

ESTIMATING MAINTENANCE OF TRAFFIC AT THE CONCEPTUAL LEVEL

John-Allen Ennis, PE – VDOT Staunton District Caroline Rice, PE – CES Consulting LLC

March 11, 2025

Presentation Outline

General Info for MOT Design/Constructability and Cost Estimates

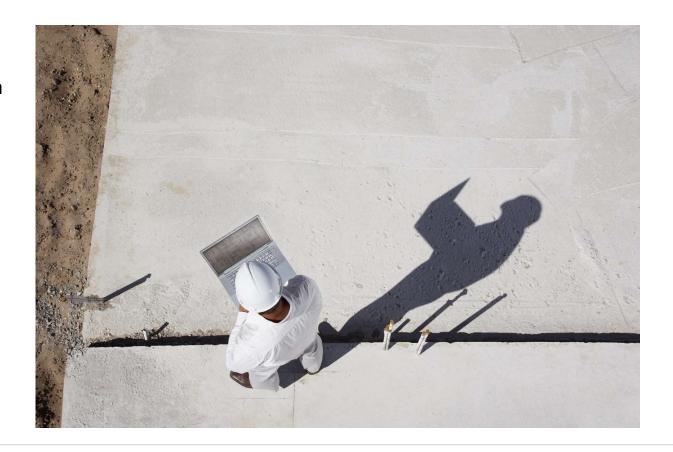
VDOT Requirements and Resources for MOT

Advanced Work Zone Training, Work Area Protection Manual)

Non-Complex Project Example (Route 340 Turn Lane)

MOT Evaluation, Estimate Development

Moderately Complex Project Example (Route 50 DDI)


MOT Evaluation, Major Quantity Development, Estimate Development

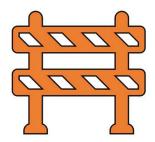
Do your homework!

- Site Visit
 - Verify information from any available plans/survey/as-builts
 - Assess visible utilities
 - Note any changes or potential challenges

Do your homework!

· Consider the needs of all users

Do your homework!


Closures and Detours

This Photo by Unknown Author is licensed under CC BY-SA

Do your homework!

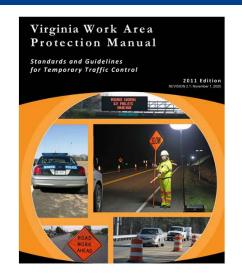
ROW and Utility

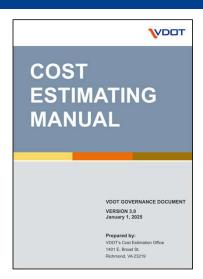
Do your homework!

Temporary Items

Do your homework!

Timing and Special Events


VDOT Resources for MOT


Guides and Training

- Advanced Work Zone Traffic Control Certification
 - (Work zone safety and operations | Virginia
 Department of Transportation)
- Virginia Work Area Protection Manual (WAPM)
 - (Virginia Work Area Protection Manual)

Cost Estimating Resources

- Cost Estimating Manual
- Pre-Quantity Tool
- SPECC
- Statewide Bid Tab Query
- All the above are available online: <u>Cost Estimation</u>
 <u>Virginia Department of Transportation</u>

Determining Project Complexity

Table 5-1: VDOT Project Complexity Classification for the Cost Estimating Process

