

DAVID HALLIDAY • ROBERT RESNICK • JEARL WALKER

DAVID HALLIDAY

University of Pittsburgh

ROBERT RESNICK

Rensselaer Polytechnic Institute

JEARL WALKER

Cleveland State University

JOHN WILEY & SONS, INC.
New York Chichester Brisbane Toronto Singapore

ACQUISITIONS EDITOR Cliff Mills DEVELOPMENTAL EDITOR Barbara Heaney MARKETING MANAGER Catherine Faduska PRODUCTION SUPERVISOR Lucille Buonocore INTERIOR DESIGN Dawn L. Stanley COVER DESIGN Jeanette Jacobs Design MANUFACTURING MANAGER Andrea Price COPY EDITING SUPERVISOR Deborah Herbert PHOTO RESEARCH DIRECTOR Stella Kupferberg PHOTO RESEARCHERS Charles Hamilton Hilary Newman Pat Cadley ILLUSTRATION Edward Starr COVER PHOTO Courtesy FPG

International

Copyright © 1974, 1981, 1988, 1993, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Halliday, David

Fundamentals of physics / David Halliday, Robert Resnick, Jearl Walker. - 4th ed.

cm. Includes index.

ISBN 0-471-52461-1 (cloth). --

1. Physics. I. Resnick, Robert Tearl

II. Walker,

QC21.2.H35 1993 530-dc20

10 9 8 7 6 5

92-32801 CIP

Printed in the United States of America

Recognizing the importance of preserving what has been written, it is a policy of John Wiley & Sons, Inc. to have books of enduring value published in the United States printed on acidfree paper, and we exert our best efforts to that end.

This book was set in 10/12 New Baskerville by Progressive Typographers and printed and bound by Von Hoffman Press. The cover was printed by Phoenix Color.

Tremer few yea tion of and en Fundan fermen new co examir hope t hancer

CHA

Althou framev many (Each (and ci science change work a W

> cepts a or clea have steps. within viding these

chapte

W Quest their clarity have a dition chapt

W tratin; primechapt many intrig

MEASUREMENT 1-14

Measuring Things / The International System of Units / Changing Units / Length / Time / Mass

CHAPTER 2

MOTION ALONG A STRAIGHT LINE 15-44

Motion / Position and Displacement / Average Velocity and Average Speed / Instantaneous Velocity and Speed / Acceleration / Constant Acceleration: A Special Case / Another Look at Constant Acceleration / Free-Fall Acceleration / The Particles of Physics

CHAPTER 3

VECTORS 45-64

Vectors and Scalars / Adding Vectors: Graphical Method / Vectors and Their Components / Unit Vectors / Adding Vectors by Components / Vectors and the Laws of Physics / Multiplying Vectors

CHAPTER 4

MOTION IN TWO AND THREE DIMENSIONS 65-96

Moving in Two or Three Dimensions / Position and Displacement / Velocity and Average Velocity / Acceleration and Average Acceleration / Projectile Motion / Projectile Motion / Projectile Motion / Relative Motion in One Dimension / Relative Motion in Two Dimensions / Relative Motion at High Speeds (Optional)

CHAPTER 5

FORCE AND MOTION - I 97-130

Why Does a Particle Change Its Velocity? / Newton's First Law / Force / Mass / Newton's Second Law / Some Particular Forces / Newton's Third Law / Applying Newton's Laws

CHAPTER 6

FORCE AND MOTION — II 131-158

Friction / Properties of Friction / The Drag Force and Terminal Speed / Uniform Circular Motion / The Forces of Nature

CHAPTER 7

WORK AND KINETIC ENERGY 159-186

A Walk Around Newtonian Mechanics / Work: Motion in One Dimension with a Constant Force / Work Done by a Variable Force / Work Done by a Spring / Kinetic Energy / Power / Kinetic Energy at High Speeds (Optional) / Reference Frames

CHAPTER 8

CONSERVATION OF ENERGY 187-224

Work and Potential Energy / Mechanical Energy / Determining the Potential Energy / Conservative and Nonconservative Forces / Using a Potential Energy Curve / Conservation of Energy / Work Done by Frictional Forces / Mass and Energy (Optional) / Energy Is Quantized (Optional)

