



William B. Walker, PE

Product Support Manager Luck Stone Corporation 804-855-8804 (Cell)

william.walker@luckstone.com









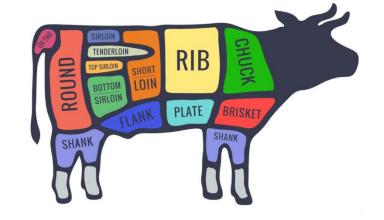
#### **Education:**

Civil Engineering, B.S., Virginia Military Institute Geotechnical Engineering, M.Eng, George Mason University

#### **Experience:**

Soils, aggregates, and materials testing Project and people management Research and development Geotechnical engineering

#### **Hobbies:**


Building, fishing, home improvements, canoeing

### Me:

Husband (12 years) and father of two boys (5 & 3)

### Agenda

- Industry Facts
- Quarry Operations
- Aggregate Products
- Product Balance
- Challenges
- Solutions
- Product Naming
- Key Takeaways









### **Aggregate Facts**

- #1 Product used by VDOT
- 94% of Asphalt
- 70% of Concrete
- 50 Billion Tons Globally





### How It's Made: Aggregates

- Manufactured through disassembly
  - Multiple products produced simultaneously (fines and base)
  - Single sized = not possible





## **How It's Made: Aggregates**



# Aggregates 101





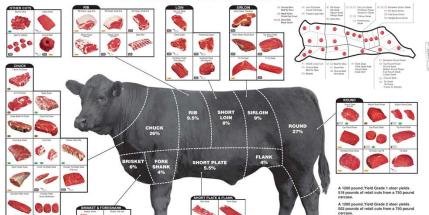








### **Aggregate Products**


- Armor stone
- Riprap
  - Class I, II, III, etc.
- Surge
  - #1, #2, #3
- Coarse
  - #467
  - #57
  - #68
  - #8
- Base
  - GAB
  - 21A/21B/CBR30
  - P209
- Fine
  - Concrete Sand
  - Asphalt Sand
  - Mineral Filler

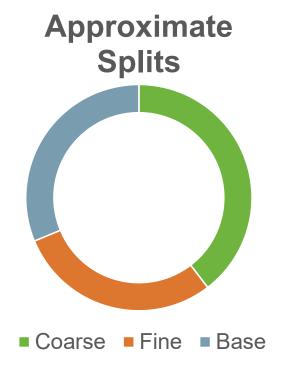












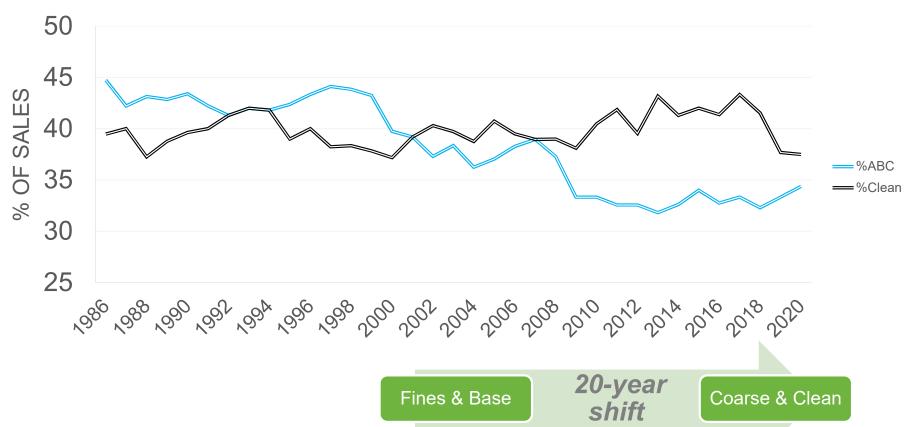





### **Typical Product Split**

| Aggregate Type | Ranges % |
|----------------|----------|
| Coarse         | 30-45    |
| Fine           | 20-35    |
| Base           | 30-40    |