Most Complex	Moderately Complex	Non-Complex
Most VDOT Tier 2 Projects (See IIM-LD-249)	Higher Risk VDOT Tier 1 Projects Such As:	Most VDOT Tier 1 Projects (See IIM-LD-249)
Medium to high complexity and schedule risks	T1 Projects with higher risks	Very low to medium complexity schedule risks
Special provisions for special time related conditions	T1 projects with multiple and potentially challenging RW needs	Short straightforward operations, typically single season and schedule type work
Multi-season projects with multiple concurrent operations and work paths	T1 projects with significant utility relocations	Simple repairs, multiple locations, flexible schedule
Challenging work and conditions	T1 projects with multiple and significant environmental impacts	Familiar work, favorable conditions
Several major subcontractors, multiple crews	T1 projects in rural areas close to sensitive areas (military bases, government facilities, major airports)	Simple low risk rehab projects
Major reconstruction / realignment	T1 projects in highly urban locations - multiple businesses along project	Drainage improvements
Major intersection improvements	T1 bridge projects with significant approach work	Trench widening projects
New roadway / bridge construction, not meeting the Moderately Complex criteria	Lower Risk VDOT Tier 2 Projects Such As:	Maintenance project schedule work (pavement, bridge, guardrail)
Large, very complex single-contract projects	T2 projects with lower risks	Intersection improvements, including signals
Multiple, roadways, bridges and ramps	T2 projects with few (if any) RW needs	Minor reconstruction projects
Projects with major traffic impacts	T2 projects with only minor utility relocations	Bridge or large culvert only projects with minimal approach work, no RW or utilities, and on secondary roads.
Projects that require RW from Federal government agencies.	T2 projects with few (if any) environmental impacts	Pavement markings and markers
T2 bridge projects involving large and/or complex structures	T2 projects in rural areas not near sensitive areas (military bases, government facilities, major airports)	
	T2 bridge projects with approach work, RW, utilities, environmental, and/or staging, etc.	

How is estimating MOT different than other categories

- Rarely have quantities
- Usually have little to no design work complete
- Considered a "Known Unknown", meaning it should fall under allowances as opposed to defined costs

What tools are available to us?

- Pre-Quantity Tool (PQT)
- Similar Project Estimates by Cost Category (SPECC)
- Other misc. tools or spreadsheets

Using the PQT – Picking an MOT Lane

- Percentage (%)
- Lump Sum (LS)
- Cost Per Month

What's included in the percentage

- Channelizing Devices
- Construction Signs
- Temporary Pavement Markings
- Other Misc. and Incidental Traffic Control Items

Additional Major Cost Items

- Temporary Signals
- Concrete Barrier and other Protective Items
- Temporary Pavement
- Significant amounts of flagging

Route 340 Turn Lane (Luray, VA)

Route 340 Turn Lane (Luray, VA)

Route 340 Turn Lane (Luray, VA)

Considerations

- Nearby Sports Complex
- Near interchange of Lee Highway and Route 340 Business
- Private Driveway

TTC 5.2

Typical Traffic Control

Shoulder Operation with Minor Encroachment

(Figure TTC-5.2)

NOTES

Standard

1. For required sign assemblies for multi-lane roadways see Note 1, TTC-4. 1 Guidance

- Sign spacing should be 1300'-1500' for Limited Access highways. For all other roadways, the sign spacing should be 500'-800' where the posted speed limit is greater than 45 mph, and 350'-500' where the posted speed limit is 45 mph or less.
- 3. When work takes up part of a lane on a high volume roadway; vehicular traffic volumes, vehicle mix, speed and capacity should be analyzed to determine whether the affected lane should be closed. Unless the lane encroachment analysis permits a remaining lane width of 10 feet, the lane should be closed. If the closure operation is on a Limited Access highway, the minimum lane width is 11 feet.

Option:

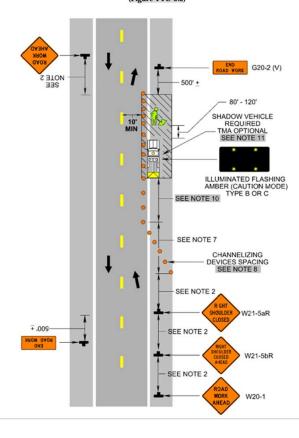
The ROAD WORK AHEAD (W20-1) sign on an intersecting roadway may be omitted where drivers
emerging from that roadway will encounter another advance warning sign prior to this activity area.

Standard:

- A shadow vehicle with either an arrow board operating in the caution mode, or at least one highintensity amber rotating, flashing, or' oscillating light shall be parked 80' - 120' in advance of the first work crew.
- Vehicle hazard warning signals shall not be used instead of the vehicle's high-intensity amber rotating, flashing, or' oscillating lights. Vehicle hazard warning signals can be used to supplement high-intensity amber rotating, flashing, or' oscillating lights.