CHAPTER 9

SYSTEMS OF PARTICLES 225-254

A Special Point / The Center of Mass / Newton's Second Law for a System of Particles / Linear Momentum / The Linear Momentum of a System of Particles / Conservation of Linear Momentum / Systems with Varying Mass: A Rocket (Optional) / Systems of Particles: Changes in Kinetic Energy (Optional)

CHAPTER 10

COLLISIONS 255-284

What Is a Collision? / Impulse and Linear Momentum / Elastic Collisions in One Dimension / Inelastic Collisions in One Dimension / Collisions in Two Dimensions / Reactions and Decay Processes (Optional)

CHAPTER 11

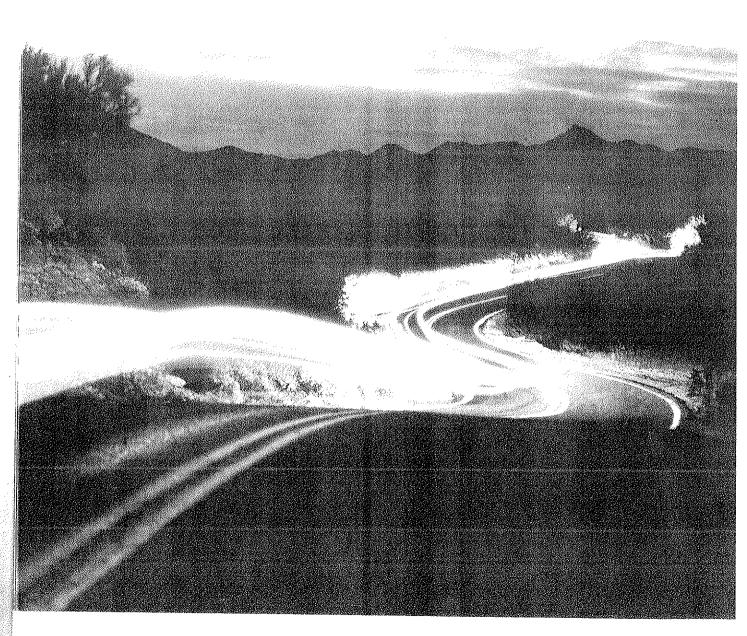
ROTATION 285-318

A Skater's Life / The Rotational Variables / Angular Quantities as Vectors: An Aside / Rotation with Constant Angular Acceleration / The Linear and Angular Variables / Kinetic Energy of Rotation / Calculating the Rotational Inertia / Torque / Newton's Second Law for Rotation / Work, Power, and the Work – Kinetic Energy Theorem

CHAPTER 12

ROLLING, TORQUE, AND ANGULAR MOMENTUM 319-352

Rolling / The Yo-yo / Torque
Revisited / Angular Momentum /
Newton's Second Law in Angular Form /
The Angular Momentum of a System of
Particles / The Angular Momentum of a
Rigid Body Rotating About a Fixed
Axis / Conservation of Angular
Momentum / Conservation of Angular
Momentum: Some Examples /
Precession of a Gyroscope (Optional) /
Angular Momentum Is Quantized
(Optional)


ISBN 0-471-12966-6

JOHN WILEY & SONS, Inc.
New York • Chichester • Brisbane • Toronto • Singapore

VOLUME: 2

Chapters 18-22

DAVID HALLIDAY

ROBERT RESNICK

JEARL WALKER

EQUILIBRIUM AND ELASTICITY 353-380

Equilibrium / The Requirements of Equilibrium / The Center of Gravity / Some Examples of Static Equilibrium / Indeterminate Structures / Elasticity

CHAPTER 14

OSCILLATIONS 381-410

Oscillations / Simple Harmonic
Motion / Simple Harmonic Motion: The
Force Law / Simple Harmonic Motion:
Energy Considerations / An Angular
Simple Harmonic Oscillator /
Pendulums / Simple Harmonic Motion
and Uniform Circular Motion / Damped
Simple Harmonic Motion (Optional) /
Forced Oscillations and Resonance
(Optional)

CHAPTER 15

GRAVITATION 411-442

The World and the Gravitational Force / Newton's Law of Gravitation / Gravitation and the Principle of Superposition / Gravitation near the Earth's Surface / Measuring the Gravitational Constant G / Gravitation inside the Earth / Gravitational Potential Energy / Planets and Satellites: Kepler's Laws / Satellites: Orbits and Energy (Optional) / A Closer Look at Gravitation (Optional)

