency.

Feed rate stability - Fluctuating gradations cause inconsistent bed depths on the screen deck, with thin beds reducing particle-to-particle agitation needed for stratification, while thick beds increase the number of layers particles must migrate through to reach the screen surface.

Cut point precision - A narrow gradation range around the desired separation size allows for optimized screen selection and operating parameters, while extremely wide gradations force compromises in screen specification that reduce efficiency at both the coarse and fine ends of the spectrum.



IMPROPER FEED

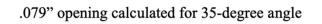
INADEQUATE WATER

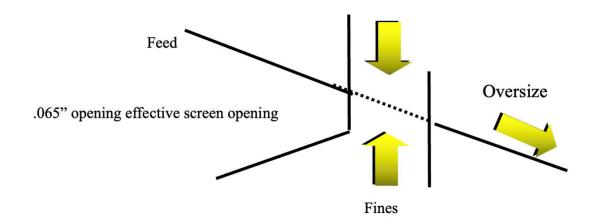
PROPER FEED ARRANGEMENT

The material must be screened out as soon as possible on the top deck to get full utilization of the decks below.

THE EFFECT OF WATER ON CAPACITY

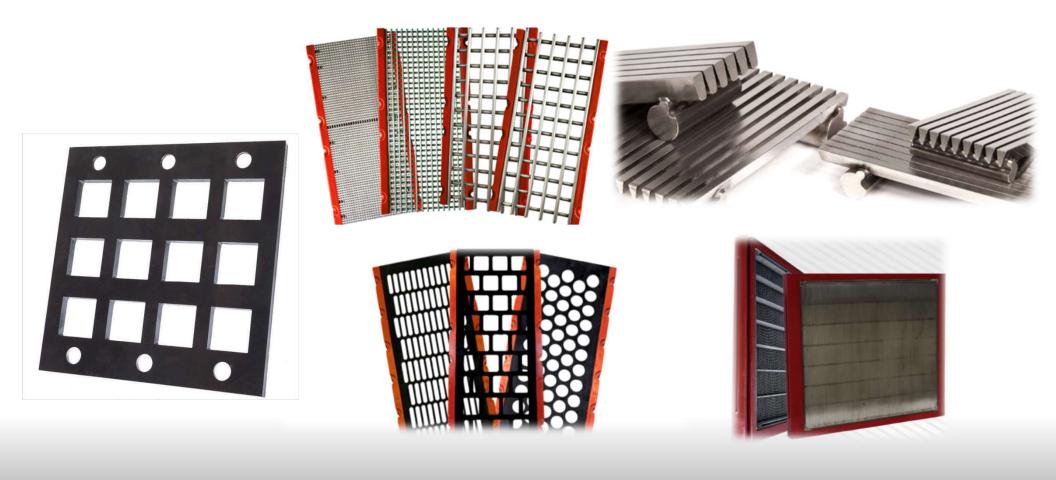
Size of Opening	Factor E
1/32"	1.25
1/16"	1.75
1/8"	2.00
3/16"	2.00
5/16"	1.75
3/8"	1.50
1/2"	1.30
3/4"	1.20
1"	1.10

