780888

ORIGINAL

Effect of Initial Position on the Human Head and Neck Response to +Y Impact Acceleration

C. L. Ewing,
D. J. Thomas,
L. Lustick,
W. H. Muzzy III,
G. C. Willems, and
P. Majewski

Naval Aerospace Medical Research Laboratory Detachment New Orleans, LA

Abstract

The response of the human head and neck to impact acceleration has been previously reported for the -X (chest to back) and +Y (right to left) directions. Wide ranges of sled peak acceleration, rate of onset of acceleration and duration of acceleration have been investigated and reported. A major mechanical effect on the dynamic response due to initial position for the -X direction has been reported. The purpose of this study is to report the initial position effect on the human head and neck response for +Y direction experiments.

Four initial positions of the head relative to the first thoracic vertebral body (T₁) have been investigated over a range of sled acceleration peaks from 2 to 7G. The data from six young adult male volunteers representative of a wide range of anthropometry will be presented. There are 18 experiments for each volunteer for a total of 108 experiments.

The effect of initial position on the resulting head angular and linear acceleration, velocity and displacement will be presented. A comparison of the initial position effect for -X and +Y direction experiments will be made. The ability to

model the initial position effect will be discussed.

PURPOSE

The Naval Aerospace Medical Research Laboratory Detachment (NAMRLD) New Orleans, Louisiana, is conducting a continuing program to determine the dynamic response of volunteer subjects to impact acceleration (1,2,3,4,5,6).* The effect of initial condition on the dynamic response for -X acceleration experiments has been previously reported (1). The specific purpose of this paper is to present the effect of initial head and neck orientation on the dynamic response for +Y acceleration experiments and to compare these results with the study for the -X data base. In addition, the implications that initial position has on modeling +Y head and neck response will also be discussed.

METHODOLOGY

SLED ACCELERATION PROFILES - A Bendix HYGE pneumatically driven .3048m diameter accelerator was used to accelerate an approximately 1.2m by 3.7m_sled of 1,669 kg mass which was rail mounted on 12 Delrin AF® pucks. The acceleration stroke is limited to 1.52m and sled mounted brakes were not used. The effective drag is about .2G and the sled was allowed to coast to a stop. Total rail length is 213m. The subject was restrained in a nominally upright position by shoulder straps, a lap belt and an inverted V pelvic strap fied to the lap belt. A loose safety belt around the chest was also employed. The thrust vector of the sled was nominally directed from the right to the left shoulder and the subject was positioned snugly against a lightly padded wooden board used to limit the upper torso motion (Figures 1 through 4). The sled pulse duration was controlled so that the end stroke velocity was approximately constant and independent of G level.

The pertinent sled parameters for each run in each of the four initial conditions are shown in Figures 5 through 8. The averages and standard deviations at each G level within the initial conditions are shown in the same figures. Peak Sled Acceleration (PSA) is the maximum obsolute value of the measured sled acceleration profile. Rate of onset (ROO) is defined

^{*}Numbers in parentheses designate References at end of paper.

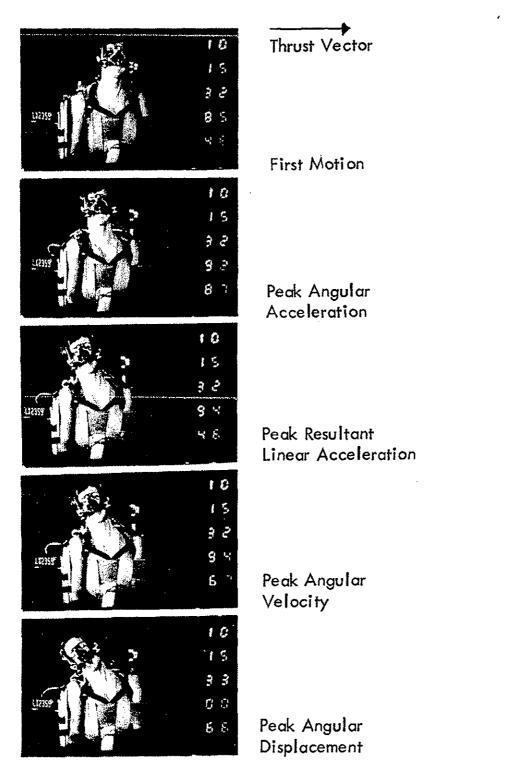


Fig. 1 - Photographs of a subject at critical events in run profile - NUCU (5G) $\,$

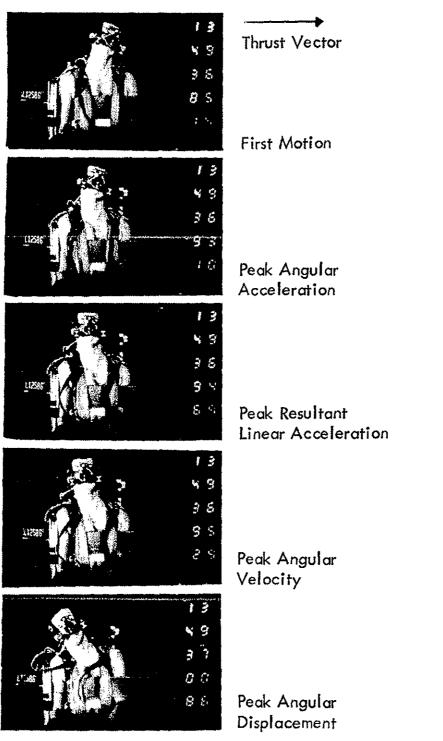


Fig. 2 - Photographs of a subject at critical events in run profile - HTLT (5G)