CHAPTER 16

FLUIDS 443-474

Fluids and the World Around Us / What Is a Fluid? / Density and Pressure / Fluids at Rest / Measuring Pressure / Pascal's Principle / Archimedes' Principle / Ideal Fluids in Motion / Streamlines and the Equation of Continuity / Bernoulli's Equation / Some Applications of Bernoulli's

Equation / The Flow of "Real" Fluids (Optional)

CHAPTER 17

WAVES - I 475-502

Waves and Particles / Waves / Waves in a Stretched String / Wavelength and Frequency / The Speed of a Traveling Wave / Wave Speed on a Stretched String / The Speed of Light / Energy and Power in a Traveling Wave (Optional) / The Principle of Superposition / Dispersion (Optional) / Interference of Waves / Standing Waves / Standing Waves and Resonance

CHAPTER 18

WAVES - II 503-532

Sound Waves / The Speed of Sound / Traveling Sound Waves / Intensity and Sound Level / Sources of Musical Sound / Beats / The Doppler Effect / The Doppler Effect for Light (Optional)

CHAPTER 19

TEMPERATURE 533-550

Thermodynamics: A New Subject / Temperature / The Zeroth Law of Thermodynamics / Measuring Temperature / The International Temperature Scale / The Celsius and Fahrenheit Scales / Thermal Expansion

CHAPTER 20

HEAT AND THE FIRST LAW OF THERMODYNAMICS 551-574

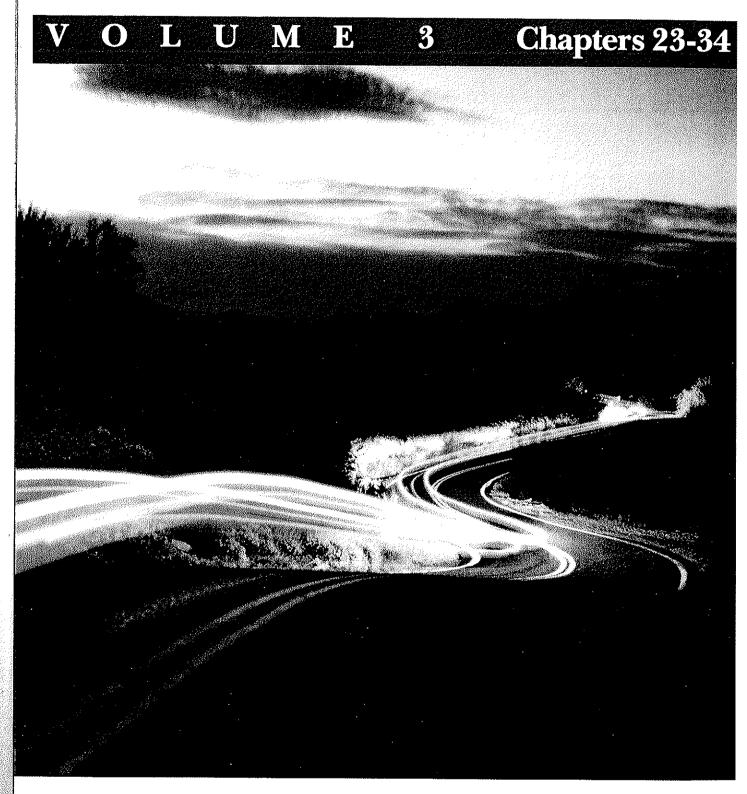
Heat / Measuring Heat: Units / The Absorption of Heat by Solids and Liquids / A Closer Look at Heat and Work / The First Law of Thermodynamics / Some Special Cases of the First Law of Thermodynamics / The Transfer of Heat

CHAPTER 21

THE KINETIC THEORY OF GASES 575-604

A New Way to Look at Gases / Avogadro's Number / Ideal Gases / Pressure and Temperature: A Molecular View / Translational Kinetic Energy / Mean Free Path / The Distribution of Molecular Speeds (Optional) / The Molar Specific Heats of an Ideal Gas / The Equipartition of Energy / A Hint of Quantum Theory / The Adiabatic Expansion of an Ideal

CHAPTER 22


ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 605-634

Some Things that Don't Happen /
Engines / Refrigerators / The Second
Law of Thermodynamics / An Ideal
Engine / The Carnot Cycle / The
Efficiencies of Real Engines / Entropy:
A New Variable / Entropy Changes for
Irreversible Processes / Entropy and the
Second Law of Thermodynamics / What
Is Entropy All About? / The Nature of
Physical Law: An Aside

