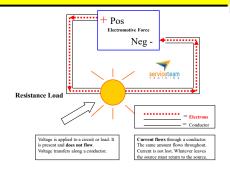
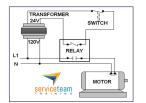
ELECTRICAL TROUBLESHOOTING

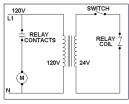

MARK CUKRO 1-704-363-6236

WWW.SERVICETEAMTRAINING.COM


General Notes

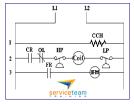
Basic Electrical Circuit

General Notes


3 requirements for a circuit

Pictorial diagrams

Show how components are actually wired.


However, they become cumbersome when too many components are involved.

Schematic diagrams

Present the logic of the circuit in an organized fashion.

Schematic diagrams are less cluttered because **they use symbols** to represent components.

A ladder diagram

is arranged with the power supply lines drawn vertical as the legs of a ladder.

Each horizontal line contains one load and its control switches.

3 types of diagrams

What specifically are you troubleshooting?

You must know before you start—Fill in below

Time	Fault – specific of non-specific
Airflow	Frequency of the fault
Water Flow	Point of origin
Energy	Point of termination
A Function	Electrical
Operator Error	Mechanical
	Other considerations for same fault
Overall Performance	Overall success rates
Write what you are trouk	oleshooting below:

Front Panel Symbols

Symbol	ivieaning
v 	V DC
$_{ extsf{v}}\sim$	V AC
mV	millivolts (.001V or 1/1,000V)
A	Amps
mA	milliamps (.001A or 1/1000A)
μΑ	microA (.000001A or 1/1,000,000A)
Ω	Resistance (Ohms)
kΩ,MΩ	kilo-Ohms, Megohms
))))	Continuity beeper

Symbols	Measurement Functions	Descriptions
V~	AC Voltage	Measures amount of AC Electrical Pressure
V	DC Voltage	Measures amount of DC Electrical Pressure
mV	Milli Volts	.00V or 1/1000V
A	Amperes	Measures amount of electron flow
mA	Milli Amperes	.001 or 1/1000A
Ω	Ohms	Measurement of resistance to the flow of electron
*	Diode	Device used to control direction of electron flow
•)))	Audible Continuity	Audible indication of continuity for low resistance
	Capacitance	Device used to store electrical potential

General Notes:

Symbol

Write in the meaning of each symbol

v ===

 $_{ extsf{v}}\sim$

mV

Α.

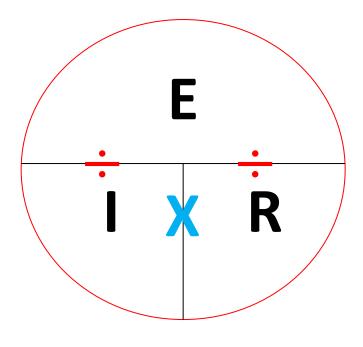
mΑ μΑ

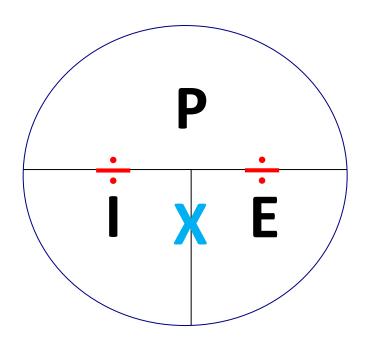
Ω

 $k\Omega$, $M\Omega$

))))

Types of Circuits Light Light Light Light Light Series Circuit Series circuit: Voltage drops but amperage stays the same Light Light Light Light Light Parallel Circuit: Amperage drops but voltage stays the same Fuse Combination series – parallel circuit


General Notes:


Search Methods:

- Voltage is the pressure or force
- Amperage is the flow of electrons
- Ohms is the measurement of resistance
- Watts is the amount of power an electric device consumes.
- A watt-hour (Wh) is the amount of energy consumed when a device uses one watt of power for one hour.

Illustration of Ohm's Law

E (Voltage)

= ____ x ____

I (Current)

= ____/____

R (Resistance)

= ____/____

P (Power)

= ____ x ____

General Notes:		
	Summary	
	Have the correct test equipment	
	Build your skills with using meters	
	Know what type of circuit you are testing	
	Know how each component works correctly	
	 Match all ratings on components and equipment 	
	Follow codes	
	 Your safety is your responsibility first 	
	Don't take unnecessary risks	
	Trust the process of troubleshooting	
	Go home safe ©	
General Note		
General Note		

Technical Courses

Effective Service Operations
CFC/HVAC Certification (EPA 608)
CPO Certification (National) 2 day
CPO Certifications (local) 1 day
HVAC Fundamentals and Troubleshooting
HVAC Intermediate Troubleshooting
HVAC Advanced
Electrical Fundamentals and Troubleshooting (basic)
Electrical Intermediate Troubleshooting and Repairs
Basic Plumbing Repairs
Basic Appliance Repairs
Advanced Appliance Repairs
Advanced Troubleshooting – some experience is required
Service Technician Development

Other Courses for Leasing and Service Teams

Leadership for Service Managers and Supervisors
Leadership for Life
Maintenance for Managers
Maintenance for Leasing Agents
Leasing for Service Teams
Communication Performance
What every Manager Needs to Know
Customer Service and Work order Management
Creating Leverage and Vendor Management
DIY - Start Saving Money Tomorrow – best practices, products, and services
Take Action - Personal Safety and Assault Prevention

Custom Courses are made upon request

Other Courses are available

Additional Instructor are available upon request

Follow us on Facebook and be sure and subscribe to or newsletter

Service Team Training