### **Sales Data**

### **BASE VS. CLEAN STONE**

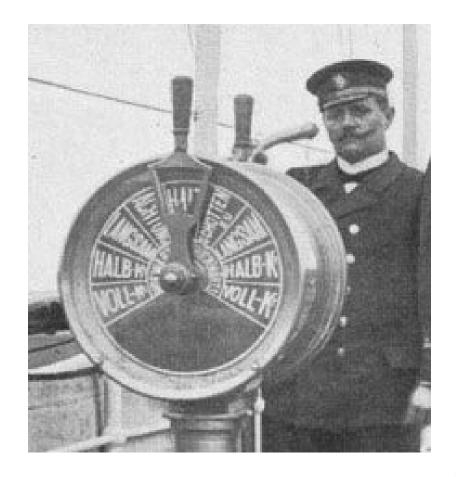


### **Declining Usage of Fines & Base**

### Fines Reduction

- Coarse asphalt mixes
  - Superpave, SMA, Ultrathin, OGFC
- Lack of adoption of manufactured sand in concrete
- Increased use of RAP in asphalt

### Less Base or Coarser Base


- Less new pavement construction
- Use of drainable pavements and bases
- Increased use of in-place recycling



### **Changes & Costs**

- Product Split = Customer Demand
  - Mass balance / plant efficiency studies
  - Crusher studies
  - Process improvement reviews
- Market change = product demand change
  - It's difficult to modify what we do
  - We can modify our product proportions
  - We can't stop making certain products

| Product | Price  |
|---------|--------|
| Crusher | \$700K |
| Screen  | \$300K |
| Liner   | \$45K  |




# What's the impact?



# What's the impact?



# What's the impact?



### **Product Balance & Sustainability**

- Where is the opportunity?
- 1. In the **product**
- 2. In the specs
- 3. In the design/construction
- Who can improve sustainability?
- 1. Producers
- 2. Consultants/VDOT
- 3. Contractors







TABLE II-9 Design Range for Dense-Graded Aggregates

|             | Amounts Finer Than Each Laboratory Sieve (Square Openings¹) (% by Weight) |        |         |        |        |         |                                    |  |  |  |
|-------------|---------------------------------------------------------------------------|--------|---------|--------|--------|---------|------------------------------------|--|--|--|
| Size<br>No. | 2 in                                                                      | 1 in   | 3/8 in. | No. 10 | No. 40 | No. 200 | ASTM D4791 Flat &<br>Elongated 5:1 |  |  |  |
| 21A         | 100                                                                       | 94-100 | 63-72   | 32-41  | 14-24  | 6-12    | 30% max.                           |  |  |  |
| 21B         | 100                                                                       | 85-95  | 50-69   | 20-36  | 9-19   | 4-7     | 30% max.                           |  |  |  |
| 22          | ***                                                                       | 100    | 62-78   | 39-56  | 23-32  | 8-12    | 30% max.                           |  |  |  |



### **Problematic Products**

# gif-findencon

#### Overuse of 21B

Uses very little fines

### Drainable bases

Increases fines production

#### SMA

- Flat and elongated requirement even more fines than normal
- SMA made with standard aggregate just as durable

#### Crushed concrete and RAP

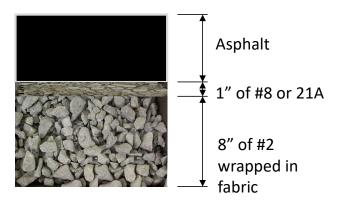
- Due to excess inventories of these products
- Replaces base and fines
- The aggregate producers in Virginia have excess products far exceeding those of the RAP and crushed concrete

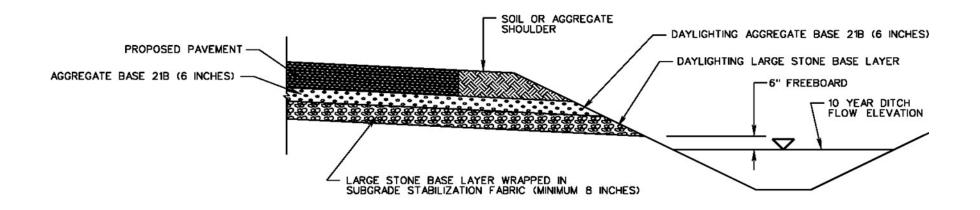


### **Problematic Specifications**



### I-64 GAP Segment A Widening


| Asphalt Alternate    | 15              | Concrete Alternate |                 |  |  |  |
|----------------------|-----------------|--------------------|-----------------|--|--|--|
| Travelway            | Median Shoulder | Travelway          | Median Shoulder |  |  |  |
| 2" SMA 12.5 (64E-22) | 2" SM-12.5D     | 11" JPCP*          | 2" SM-12.5D     |  |  |  |
| 3" SMA 19.0 (64E-22) | 3" IM-19.0D     | 2" OGDL            | 3" IM-19.0D     |  |  |  |
| 4" BM-25.0D          | 4" BM-25.0D     | 10" Subbase**      | 6" BM-25.0D     |  |  |  |
| 2" OGDL              | 2" OGDL         |                    | 2" OGDL         |  |  |  |
| 10" Subbase**        | 10" Subbase**   | 6                  | 10" Subbase**   |  |  |  |