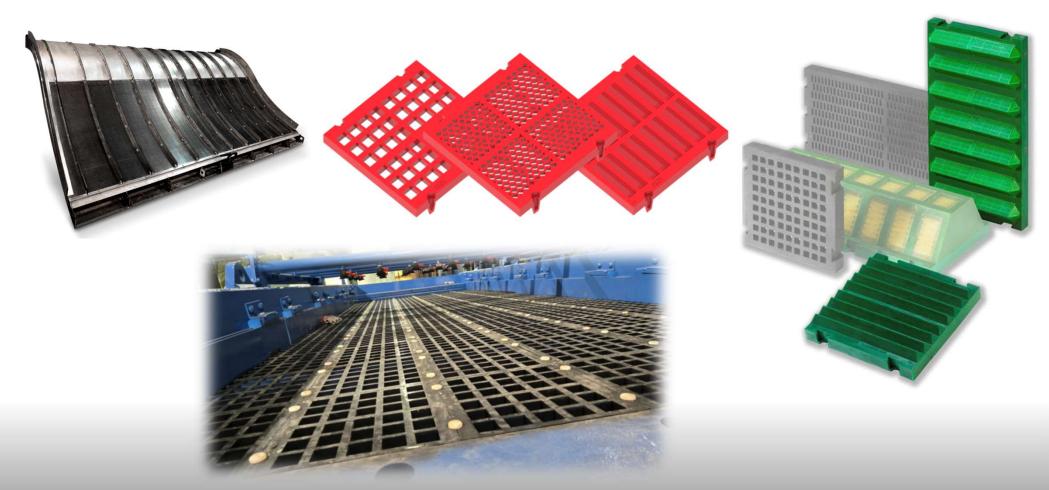



1" = 10% Increase 3/16" = 100% Increase Finer cuts benefit more from water.

TYPES OF SCREEN MEDIA & COMPOUNDS

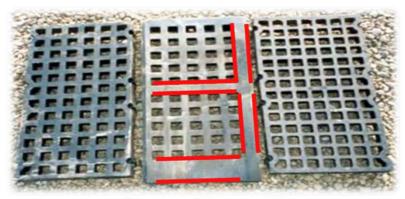

- Woven Wire Cloth (Side Tension & Modular)
- Hybrid Wire (Side Tension & Modular)
- Welded Wire (Side Tension & Modular)
- Profile Wire (Bolt Down, Side Tension, & Modular)
- Perforated Plate (Bolt Down, Side Tension, & Modular)
- Rubber (Bolt Down, Side Tension, & Modular)
- Polyurethane (Side Tension & Modular)

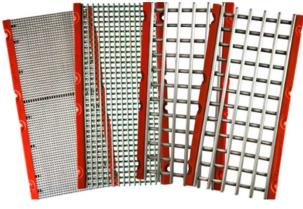



Angle	Cosine
18	.9511
20	.9397
21	.9336
22	9272
23	.9205
24	.9135
25	.9063
26	.8988
27	.8910
28	.8829
29	.8746
30	.8660
31	.8571
32	.8480

TYPES OF SCREEN MEDIA

TYPES OF SCREEN MEDIA


TYPES OF SCREEN MEDIA


NOTE: Synthetic Media Can Reduce dB by 50% to the human ear. 110dB reduced to 96dB