7. Taper length (L) and channelizing device spacing shall be at the following:

Speed	L	ane Wid	dth (Fee	t)		Speed	L	ane Wid	th (Fee	t)	
Limit (mph)	9	10	11	12	Remarks	Limit (mph)	9	10	11	12	Remarks
25	95	105	115	125	L=S2W/60	50	450	500	550	600	L=SW
30	135	150	165	180	L=S2W/60	55	495	550	605	660	L= SW
35	185	205	225	245	L=S2W/60	60	540	600	660	720	L=SW
40	240	270	295	320	L=S2W/60	65	585	650	715	780	L=SW
45	405	450	495	540	L=SW	70	630	700	770	840	L=SW
				s < 65 m	1000' merging to high and a 1000 Shoulder Taper	shifting tag	per for p				


8. Channelizing device spacing shall be at the following:

			Channelizing	Device Sp	acing				
Location	Speed (m	Limit ph)	Location Speed Limit (mph) Location S		Location Spacing	Speed (m	f Limi ph)		
Spacing	0 -35	36 +	Spacing	0 -35	36 +			0 -35	36 +
Transition	20'	40'	Travelway	40'	80"	*Construction Access	801	120	

- On roadways with paved shoulders having a width of 8 feet or more, channelizing devices shall be used to close the shoulder in advance of the merging taper to direct vehicular traffic to remain within the traveled way.²
- The buffer space length The buffer space length shall be as shown in Table 6H-3 on Page 6H-5 for the posted speed limit.
- A truck-mounted attenuator (TMA) shall be used on Limited Access highways and multi-lane roadways with posted speed limit equal to or greater than 45 mph.
- roadways with posted speed limit equal to or greater than 45 mph.

 When a side road intersects the highway within the temporary traffic control zone, additional traffic control devices shall be placed as needed.

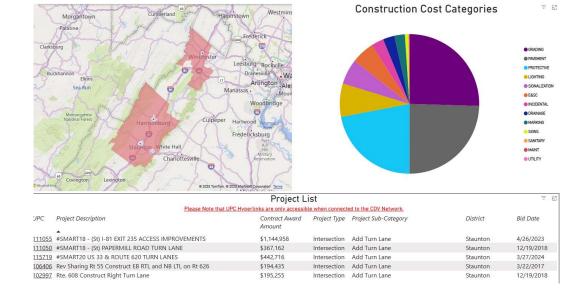
Shoulder Operation with Minor Encroachment (Figure TTC-5.2)

Building the Estimate – Determining the %

- PQT Recommends 2 to 15%
- Consider elements such as project duration, size of work area, number of access points, etc.
- Consider similar projects, in this case left turn lanes
- Finally, consider major MOT cost drivers to include in addition to percentage. It is unlikely you will have many of these on a non-complex project

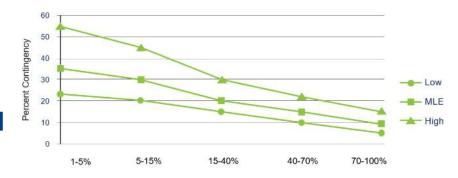
Building the Estimate – Determining the %

- In the example MOT should be simple and straight forward
- Short project, widening to one side, no anticipated major cost items
- Taking all of this into account the percentage should probably be on the low end, around 3-5%
- Only major cost driver to consider would be flagging



Building the Estimate – Checking the %

- Reference similar projects recently completed
- Run it by another Estimator for a gut check
- Quick review in SPECC



Building the Estimate – Determining the Contingency

- For Non-Complex projects, the contingency is typically a % of defined costs and allowances
- Contingency tables in the CEM are helpful but should not be applied without consideration of risk
- Based on the level of risk identified recommend contingency in the low to mid level of the range

Figure 5-3b: Risk and Contingency Sliding Scale - Non-Complex

Percent of Project Development

Range of Contingency % by Project Level of Definition

	1-5%	5-15%	15-40%	40-70%	70-100%
High	55%	45%	30%	22%	15%
MLE*	35%	30%	20%	15%	8%
Low	23%	20%	15%	10%	5%