<sup>\*</sup> Jointed Plain Concrete Pavement (JPCP) shall be designed to have 15-foot joint spacing, as a widened slab with 14-foot wide pavement, (12-feet in the travel lane and 2-feet incorporated into the median shoulder).

<sup>\*\*</sup> Subbase shall be a Cement Treated Crushed Concrete or Cement Treated Recycled Asphalt Pavement (RAP) meeting the requirements of the Special Provision for FDR(SP315-DB0420-00).

### **Problematic Design/Construction**

- I-66 Re-design
  - 21B replaced with VDOT #2 stone





### **Product & Specification Solutions**

- VDOT #21A
- CTA with higher fines
- Cement treated screenings
- MSE Wall Backfill
- 4.75mm Pavements
- VDOT SP303-000210-00
  - Fill for embankments
  - Structural backfill
  - Pipe backfill
  - MSE Wall Backfill
  - Soft ground stabilization



#### 3.5 Select Backfill Material

Select backfill material used in the reinforced zone shall be reasonably free from organic material, shale or other poor durability particles and otherwise deleterious materials. The backfill shall conform to the following grading as determined by AASHTO T-ZT

#### Sieve Size

4 in.\* No. 40



#### TABLE II-13

|              |                                                 | Aspr | iait Co | ncrete           | MIXTUI    | es: De | sign Ka | ange          |           |           |            |
|--------------|-------------------------------------------------|------|---------|------------------|-----------|--------|---------|---------------|-----------|-----------|------------|
|              | Percentage by Weight Passing Square Mesh Sieves |      |         |                  |           |        |         | $\overline{}$ |           |           |            |
| Mix Type     | 1 1/2<br>in                                     | 1 in | ¾ in    | ½ in             | 3/8<br>in | No. 4  | No. 8   | No.<br>16     | No.<br>30 | No.<br>50 | No.<br>200 |
| SM-4.75      |                                                 |      |         | 100 <sup>1</sup> | 95-       | 90-    |         | 30-           |           | ١ ١       | 6-13       |
| A,D,E        |                                                 |      |         |                  | 100       | 100    |         | 55            |           |           | V          |
| SM-9.0 A,D,E |                                                 |      |         | 100 <sup>1</sup> | 90-       | 90     | 47-     |               |           |           | 2-10       |
|              |                                                 |      |         |                  | 100       | max.   | 67      |               |           |           |            |
| SM-9.5 A,D,E |                                                 |      |         | 100 <sup>1</sup> | 90-       | 58-    | 38-     |               | 23        |           | 2-10       |
|              |                                                 |      |         |                  | 100       | 80     | 67      |               | max       |           |            |
| SM-12.5      |                                                 |      | 100     | 95-              | 90        | 58-    | 34-     |               | 23        |           | 2-10       |
| A,D,E        |                                                 |      |         | 100              | max.      | 80     | 50      |               | max       |           |            |

#### TABLE II-9 Design Range for Dense-Graded Aggregates

#### Amounts Finer Than Each Laboratory Sieve (Square Openings')

| Size<br>No. | 2 in | 1 in   | 3/8 in. | No. 10 | No. 40 | No. 200 | ASTM D4791 Flat &<br>Elongated 5:1 |
|-------------|------|--------|---------|--------|--------|---------|------------------------------------|
| 21A         | 100  | 94-100 | 63-72   | 32-41  | 14-24  | 6-12    | 30% max.                           |
| 21B         | 100  | 85-95  | 50-69   | 20-36  | 9-19   | 4-7     | 30% max.                           |
| 22          | ***  | 100    | 62-78   | 39-56  | 23-32  | 8-12    | 30% max.                           |