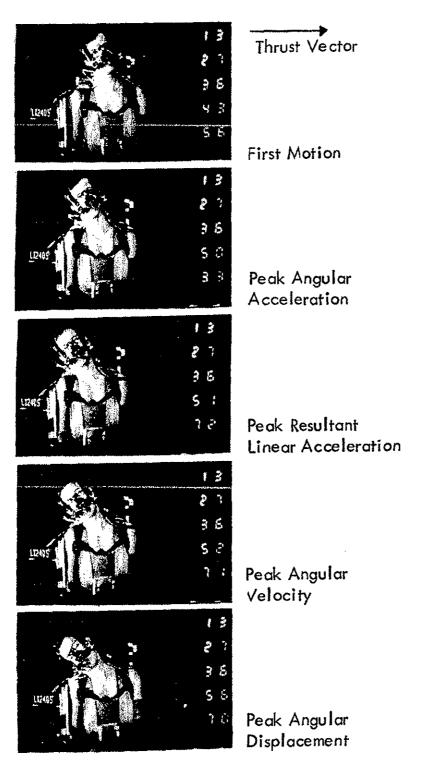


Fig. 3 - Photographs of a subject at critical events in run profile - HTRT (5G)

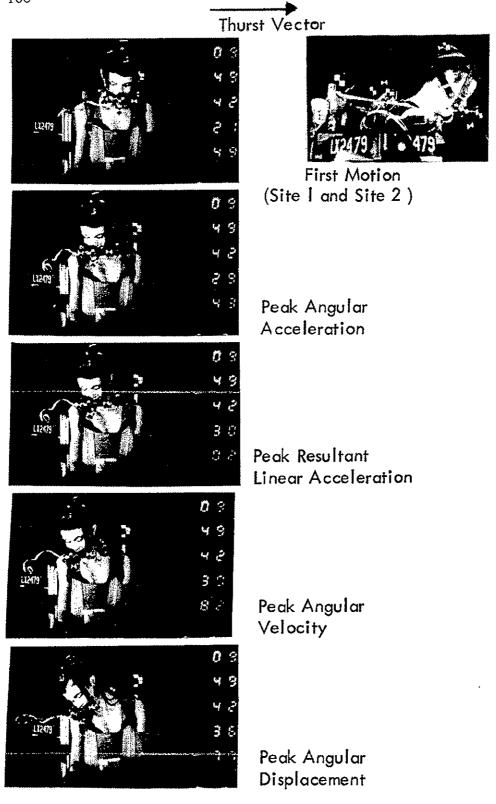


Fig. 4 - Photographs of a subject at critical events in run profile - \mbox{HDWN} (5G)

	SIGHA RANGLE DEG		0.800 5.200 5.200 5.200 6.400 6.400 6.400	2.500 2.500 3.500 3.500 5.500	8:000 8:000 8:000 8:000 8:000 8:000 8:000 8:000 8:000 8:000	3.909 9.000 1.200 7.500 3.881	8.700 6.500 17.500 19.000 11.900	
	AVG RANGLE DES	ANABHA'S	.38.400 -33.200 -33.200 -27.200 -26.500 -31.040	-44.300 -34.700 -34.000 -34.000 -37.560	-31,200 -32,600 -31,300 -31,300 -31,500 -31,500 -31,500	237,400 233,000 233,000 233,000 23,200 3,220	-37.900 -37.900 -37.900 -31.900 -31.400 -31.67	
	700 P1104	+ <u></u> 0000000 20000	တွင် နည်းလိုလို့ ထို့သည်လို့လို့သည် ထို့သည်လို့သည်	W	် ကိုတ္ထည္ လိုက် (ထိုကိုတိုက္ကို လိုက်	9-1-065-		
	¥35 430 640 640 640 640 640 640 640 640 640 64	www. Womerica woorkean's	֡֝֡֜֝֝֡֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	# # # # # # # # # # # # # # # # # # #	ည်း တို့ ကို ထိုတ်သို့ သို့သို့ ကို ထိုတ်လုံလုံထွေတွင်ကို	V 8 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	אָר מַטְיִיהִייִּ אַעְרְםמָּאִיבִּינִּ	
	EULER 3	4,44,46 4,46,40	**************************************	0,0,1 \$ 1.00- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 4	တွင်း ကြုံလုံလုံလုံ ကြောင်း ကြုံလုံလုံလုံ	ร่า แพบก์ก่- ต่อกักม์ต่อ ต	
	EULER 2 DEG	<u> </u>	0.50 - 0.00 w	7.71 115.2 118.1 118.1 1.3	0 0 2 0 0 0 0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01 4 10 10 10 10 10 10 10 10 10 10 10 10 10	
۵.	EU.GR 1	ေ ၂ — လုံးလုတ် — လု နာရာလုတ် လုတ် ဘ	5448541- 525-555-	, i i mi i m min a min p i n	ທີ່ ! ! . ພົບສີສິບກີເທີ	200	က်တနက်တယ်လွှဲတ - ကိုကို (နည်းဆိုသွဲ့သ	
NECK UP CHIN UP	NECK LEN	6444444449 644444444	155 145 145 138 138 100 100	951 951 951 951 951 951 951 951 951 951	.090 .101 .087 .098 .098 .098	150 150 150 150 150 150 150	2525 252 253 253 253 253 253 253 253 253	
MECK	END ST V M/SEC	3.11 6.58 6.43 6.43 7.45 5.45 5.45 5.45	5.71 6.53 6.46 6.46 F.AN SIGNA	5.52 6.53 6.38 MEAN STORY	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0	5.47 6.53 6.58 6.58 7.7 86.47 816AN	3.35 5.57 6.39 6.39 7.11
	DURATION SEC	1.150 1.107 1.007 1.007 1.007 1.007 1.007	130 101 101 108 108 108 108 108 108 108 10	. 130 . 106 . 090 . 081	140 140 105 108 108 108 108	140 140 101 101 103 080	143 104 104 109 109 109 109 109	.134 .008 .005 .009 .009 .009 .009
	R00 M/S/S/S	1258 2558 3568 3236 568 568 568	1681. 2318. 3687. 3705. 5986.	1948. 2366. 3760. 3468. 5890.	1342 1905 3235 4715 5936	1036 1377 4833, 5111, 5768, 6435,	1182 1108 5057 5057 7768 7768	1397. 320. 1846. 4203. 743. 1843. 174. 713.
	PSA H/5/5	28.05 5.05 6.05 6.05 6.05 7.15	20.22 30.23 50.03 50.03 68.93 68.93	90.00 90.00 90.00 90.00 90.00	5555 5555 5555 5555 5555 5555 5555 5555 5555	0.024 0.00	200 400 400 400 400 400 400 400 400 400	21.7 30.6 4.9.5 59.3 1.3 1.6
	SUBJECT 1D	555555 555555 555555 55555 5555 5555 5555	8707 8707 8707 870 870	10031111111111111111111111111111111111	H083 H083 H083 H083 H083 H083	H H D B P B B B B B B B B B B B B B B B B B	4594 4594 4594 4594 4594 4594 4594 4594	2
	SUN NUMBER	LX1639 LX1625 LX1535 LX1548 LX1548 LX1521	LX1767 LX1780 LX1924 LX1915 LX1925	LX1756 (X1779 (X1796 LX1855 LX1855	LX1777 LX1785 LX1831 LX2341 LX1950 LX1958	LX1836 LX1590 LX2317 LX2359 LX2332 LX2344	LX1839 LX1876 LX2312 LX2354 LX2327 LX2337	MEAN FOR SIGNA FOR MEAN FOR SIGNA FOR NIEAN FOR NIEAN FOR PEAN FOR PEAN FOR SIGNA FOR SIGNA FOR