OPEN AREA IS CRUCIAL

Inch		ning		Wire	Wire	Percent	Weight				ening	,	Wire	Wire	Percent	Weight	
	nes	Mesh	Millimeters	Diameter	Gauge	Open Area	Lbs./Sq.Ft.		Inc	hes	Mesh	Millimeters	Diameter	Gauge	Open Area	Lbs./Sq.Ft.	
						1							0.105	12	73.4%	0.98	
													0.120	11	70.3%	1.25	
													0.135	10	67.6%	1.56	
													0.148	9	65.4%	1.85	
										0000000000			0.162	8	63.1%	2.18	
				0.080	14	67.9%	0.91		5/8	0.625		16.0256	0.177	7	60.7%	2.56	
				0.092	13	64.5%	1.18						0.192	6	58.5%	2.97	
				0.105	12	61.0%	1.51		-				0.207	5	56.4%	3.40	
		- 1		0.120	11	57.4%	1.92		-				0.225	4	54.0%	3.94	
				0.135	10	54.1%	2.37	22%	-				0.250		51.0%	4.76	
3/8	0.375		9.6150	0.148	9	51.4%	2.79	2270					0.313		44.4%	7.03	
		- 1		0.162	8	48.7%	3.27		-				0.120	11	74.3%	1.07	
		- 1		0.177	7	46.1%	3.82		-				0.135 0.148	10 9	71.8%	1.33	
				0.192	6	43.8%	4.29		-								
				0.207 0.225	5	39.0%	5.00 5.77		-				0.162 0.177	8 7	67.6% 65.5%	1.87 2.20	•
				0.105	12	65.0%	1.33		3/4	0.750		19.2307	0.192	6	63.4%	2.56	22
				0.120	11	61.5%	1.69			565		10.2007	0.207	5	61.4%	2.93	
				0.135	10	58.4%	2.09						0.225	4	59.2%	3.41	₹
				0.148	9	55.8%	2.47						0.250		50.3%	4.12	
7/16	0.438		11.2179	0.162	8	53.2%	2.90						0.313		49.8%	6.13	
				0.177	7	50.7%	3.40						0.375		44.470	8.44	
				0.192	6	48.3%	3.92						0.135	10	75.1%	1.17	
		- 1		0.207	5	46.0%	4.47						0.148	9	73.5%	1.38	
				0.225	4	43.6%	5.16						0.162	8	71.2%	1.64	
				0.063	16	78.9%	0.45		7/8				0.177	7	69.2%	1.93	
				0.072	15	76.4%	0.58			0.875		22.436	0.192	6	67.2%	2.25	
				0.080	14	74.3%	0.71			0.070		22.430	0.207	5	65.3%	2.58	
	i I			0.092	13	71.3%	0.93						0.225	4	63.3%	3.01	
				0.105	12	68.3%	1.18						0.250		60.5%	3.64	
				0.120	11	65.0%	1.51		-				0.313		54.3%	5.44	
1/2	0.500		12.821	0.135	10	62.0%	1.88						0.375	40	49.0%	7.52	
				0.148	9	59.5%	2.22		-				0.135 0.148	10 9	75.9%	1.04	
				0.162	8	57.1%	2.61	23.9%	-				0.162	8	74.0%	1.46	
				0.177 0.192		54.5% 52.2%	3.06 3.54	23.9%	-				0.177	7	72.2%	1.72	<u> </u>
				0.192	<u>6</u> 5	49.8%	4.04						0.192	6	70.4%	2.01	
				0.225	4	47.5%	4.68		1	1.000		25.4000	0.207	5	68.6%	2.31	24
		- 1		0.250		44.4%	5.62						0.225	4	66.6%	2.69	_
$\overline{}$				0.092	13	14.476	0.83						0.250		64.0%	3.26	ľ
				0.105	12	71.1%	1.08						0.313		50.0%	4.90	
				0.120	11	68.1%	1.38						0.375		52.9%	6.79	
				0.135	10	65.1%	1.70						0.162	8	76.4%	1.32	
				0.148	9	62.6%	2.12	00/				1	0.177	7	74.7%	1.55	
9/16	0.563		14.4230	0.162	8	61.0%	2.37	23.2%					0.192	6	73.0%	1.81	
100,000,000				0.177	7	57.6%	2.79		1 1/8	1.125		28.6050	0.207	5	71.3%	2.08	
				0.192	6	55.0%	3.24			2		20.000	0.225	4	69.4%	2.43	
/ I				0.207	5	53.4%	3.69		-				0.250		66.9%	2.96	
/ I				0.225	4	50.7%	4.29		-				0.313 0.375		61.2% 56.3%	4.45 6.19	

Balance between efficiency and wear life.

Media Selection:

Deck 1:

1" (27mm)

Modular Rubber 1' x 2' 40mm thick.

36.4% open area.

Deck 2:

11/16"(17.5mm) Modular Rubber 1' x 2' 40mm thick. 28.9% open area.

Deck 3:

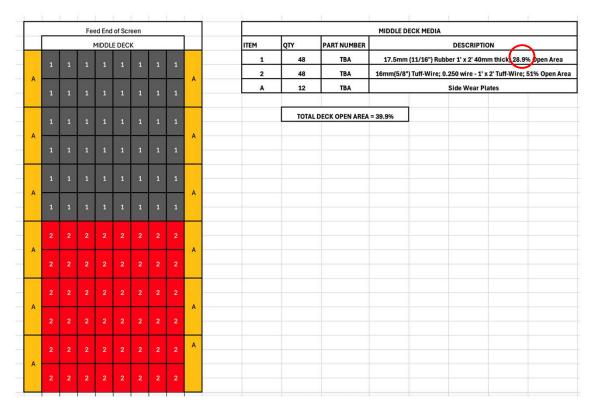
1/2"(12.7mm) Modular Rubber 1' x 2' 40mm thick. 39.0% open area.