ISBN 0-471-12967-4

JOHN WILEY & SONS, Inc.
New York • Chichester • Brisbane • Toronto • Singapore

DAVID HALLIDAY • ROBERT RESNICK • JEARL WALKER

ELECTRIC CHARGE 635-652

Electromagnetism / Electric Charge / Conductors and Insulators / Coulomb's Law / Charge Is Quantized / Charge Is Conserved / The Constants of Physics: An Aside

CHAPTER 24

THE ELECTRIC FIELD 653-678

Charges and Forces: A Closer Look / The Electric Field / Electric Field Lines / The Electric Field Due to a Point Charge / The Electric Field Due to an Electric Dipole / The Electric Field Due to a Line of Charge / The Electric Field Due to a Charged Disk / A Point Charge in an Electric Field / A Dipole in an Electric Field

CHAPTER 25

GAUSS' LAW 679-706

A New Look at Coulomb's Law / What Gauss' Law Is All About / Flux / Flux of the Electric Field / Gauss' Law / Gauss' Law and Coulomb's Law / A Charged Isolated Conductor / A Sensitive Test of Coulomb's Law / Gauss' Law: Cylindrical Symmetry / Gauss' Law: Planar Symmetry / Gauss' Law: Spherical Symmetry

CHAPTER 26

ELECTRIC POTENTIAL 707-738

Gravitation, Electrostatics, and Potential Energy / The Electric Potential / Equipotential Surfaces / Calculating the Potential from the Field / Potential Due to a Point Charge / Potential Due to a Group of Point Charges / Potential Due to an Electric Dipole / Potential Due to a Continuous Charge Distribution/ Calculating the Field from the Potential /

Electric Potential Energy Due to a System of Point Charges / An Isolated Conductor / The Van de Graaff Accelerator

CHAPTER 27

CAPACITANCE 739-764

The Use of Capacitors / Capacitance / Calculating the Capacitance / Capacitors in Parallel and in Series / Storing Energy in an Electric Field / Capacitor with a Dielectric / Dielectrics: An Atomic View / Dielectrics and Gauss' Law (Optional)

CHAPTER 28

CURRENT AND RESISTANCE 765-788

Moving Charges and Electric Currents / Electric Current / Current Density / Resistance and Resistivity / Ohm's Law / A Microscopic View of Ohm's Law / Energy and Power in Electric Circuits / Semiconductors (Optional) / Superconductors (Optional)

CHAPTER 29

CIRCUITS 789-816

"Pumping" Charges / Work, Energy, and Emf / Calculating the Current / Other Single-Loop Circuits / Potential Differences / Multiloop Circuits / Measuring Instruments / RC Circuits

CHAPTER 30

THE MAGNETIC FIELD 817-846

The Magnetic Field / The Definition of **B** / Discovering the Electron / The Hall Effect / A Circulating Charge / Cyclotrons and Synchrotrons / The Magnetic Force on a Current-Carrying Wire / Torque on a Current Loop / The Magnetic Dipole

CHAPTER 31

AMPERE'S LAW 847-872

Current and the Magnetic Field / Calculating the Magnetic Field / The Magnetic Force on a Current-Carrying Wire / Two Parallel Conductors / Ampere's Law / Solenoids and Toroids / A Current Loop as a Magnetic Dipole

CHAPTER 32

FARADAY'S LAW OF INDUCTION 873-898

Two Symmetries / Two Experiments / Faraday's Law of Induction / Lenz's Law / Induction: A Quantitative Study / Induced Electric Fields / The Betatron