Fig. 5 - Summary of sled profile and initial condition parameters for each run (NUCU)

	SIGMA RANGLE DEG	7.450 7.850 7.800 7.800 8.800 8.440	8 1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2. 200 2. 200 2. 773 1. 200 5. 473	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	888888	}	
	AVG RANGLE DEG	-37.800 -39.400 -38.900 -13.900 -39.950 -39.950	.37.000 -30.500 -32.500 -35.500 -30.200 -32.457 -32.457		143,400 -46,000 -41,000 -41,000 -41,078	000 500 700 800 760			
	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	ရာ <u>ိုက်</u> ရာသူလုပ် ကိုသည်သည်လုပ်				wwow-wo	م - ما ما در ما		
	NACE PROFE P	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	ក់ស្នងក្នុងស្នា តំល់ស្នំកំពុំស្នេស	25.5 2.3 2.3 2.3 2.3 2.3 3.3 3.3 3.3 3.3 3.3	50 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2555. 2555. 2555. 2558. 2558. 2558. 2558.	9.5.5.5 5.5.5.5 5.5.5.5 8.5.5.5 8.5 8		
	EULER 3	வீர் 	က်လက်ရယ်လူတွင် မြန်မာ့ မြန်မာ့ မြန်မာ့ မြန်မာ့ မြန်မာ့ မြန်မာ	ယ် ကလက် ည ထေးပသော်သည်းသည်	シャーナック ロロエイトウ	พ.พ.จ.จ.พ.พ. พ.พ.จ.จ.พ.พ.พ.	က်လုံးက <u>ှ</u> ဲ့ကုံ ဆဲဆင်ဆဲ ≃.ဟု		
	EULER 2 DEG	6.50 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	พี่เพื่อเพื่อ เพื่อผู้จะเพื่อ เพื่อเพื่อ เพื่ เพื่อ เพื่ เพื่ เพื่ เพื่ เพื่ เพื่ เพื่ เพื่	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	၊ င်လ်လ်ဆ ထွန်နည်းလိုတ်	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.65 0 - 5 2.6 - 5 2.7 - 7		
Į,	EULER I	222.1 139.1 133.6 133.6 13.0 13.0 13.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	တို့နည်းမှုလ်လုပ် သူ့အရာမှုလုပ်လုပ် သူ့အရာမှုလုပ်လုပ်	25.55 5.65 5.65 5.65 5.65 5.65 5.65 5.65	2007 - 200 2007 - 2007 - 200 2007 - 2007 - 200 2007 - 2007 - 200 2007 - 20	235.7 235.7 23.6 23.6 24.6 24.6		
HEAD TILTED LEFT (HTLT)	NECK LEN METERS	585 855 855 855 855 855 855 855 855 855	147 163 168 188 170 170 166	155 173 173 174 174 174	11. 000 11. 000 11. 000 11. 000 11.	151 138 168 168 168	184 184 185 185 185 186 186 186 186 186 186 186 186 186 186		
HEAD	8:0 ST V 8/550	7.55 8.32 8.32 8.23 8.23 8.44 8.44 8.44 8.44	5.43 6.41 6.23 8.25 8.25 8.638	5.41 6.29 6.18 MEAN SIGNA	5,48 6,42 6,37 7£AN 5164A	5.53 6.46 6.39 6.30 8.30 8.30 8.30 8.30	5.45 6.34 6.28 MEAN SIOM	1.07 2.49 18	
	DURATION SEC	132 101 101 100 100 100 100	130	25. 20. 1089 1089 1089	. 134 . 136 . 103 . 091	139 101 100 090 078	259 136 101 1079	. 003 . 003	.000 .000 .003 .002 .000
	R00 H/S/5/5	1237. 2141. 5511. 6508. 6948.	1007. 2045. 5710. 5069. 5671. 6525.	1165. 2946. 5930. 6324. 6574.	1223. 2359. 6006. 6245.	1324. 1587. 6175. 6454. 6577.	1055. 1531. 6021. 6140.	21.89. 21.89. 55.	3797. 348. 299. 299. 255.
	PSA H/5/5	20.8 30.8 50.7 70.8 70.4	2000 2000 2000 2000 2000 2000 2000 200	22.22 29.38 20.63 50.63 50.63	21.9 30.3 50.2 60.7	20.1 20.1 20.1 20.1 20.1	29.69 29.59 27.77	21.9 50.13	8 8 k
	SUBJECT 10	675 675 675 675 675 875	8707 8707 8707 8707 8707 8707	H C81 1 C81 1 C81 1 C81 1 C81	H083 H083 H083	& 4.486 2.48	4004 4004 4004 4004	25 25 25 25 25 25 25 25 25	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	RUN	LX2518 LX2534 LX2629 LX2659	1.X2515 1.X2540 1.X2577 1.X2703 1.X2592 1.X2593	LX2591 LX2596 LX2596 LX2659 LX2679	LX2516 LX2537 LX2595 LX2621	LX2517 LX2531 LX2585 LX2624 LX2624 LX2624	LX2524 LX2524 LX2539 LX2694	PEAN FOR SIGNA FOR HEAN FOR SIGNA FOR	MEAN FOR SIGHA FOR MEAN FOR SIGHA FOR MEAN FOR SIGHA FOR