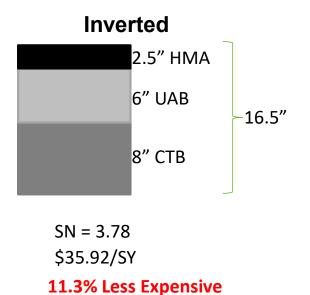
#### 4. GENERAL REQUIREMENTS

- Materials shall be free from detrimental quantities of organic material, such as leaves, grass, roots, and sewage.
- 4.2. Materials obtained from cuts or borrow areas shall conform to one of the following requirements:
- 4.2.1. In Embandments—Materials classified in the A-1, A-2-4, A-2-5, or A-2 groups as in M 145 shall be used when available and shall be compared; or we ofest) specified by the section of the control the maximum density per T 99. If material this character is not available of materials from the A-2-6, A-2-7, A-4, A-5, A-6, A-6 are T groups into the cascal or most should be given to the design and construction of the embankment. Materials from these groups shall be compacted to not less than 59 percent of the maximum density and within two percentage points of the optimal control of the control of the maximum density and within two percentage points of the optimal control of the control of the maximum density and within two percentage points of the optimal control of the co



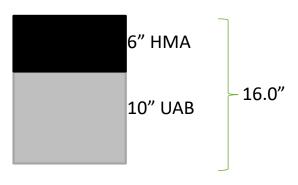







### **Design Solutions**




#### Inverted Pavement

- 40+ years in South Africa
- Proven track record under heavy axle loads and high traffic pavements
- Utilizes thick layers of cement treated base, aggregate base
- Thin layer of asphalt



than Conventional

### Conventional



SN = 4.04 \$40.51/SY

### **FHWA Research**

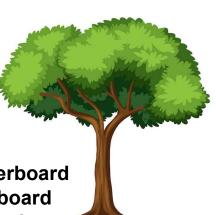
- Inverted pavement test section at TFHRC
- Accelerated Loading Facility (ALF)
- 2 test lanes dedicated to inverted pavement

Lanes w/ Unbound Base



Lanes w/
Cement Treated
Screenings







# Logging



### **Product Naming**

- Sold as:
  - Timbers
  - Lumber
  - Boards
  - Plywood
  - Medium density fiberboard
  - Chipboard/particle board
  - Oriented strand board
  - Wood pellets
  - Mulch
- Fines not sold/referred to as:
  - "cuttings"
  - "waste dust"
  - "chippings"
  - "wood shavings"
  - "sawmill byproduct"

















### "Four-Letter" Product Names

• **D**\*\*\*, **F**\*\*\*\*, **S**\*\*\*\*\*\*\*\* (Dust, fines, screenings)

### VDOT #10 Stone

- Fine aggregate
- Dense graded
- Sand
- USCS-SM

### Mineral Filler

- Super fines
- Baghouse fines
- Sand plant fines
- Belt press fines
- Pit fines
- Pond fines
- Pond dippings









### **Product Naming**

- Project funded by GDOT and FHWA
- Initial:
  - Sustainable Application of Quarry By-Products
- Edited:

- Sustainable Application of Mineral Filler Sized Stone Products
- Removed references to:
  - "QB"
  - "waste"
  - "waste materials"
  - "quarry dust"
  - "quarry waste fines"
  - "by-product/byproduct"
  - "by-product mineral fine materials"
  - "quarry waste"
  - "by-product fines"





#### Exhibit A. STATEMENT OF WORK

Research Revised Proposal for the GEORGIA DEPARTMENT OF TRANSPORTATION

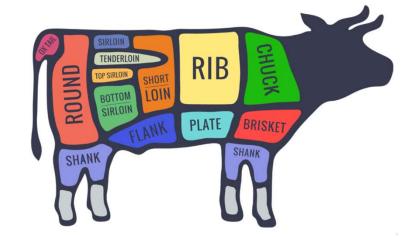
ustainable Application of Mineral Filler Sized Stone Products in Georgia

#### INTRODUCTION

e between a product's production rate and the rate of consumption. The range of stor products the aggregate industry produces is demonstrated in Figure 1



ation (FHWA) Report 97-148 (1). These include screenings, settling pond fines, and including cyclones and baghouses will be required. The dust generated during the crushing


### **Key Takeaways**

- Continued excess of base and fines
- Created by specifications and changes in product use
- Existing products and design options can help balance
- Product naming makes a difference



### Who can improve sustainability?

- Producers product
- Consultants/VDOT specs
- Contractors construction