CHAPTER 33

INDUCTANCE 899-918

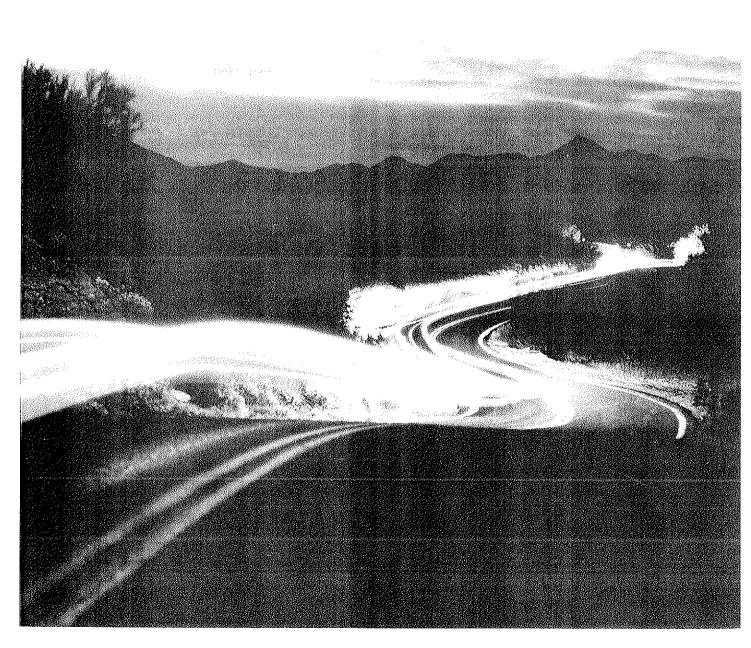
Capacitors and Inductors / Inductance / Self-Induction / RL Circuits / Energy Stored in a Magnetic Field / Energy Density of a Magnetic Field / Mutual Induction

CHAPTER 34

MAGNETISM AND MATTER 919-938

Magnets / Magnetism and the Electron / Orbital Angular Momentum and Magnetism / Gauss' Law for Magnetism / The Magnetism of the Earth / Paramagnetism / Diamagnetism (Optional) / Ferromagnetism / Nuclear Magnetism: An Aside

ISBN 0-471-12968-2



9 780471 129684

JOHN WILEY & SONS, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

VOLUMINI 19 4 Chapters 35.42

DAVID HALLIDAY
ROBERT RESNICK
JEARL WALKER

ELECTROMAGNETIC OSCILLATIONS 939-954

New Physics – Old Mathematics / LC Oscillations, Qualitatively / The Electrical – Mechanical Analogy / LC Oscillations, Quantitatively / Damped Oscillations in an RLC Circuit / Forced Oscillations and Resonance / Other Oscillators: A Taste of Electronics (Optional)

CHAPTER 36

ALTERNATING CURRENTS 955-974

Why Alternating Current? / Our Plan for This Chapter / Three Simple Circuits / The Series *RLC* Circuit / Power in Alternating-Current Circuits / The Transformer

CHAPTER 37

MAXWELL'S EQUATIONS 975-986

Pulling Things Together / Maxwell's Equations: A Tentative Listing / Induced Magnetic Fields / Displacement Current / Maxwell's Equations: The Full List

CHAPTER 38

ELECTROMAGNETIC WAVES 987-1010

"Maxwell's Rainbow" / Generating an Electromagnetic Wave / The Traveling Electromagnetic Wave, Qualitatively / The Traveling Electromagnetic Wave, Quantitatively / Energy Transport and the Poynting Vector / Radiation Pressure / Polarization / The Speed of Electromagnetic Waves

CHAPTER 39

GEOMETRICAL OPTICS 1011-1048

Geometrical Optics / Reflection and Refraction / Total Internal Reflection / Polarization by Reflection / Plane Mirrors / Spherical Mirrors / Ray Tracing / Spherical Refracting Surfaces / Thin Lenses / Optical Instruments / Three Proofs (Optional)

CHAPTER 40

INTERFERENCE 1049-1074

Interference / Light as a Wave / Diffraction / Young's Experiment / Coherence / Intensity in Double-Slit Interference / Interference from Thin Films / Michelson's Interferometer

CHAPTER 41

DIFFRACTION 1075-1104

Diffraction and the Wave Theory of Light / Diffraction from a Single Slit: Locating the Minima / Single-Slit Diffraction, Qualitatively / Single-Slit Diffraction, Quantitatively / Diffraction from a Circular Aperture / Diffraction from a Double Slit / Multiple Slits / Gratings: Dispersion and Resolving Power (Optional)

CHAPTER 42

RELATIVITY 1105-1130

What Is Relativity All About? / Our Plan / The Postulates / Measuring an Event / Simultaneous Events / The Relativity of Time / The Relativity of Length / The Lorentz Transformation / Some Consequences of the Lorentz Equations / The Transformation of Velocities / The Doppler Effect / A New Look at Momentum / A New Look at Energy / The Common Sense of Relativity