Fig. 6 - Summary of sled profile and initial condition parameters for each run (HTLT)

	SIGMA RANGLE DEG	3.080 5.600 4.500 6.500	5.800 7.900 5.233	6.400 6.200 6.367 6.367	5.600 7.900 6.557 7.900	4.500 4.500 4.700 1.700	23.000 7.200 3.200 1.700 8.775 8.455	}
	AVG RANGLE DEG	-45.800 -27.700 -35.300 -36.267 7.421	-38.700 -30.200 -31.633 5.283	-43.100 -45.800 -44.900 -44.600	-34.600 -34.600 -42.300 -37.167 3.630			
	PITCH OEG				@ 0+@ M C	<u> </u>	<u> </u>	
	NECK PECK PEC	23.2.2 2.2.2.2 2.2.2.2.2.2.2.2.2.2.2.2.2	18.1 17.5 17.5 3.7		20.99 16.99 3.6 3.6	ຓ໙໐຺ຩຑ ຨ໋ໞຑຑຑ	17.5 13.3 15.0 1.5	
	EULER 3 DEG	6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) . ហ្គូកល់ ២៥២២៣	พู่ <u>คู่ค</u>	សហកុសសក សសសហផ្ទាញ	
	EULER 2 DEG	55-1-20 6-1-20 8-6-00 8-00	សំសុសូសូ ស្តាំងស ស្តាំង	-20.7 -18.6 -12.1 -17.1	νίκικί 4. κ. το το το 4. κ. το	9.9.0	1.0.3 1.4.0 1.84.1 1.6.6	
RIGHT	EULER 1 DEG	34.2 33.7.7 5.0 6.0	24.1 30.3 3.3 3.3 3.3 3.3	34.5 38.6 57.7 7.7	32.5 30.7 23.8 3.7	8888 8888 888 888 888 888 888 888 888	29.27.4.4.23.00.88.00.00	
TILTED (HTRT)	NECK LEN	541. 1531. 1889. 1889.	.166 .174 .004	251. 251. 251. 251. 260.	. 096 . 096 . 096 . 094	139	145	
HEAD	END ST V M/SEC	5.46 6.54 6.19 MEAN SIGMA	5.42 6.25 MEAN SIGMA	5.40 6.40 6.15 MEAN SIGMA	5.66. 6.23 6.23 MEAN SIGNA	5.54 6.25 6.27 MEAN SIGNA	5.58 6.59 6.43 6.24 MEAN SIGMA	5.52 6.51 6.51 7.7 7.7
	DURATION SEC	. 142 . 100 . 078	. 143 . 099 . 079	. 099 . 079	. 143 . 100 . 079	. 141 . 097 . 079	840 840 840	541. 000. 0099 000. 079
	R00 M/S/S/S	1321. 4613. 6422.	1401. 4469. 6360.	1257. 4774. 6138.	1599. 4964. 6105.	1986. 4468. 6249.	1656. 4804. 5293. 6081.	1537. 246. 4769. 272. 6226. 129.
	PSA M/S/S	29.5 50.1 69.7	2.00 2.00 2.00 3.00	29.29 29.89 0.90	30.5 49.9 69.1	30.6 51.2 69.7	30.4 50.5 70.4	29. 20. 5.03. 5.69. 6.9. 7.
	SUBJECT 10	H075 H075 H075	H078 H078 H078	HOP HOS 1	H083 H083 H083	480H 4084 4084	는 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한	7. 36 36 37. 56 37. 56 37. 56
	RUN NUMBER	LX2397 LX2397 LX2421	LX2400 LX2423 LX2423	LX2408 LX2441	LX2409 LX2409 LX2438	LX2405 LX2405 LX2437	L X24382 L X2416 L X2722 L X2430	MEAN FOR SIGMA FOR MEAN FOR SIGMA FOR HEAN FOR SIGMA FOR

Fig. 7 - Summary of sled profile and initial condition parameters for each run (HTRT)