SNX305

3 Deck Inclined Screen Generic

Grading	% Pass	% Ret.	TPH
1.26	100.0	0	0
0.984	98.0	2.0	10.7
0.866	95.0	3.0	16.1
0.748	92.0	3.0	16.1
0.63	80.0	12.0	64.3
0.512	66.0	14.0	75.0
0.394	55.0	11.0	58.9
#2 1/2	45.0	10.0	53.6
0.236	36.0	9.0	48.2
#5	26.0	10.0	53.6
#10	13.0	13.0	69.6
0	0.0	13.0	69.6
Total		100.0	536

Size	8x24	8x24	8x24	
Cut Size(inches)	1	5/8	1/2	
Type		mesh	mesh	
Calculation method	VSMA	VSMA	VSMA	
Carry-over method	Near-size	Near-size	Near-size	4.00/
Basic Capacity (tph/ft^2)		2.82	2.47	- 4.6%
Half Size Factor		1.14	1.21	Open Area
Oversize Factor	1.25	1.04	1.06	Open Area
Deck Factor	1.0	0.9	0.8	
Efficiency	95	93	95	
Efficiency Factor		1.06	1.0	
Use spray		No	No	
Wet Factor		1.0	1.0	
Open Area %		40.0	39.0	
Open Area Factor		0.68	0.72	
Slot Type	square	square	square	
Slot Factor	1.0	1.0	1.0	
Weight Factor	1.0	1.0	1.0	44.404
· ·	1.0	1.0	1.0	- 11.1%
Actual Capacity (tph/ft^2)	4.41	2.16	1.83	Onon Aron
Rate (fpm)		75.0	75.0	Open Area
Spray Rate (gpm)		0.0	0.0	
DBD Ratio		1.3	1.0	
Power:(kW)	0	0	0	
TPH onto Deck		500	381	
TPH off Deck		119	78	
TPH through Deck		381	303	
Required Area (ft^2)	119.1	189.7	174.7	
Available Area (ft^2)	192.0	192.0	192.0	


Balance between efficiency and wear life.

Required = 41% Actual = 41%

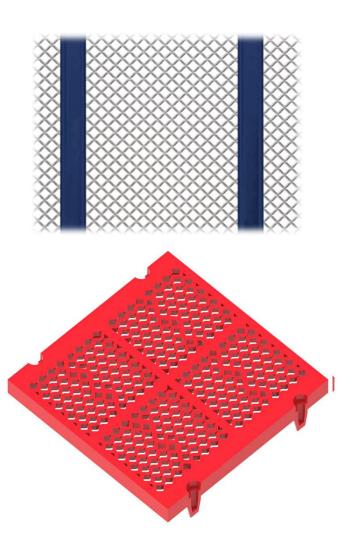

-								į.		1	_	1		1		1		
1				Fee	ed End	of Scr	een				BOTTOM DECK MEDIA							
L				_	TOP	DECK	_		_		ITEM QTY PART NUMBER D					DESCRIPTION		
1		1	1	1	1	1	1	1	1		1	80	TBA	27mm (1") Rubi	oer 1' x 2' 40mm thic	; 36.4% Open Area		
	Α	-	0							Α	2	16	TBA	25.4mm(1") Tuff-Wire	; 0.250 wire - 1' x 2'	Tuff-Wire; 64% Open Area		
-			1	1	1	1	1	1	1		A	12	TBA		Side Wear Plate	s		
-	-																	
-			1	1	1	1	1	1	1									
-	Α									Α		TOTA	AL DECK OPEN ARE	4 41%				
-			1	1	1	1	1	1	1									
H	-																	
1			1	1	1	1	1	1	1									
1	Α		7		_					Α								
1			1	1	1	1	1	1	1									
t																		
			1	1	1	1	1	1	1									
	Α									Α								
			1	1	1	1	1	1	1									
T																		
	Α	1	1	1	1	1	1	1	1	A								
	А	1	1	1	1	1	1	1	1	A								
				1		-	*	70										
		1	1		1	1	1		1	A								
	Α																	
		1		1	1	1			1									
L																		

Balance between efficiency and wear life.