*MLE - Most Likely Estimate

*Excerpt from Table 5-3b in the CEM

Route 50 DDI (Winchester, VA)

Route 50 DDI (Winchester, VA) – Considerations

- Nearby Interchange
- Hospital
- Nearby Businesses
- Nearby Residential

Building the Estimate – Determining the %

- PQT Recommends 2 to 15%
- Consider elements such as project duration, size of work area, number of access points, etc.
- Consider similar projects, in this case left turn lanes
- Consider your base estimate. Are there high cost items in the estimate that drive the base cost up but have little impact on the MOT?

Building the Estimate – Determining the %

- In the example MOT will be complex
- It will involve multiple phases with a significant amount of work during construction to maintain traffic
- Taking all of this into account the percentage should probably be on the higher end, around 10-15%

Building the Estimate – Additional Items

- Additional items can account for significant costs on more complex projects
- In our example, many of these items will be necessary and should be quantified (field office, concrete barrier, flagging, temporary pavement, etc.)

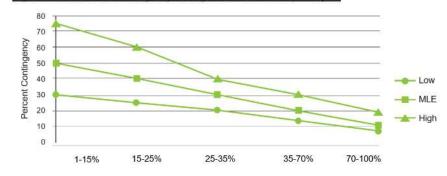
Item	Unit	Quantity	
Field Office	MO	0	
Concrete Barrier	10-		
(Traffic Barrier Service TCB-1 used for estimating)	LF		
Flagging	HR	500	
Double Face Barrier			
(Traffic Barrier Service, Conc. Dbl. Fc MB-11A used	LF		
for estimating)			
Impact Attenuator	Ε.Δ.		
(Service Ty. 1 TL-3, > 40MPH used for estimating)	EA		
Temporary Pavement	SF		Pave. Depth (IN)
Asphalt Concrete Ty. SM	TON	0.00	
Asphalt Concrete Ty. IM	TON	0.00	
Asphalt Concrete Ty. BM	TON	0.00	
Aggr. Matl. No. 21A or 21B	TON	0.00	

			0031
Temporary Bridges Allowance	LS	0	\$ -
Temporary Signals Allowance	LS	0	\$ -
Temporary Earthwork Allowance	LS	0	\$ -
Temporary Sheet Piling Allowance	LS	0	\$ 1-

Cost

Building the Estimate – Checking the %

- Reference similar projects recently completed
- Run it by another Estimator for a gut check
- Quick review in SPECC



Building the Estimate – Determining the Contingency

- For Moderately-Complex projects, the contingency can be either a % of the base estimate or a deterministic contingency can be used
- Contingency tables in the CEM are helpful but should not be applied without consideration of risk
- If a % is used, based on the level of risk identified recommend contingency in the mid to high level of the range

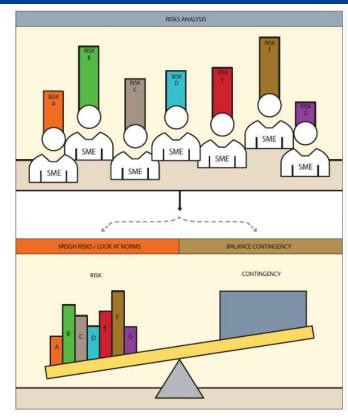
Figure 5-3c: Risk and Contingency Sliding Scale – Moderately Complex

Phase of Project Development

Range of Contingency % by Project Level of Definition

	1-15%	15-25%	25-35%	35-70%	70-100%
High	75%	60%	40%	30%	18%
MLE*	50%	40%	30%	20%	10%
Low	30%	25%	20%	12%	7%

*MLE - Most Likely Estimate


*Excerpt from Table 5-3c in the CEM

Building the Estimate – Determining the Contingency

- For Moderately-Complex projects, you may want to consider a deterministic approach
- This would require evaluating the probability and impact of each risk
- Recommend involving subject matter experts to develop
- See chapter 5 of the CEM for more detail

*Excerpt from Figure 5-4 in the CEM

Questions?