	SIGMA RANGLE DEG	(U (U (U	5.700 1.700 13.200 6.867 4.767	27.000 21.900 27.800 24.600		10.500 9.900 10.200	33.600 33.900 33.750	
	AVG RANGLE DEG	-13.700 -10.000 -19.200 -13.775 -13.775	-30.300 -24.300 -20.100 -24.900	6.700 -12.800 -8.900 -17.300 -8.075	-27.900 -21.600 -26.800 -25.433	-25.300 -25.300 -25.300 .000	6.300 -1.100 2.600 3.700	
	NECK PITCH DEG		6.63 6.63 6.63 6.63 6.63 6.63 6.63 6.63	العراقية عرا	59.0 66.8 55.8 10.5	3.4 3.6 3.8 3.8 3.8 3.8	66.9 55.0 60.9	
	NECK BOLL DEGL	<u> </u>	- 0, 1, 0, w	-25.2 -45.6 -27.5 -16.2 -28.6	-3.8 -6.7 -10.5 -7.0	နှစ်တွင် ကိုလည်း	து வர். வட்டு வ	
	EULER 3 DEG	ທ່າ <u>. –</u> ານທຸລ ລະ – ທຸ່ທຸ່ທ່	ເປັນ - ທ - ດ ທ - ພ ຕ	ชูบู่เกษา - พ.– ตุพต	ချေနာဏ်ခဏ ကို ကို လ	-7.8 -4.9 -6.3 -5.3	-101- -15:- 5:3:	
	EULER 2 DEG	50.4 23.9 21.0 35.6 14.2	58.0 47.2 38.1 47.8 8.1	၃ – တို့ကို မှ ဝဲ့ဆို မှာတို့ မှ လဲ့ဆက် ဝဲ့ကို လဲ့	55.8 56.8 5.2.8 5.3.6	3.7.8 3.3.8 3.5.3	98 99 99 99 99 99 99	
	EULER 1 DEG	သော် ရောက်တ သော် သော် သော် သော် သော် သော်	-4860	0 - + - 0 0 5	4 + - 8 6 0 0 0 0 0 0 0	១០១ ភ	50.0 5.0 7.0 8.8 8.8	
HEAD DOWN (HDMN)	NECK LEN	140 140 140 140	.169 .170 .172 .004	149 1118 1153 145 016	5011. 511. 500.	147 165 156 009	184 144 140 100	
Ä.	END ST V M/SEC	5.55 6.31 6.35 6.38 MEAN SIGHA	5.53 6.61 6.39 MEAN S16MA	5.44 6.41 6.29 6.28 MEAN SIGMA	5.60 6.64 6.41 MEAN SIGMA	5.55 6.69 MEAN S16MA	5.64 6.56 MEAN SIGMA	6. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17
	DURATION SEC	.099 .090 .090 .091	. 100 . 100 . 092	. 134 . 101 . 101 . 092	.135	241.	. 134 . 103	. 004 . 004 . 001 . 092 . 000
	R00 M/S/S/S	3541. 4276. 4703. 5729.	3972. 4900. 5632.	2201. 5892. 4795. 6168.	3417. 4900. 4789.	2963. +841.	3079. 4782.	3045. 429. 4875. 401. 5843. 233.
	PSA M/S/S	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	30.6 50.4 59.6	30.1 50.4 49.5 59.5	31.3 50.4 50.1	30.4 51.0	31.5 50.2	30 4 20 6 6 6 6 6 6 6 6 7
	SUBJECT 10	H075 H075 H075 H075	H078 H078 H078	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	H083 H083 H083	+80H	H094 H094	7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	RUN NUMBER	LX2463 LX2470 LX2712 LX24913	LX2460 LX2474 LX2497	LX2534 LX2580 LX2711 LX2633	LX2466 LX2478 LX2710	LX2459 LX2479	LX2450 LX2487	PEAN FOR SIGNA FOR MEAN FOR SIGNA FOR MEAN FOR SIGNA FOR

Fig. 8 - Summary of sled profile and initial condition parameters for each run (HDWN)

as the slope on the rising portion of the acceleration profile between 20 and 50 percent of peak sled acceleration and duration is defined as the time spent above 75 percent of peak sled acceleration. End stroke velocity (END STV) is the maximum sled velocity determined from integration of the sled profile and for a given G level correlates with duration. Figure 9 shows the sled acceleration profiles for each condition defined by onset and duration averaged over subjects at 5G. The sled profiles are controlled very closely and the comparison at other G levels would be similar.

As can be seen in Figures 5 through 8 the sled profile parameters are controlled very accurately across initial conditions and subjects. The rate of onset ingreases with G level from 1,000m/sec³ at 2G to 7,000m/sec³ at 7G peak sled acceleration. The duration is relatively long decreasing with increasing G level in order to keep the end stroke velocity near constant at slightly greater than 6m/sec.

EXPERIMENTAL MEASUREMENTS – The dynamic parameters of interest presented in this paper have been derived from measurements using six piezoresistive accelerometers mounted on a T-shaped plate at the mouth and six accelerometers mounted on a T-plate at the spinous process of T₁. The configuration of the accelerometers on the T-plate and the error propagations associated with this method for determining linear displacement, velocity, acceleration and angular orientation, angular velocity and angular acceleration components of a rigid body have been described previously (7). The cinephotographic system (8) was used to obtain the initial conditions of the head and T₁ in this study. The head and T₁ instrumentation mount and attached phototargets were each acquired by two of three cameras.

In order to compare subjects at similar points in the anatomy, a definition of a head anatomical coordinate system and a T₁ anatomical coordinate system is required (1,9). These anthropometric coordinate systems are related to the instrumentation coordinate systems by three dimensional X-ray anthropometry for each subject (10).

The basic reference frame for the entire series of experiments is fixed to the laboratory. This is established by first defining a sled coordinate system, in which the origin is a benchmark permanently machined into the sled structure. The +X axis is parallel but in the opposite direction to the thrust vector of the accelerator (Figure 10). The +Z axis is parallel to gravity and positive upward and the +Y axis is established so that the XYZ axes form an orthogonal right hand triad. All coordinate systems

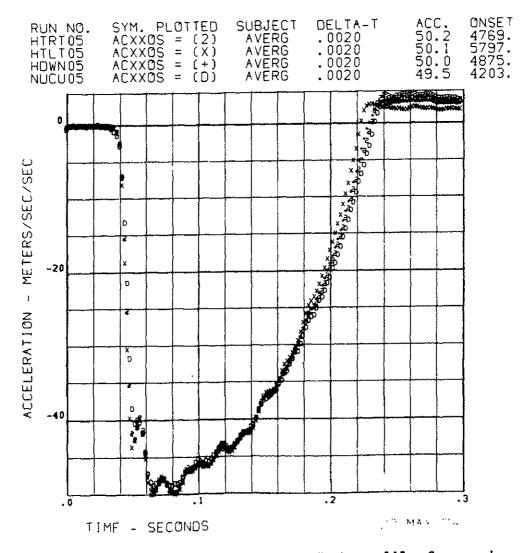


Fig. 9 - Comparison of average sled profile for each initial condition (5G)