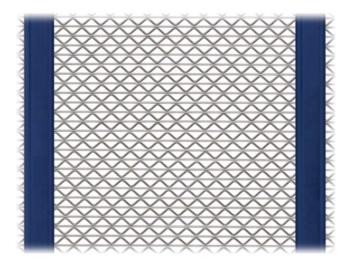
Required = 40% Actual = 39.9%

Media Selection - Scalping Applications

Media Selection - Scalping Applications

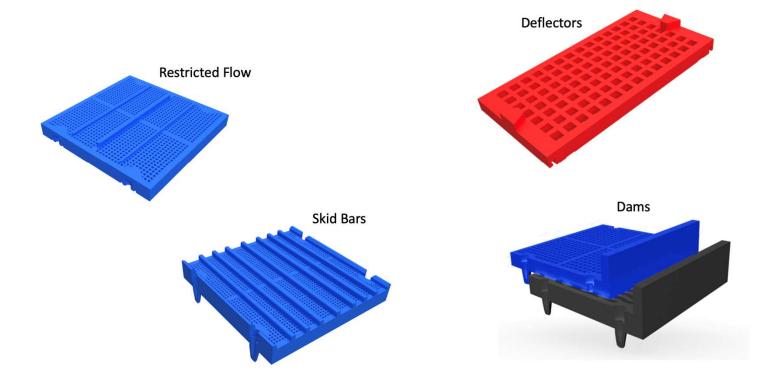


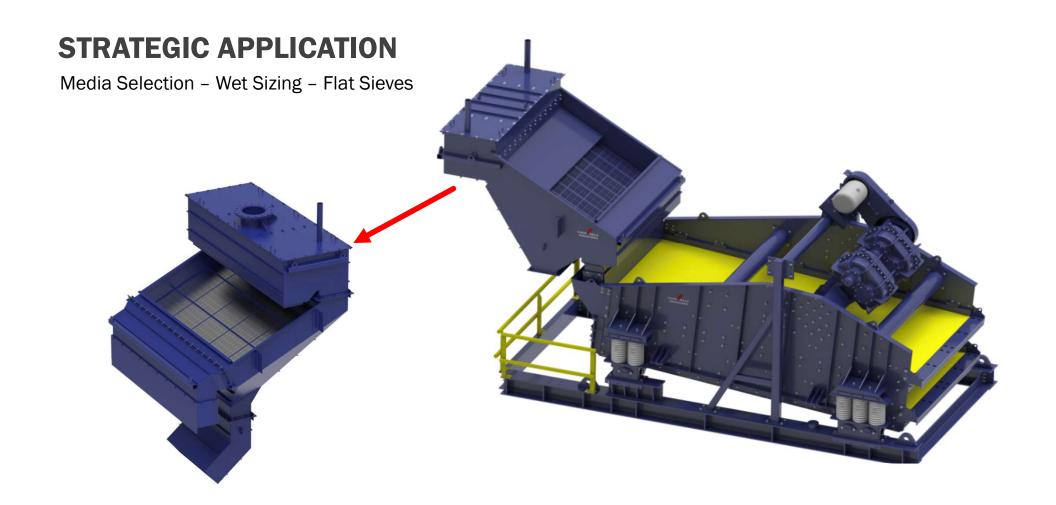
Media Selection – Plugging Applications





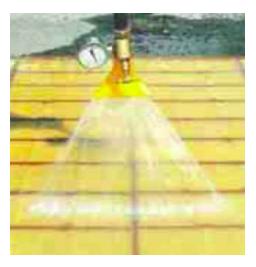
Media Selection – Blinding Applications




Media Selection - Wet Sizing

Proper Feed - Wet Sizing

Wash boxes "pre-soak" the material and help the efficiency of the screen. 1/3 of the water used on a wash screen should be applied here.



Media Selection - Wet Sizing & Rinsing

- How Much Water Pressure is Needed (PSI)
- Where to Measure the Water Pressure
- How the Pressure Affects the Material
- 40 PSI for cuts of 3/16" & above
- 40-60 PSI for cuts 1/8" & below
- Dam placement

Media Selection - Dewatering

QUESTIONS?

THANK YOU