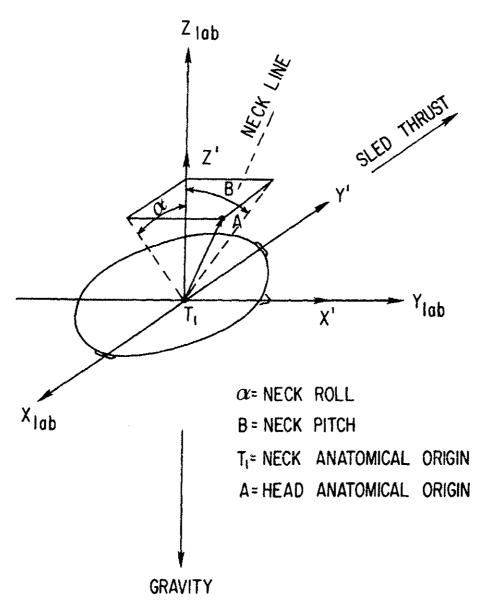


Fig. 10 - Head and neck orientation

used in this study are right handed where X, Y and Z axes are taken in that order. The sled acceleration is in the -X laboratory direction. The orientation of the subject on the sled for these +Y experiments is so that the sled acceleration is in the +Y anatomical direction.

The dependent variables presented in this report are named and defined as follows:

QHOOXS - Resultant Angular Acceleration - is the magnitude of the head angular acceleration relative to the laboratory coordinate system. The component of angular acceleration about the anatomical Y axis is not significant for these +Y acceleration runs.

RHOOXS - Resultant Angular Velocity - is the magnitude of the head angular velocity relative to the laboratory coordinate system. The component of angular velocity about the anatomical Y axis (pitch) is not significant for these +Y impact acceleration runs.

AAOXOS - Resultant Linear Acceleration - is the magnitude of the head linear acceleration at the origin of the head anatomical coordinate system relative to the laboratory reference coordinate system.

ANXXOS - Horizontal Acceleration at T₁ - is the acceleration component of the T₁ anatomical coordinate system origin relative to the laboratory reference coordinate system along the +X axis of the laboratory reference coordinate system.

ACXXOS - Sled Acceleration - is the acceleration of the sled along the X component of the laboratory coordinate system. The laboratory Y and Z components of acceleration are negligible. All of the recorded data are relative to a zero time established as 40 milliseconds prior to sled first motion as determined from the sled acceleration profile.

RANGLE - Direction of Angular Velocity Vector - is defined as the arc tangent of the component of head angular velocity about the head anatomical Z axis (yaw) divided by the head angular velocity about the head anatomical X axis (roll). The component of head angular velocity about the head anatomical Y axis is not significant for these +Y impact runs.

The average and standard deviation in this variable has been calculated in a time window where the resultant angular velocity was greater than 0.2 of the peak resultant angular velocity. The calculation was terminated at a time greater than the time of occurrence of the maximum resultant angular velocity if either the angular velocity component about the anatomical X

C. L. EWING, ET AL.

axis (roll) was less than 0.15 or the resultant angular acceleration was less than 0.2 of the maximum resultant angular velocity. Average RANGLE and its deviation were thus calculated only in a region where the angular velocity components were significant.

If the RANGLE angle were constant it would indicate that the rotation was taking place about an axis fixed in the head anatomy or laboratory. The standard deviation in the RANGLE angle is therefore a measure of the departure from this fixed axis rotation model.

The time on all plots is relative to a time (data processing time zero – DPTZ) established as 40 milliseconds prior to first motion of the sled. First motion of the sled is determined by the best straight line fit to the rising portion of the sled acceleration profile between 20 and 50 percent of peak sled acceleration. The extrapolation of this line to its intercept with the time axis establishes the time of first motion.

INITIAL CONDITIONS - For all +Y runs the subject is seated upright in a chair so that the sled thrust vector is nominally in the direction from the right to the left shoulder, and the gravity vector is downward from the head through the subject's seat. Therefore, the initial nominal orientation of the head anatomical and the T_1 anatomical coordinate system is such that the anatomical +X is nearly along the laboratory +Y and the anatomical +Y is parallel with the laboratory -X as shown in Figure 10. The initial conditions of the neck link and the head are defined relative to a coordinate system with the Y' axis directed along the sled thrust vector, the Z' axis directed upward in the opposite direction to the gravity vector, and the X' axis directed so that X', Y', Z' form a right hand orthogonal coordinate system. This coordinate system and its orientation relative to the laboratory coordinate system and the nominal head anatomical coordinate system are shown in Figure 10. The neck link is defined by the location of the origin of the head anatomical coordinate system relative to the origin of the coordinate system for the first thoracic vertebral body (T₁). The neck link is defined by a length (NECK LEN) and two angles as shown in Figure 10. The initial orientation of the head anatomical coordinate system is defined by three Euler angles. Assuming that the head anatomical X,Y,Z coordinate system is aligned with the X', Y', Z' system in Figure 10, then Euler 1 is a rotation about the head anatomical X axis (roll), Euler 2 is a rotation about the carried head Y anatomical axis

(pitch), and Euler 3 is a rotation about the carried head Z anatomical axis (yaw).

The four initial conditions investigated in this study are shown in Figures 1 through 4. The Neck Up/Chin Up (NUCU) initial condition (1) is the canonical configuration in which the subject is usually run. The other three initial conditions are variations from the normal run configuration. Each initial condition has been produced by having the subject bend his head and neck in a specified direction as far as comfortably possible. As far as possible, the bending of the head and neck were in concert with no attempt to control the head independent of the neck. Reproducibility for each initial condition was obtained by the use of a phototarget template on a TV monitor established for each subject on his first run in that initial condition. On subsequent runs, the subject was asked to align the phototargets as seen on the TV monitor with the template. This was done for all initial conditions except during the head down condition, at which time the TV monitor was not in the subject's visual field.

The definition and approximate characterization of each of the four initial conditions of this study are described in the following paragraph:

- 1. Neck Up/Chin Up (NUCU). In this initial condition the neck was nearly vertical or pitched slightly forward and the plane determined by the auditory measures and orbital ridges of the eyes was near horizontal.
- 2. Head Tilted Left (HTLT). The subject sitting in the NUCU position bends his head and neck toward the left shoulder as far as comfortably possible.
- 3. Head Tilted Right (HTRT). The subject sitting in the NUCU position bends his head and neck toward the right shoulder as far as comfortably possible.
- 4. Head Down (HDWN). The subject sitting in the NUCU position bends his head and neck forward as far as comfortably possible.

The significant descriptors for the initial conditions HTLT and HTRT are Euler 1 (roll) in Figures 6 and 7 respectively. The average value of Euler 1 for these conditions is approximately +30 and -30 degrees for the HTRT and HTLT initial conditions respectively. If one calculates the angle the neck link projected into the XZ laboratory plane makes with the Z axis (neck roll), it is found to be approximately equal to the head roll (Euler 1) for most runs. This justifies that the head and neck

do move in concert and that the neck link orientation in the head anatomy does not change appreciably.

The significant angle for the HDWN condition is Euler 2 (head pitch). As shown in Figure 8, and the average angle of Euler 2 for the HDWN condition is approximately +42 degrees. In some subjects the angle decreases at the higher G levels to avoid the possibility of a chin strike on the right shoulder. Once again, if one calculates the angle that the neck link projected into the laboratory YZ plane makes with the laboratory Z axis (neck pitch angle), it is found to be approximately equal to the head pitch angle (Euler 2). The selection of these particular angles to represent the neck link configuration was made to facilitate direct comparison with angles defining head orientation.

EXPERIMENTAL DESIGN - Six human volunteer subjects covering a wide range of anthropometric parameters (Figure 11) were each exposed to +Y sled acceleration profiles at nominal peak sled accelerations of 2,3,5,6 and 7G. Each subject was run in four distinct initial conditions defined by the orientation of the head anatomy and the neck link, relative to the thrust vector of the sled. The thrust vector was perpendicular to gravity. A photograph of a subject in each of the four initial condition configurations is shown in the uppermost picture of Figures 1 through 4. The direction of the sled thrust vector is shown on these same photographs and is nominally directed from the right to left shoulder of the subject. The time of center of shutter opening of the Milliken cameras is shown to the right on each frame in hours, minutes and seconds to one tenth of a millisecond.

The results presented in this paper encompass a total of 100 separate +Y experiments including duplications at the 5G level for each of the initial conditions. More specifically, two of the four initial conditions (NUCU, HTLT) were investigated for each subject at the 2G level. All four initial conditions (NUCU, HTLT, HTRT and HDWN) were studied at 3 and 5G. Three initial conditions (NUCU, HTLT and HDWN) were investigated at 6G, and three initial conditions (NUCU, HTLT and HTRT) were investigated at 7G. The assignment of the initial condition at each G level was determined by the response of the subject to the HDWN condition. Subjects who nearly struck their chin against the right shoulder or right shoulder restraint at 5G were not run at 6G and no subjects were run in this HDWN condition at 7G. Sled acceleration profile parameters and the initial condition for each subject and for each run are listed by run number and subject number, Figures 5 through 8.

Sitting Height Inches Percentile	3rd % 95th % 88th %	53rd %	18th %	87th %
Sitting Hei Inches	33.9 38.4 37.7	36.4	35.0	37.7
క్	86.10 97.40 95.80	92.40	89,00	95.70
Weight Lbs Percentile	8th % 46th % 99th %	41st %	2nd %	56th %
Weigh	144 169 239	167	135	174
Ą.	65.5 76.8 108.4	75.7	61.2	78.9
Percentile	1st % 94th % 99th %	65th %	4th %	77th %
Stature Inches	64.8 73.8 75.4	70.9	0.99	71.8
5	164.50 187.30 191.40	180.00	167.60	182.30
Age at time of measurement	22 22	21	18	20
Subject	H075 H078 H081	H083	H084	H094

Percentiles are relative to "Anthropometry of Naval Aviators - 1964," by Edmund C. Gifford, Joseph R. Provost, and John Lazo. U.S. Naval Air Engineering Center, Philadelphia, Pennsylvania. NAEC-ACEL-533, 8 October 1965.

Fig. 11 - Selected anthropometry of volunteer subjects (11)

ANALYTICAL METHODS - This study is directed toward the evaluation of the average effects of initial conditions over subjects. The data from the subjects were pooled to obtain average profiles of parameters of interest as well as for purposes of subsequent regression analysis on peak values of interest. The average profile for each variable of interest was calculated for each experimental initial condition and comparison plots of these average profiles are shown for a peak sled acceleration level of 5G in Figures 12 through 15. The 5G level was selected because it was the highest G level for which all four initial conditions were investigated. The comparison of other G levels has been calculated and would have indicated similar results.

The average profile for each condition has been obtained by averaging across subjects using the time of first motion as determined from the sled profile to align the profiles of the subjects. The variations in time at which peak values of head and T₁ response measurements occured were small enough across subjects so that the average profiles were an excellent summary of the replications.

The standard deviation across subjects and within subject was evaluated in a time window from 60 to 220 milliseconds for each of the plotted average profiles and is presented in Figure 16.

In this study, the effects of initial conditions on head peak angular acceleration, head peak angular velocity, head peak resultant linear acceleration and peak horizontal acceleration at T_1 were of particular interest.

For each variable of interest, the peaks were read manually from the time profile for that variable. The first positive major peak was used for the parameters of head angular acceleration, angular velocity, and resultant linear acceleration. These peaks were ordinarily found to be the largest for these runs with the exception that the second peak in the head angular acceleration profile was often larger than the first peak for the HTRT initial condition.

An unambiguous first peak was found to be more difficult to define for the horizontal linear acceleration at T₁. The first peak was always negative and was usually followed by a relatively sharp decrease in magnitude followed by a series of lesser peaks. The first peak was selected as the peak value as long as the decrease subsequent to it was of sufficient magnitude. However, if the decrease was minor and the continuing part of the curve fit in well with its antecedent the second peak was selected.

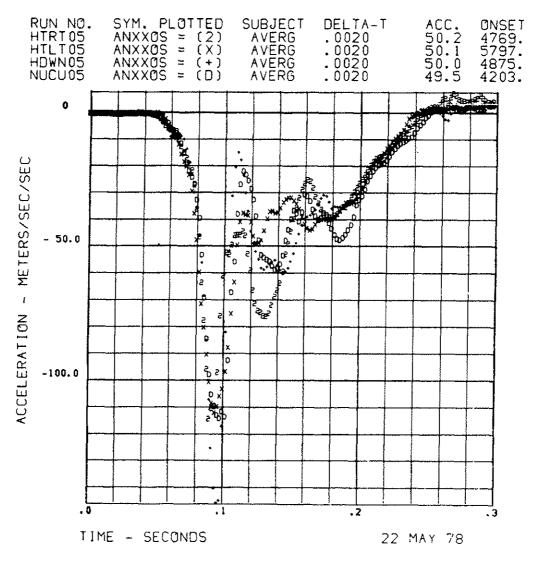


Fig. 12 - Comparison of average horizontal acceleration a T_1 for each initial condition (5G)

. ...

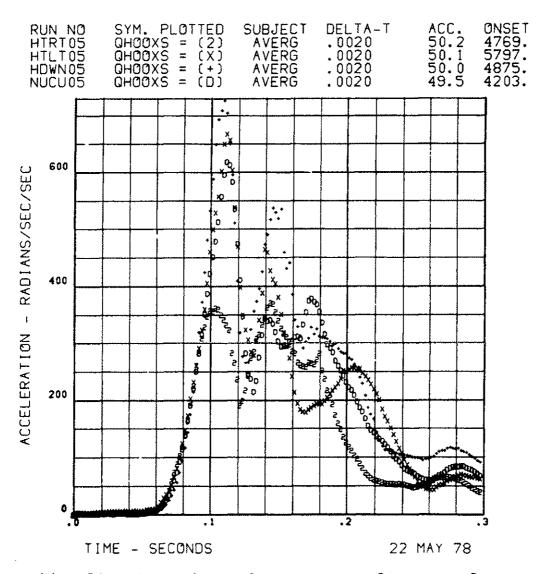


Fig. 13 - Comparison of average resultant angular acceleration for each initial condition (5G)

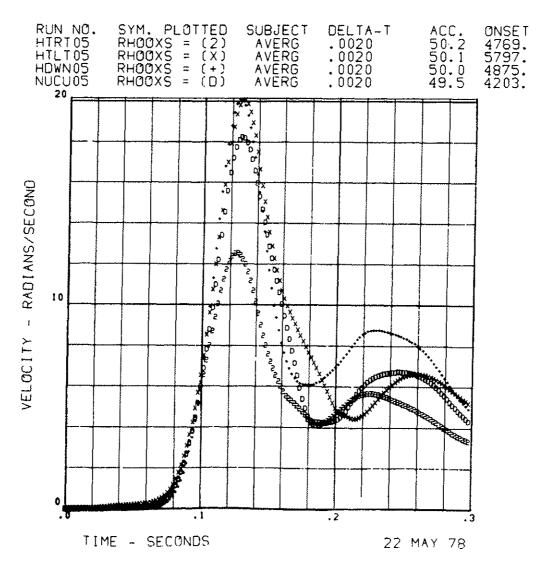


Fig. 14 - Comparison of average resultant angular velocity for each initial condition (5G)

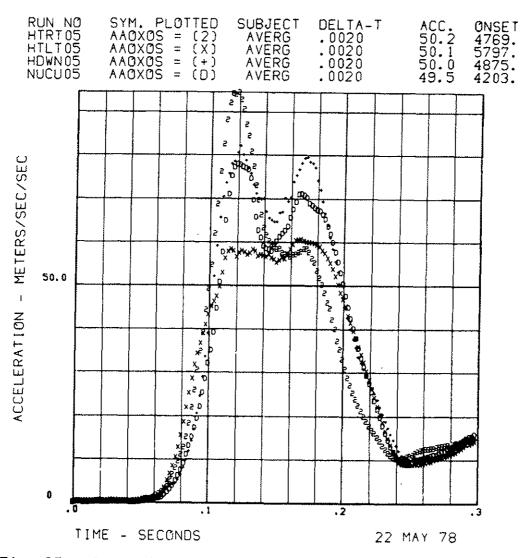


Fig. 15 - Comparison of resultant linear acceleration of head anatomical origin for each initial condition (5G)

		ဗ္ဗ	T i	56	2
	Z W D H		within subj.	13.5 92.0 1.2 5.2	
	工	73.2	>	19.4 115.4 2.1 7.6	32.5 135.2 2.7
	HTRT		within subj.	17.0 39.0 0.6 5.0	
	I	12.1 42.8 1.4 5.8		25.3 101.9 2.1 9.6	32.5 180.6 2.6
	HTLT		within subj.	8.1 75.5 1.0 2.8	
	I	13.0 57.1 1.9 4.3		13.6 95.3 2.5 9.0	
•	n	m/sec ² rad/sec ² rad/sec ² m/sec ²	within subj.	12.6 56.0 0.88 5.5	
	O O N	12.1 75.1 2.3 6.0		23.8 105.3 2.1 9.4	34.0 182.2 2.4 13.2
INIT	COND VAR.	ANXXOS QHOOXS RHOOXS AAOXOS		ANXXOS QHOOXS RHOOXS AAOXOS	ANXXOS QHOOXS RHOOXS AAOXOS

Fig. 16 - Deviation on profile parameter from average profile for each initial condition (3, 5 and 7G)

The peak values for the variables of interest are compared for the four initial conditions for each subject at the 3,5 and 7G levels in Figures 17 through 19. These peak values, together with the peak values at 2 and 6G, were regressed on combinations of sets of the following variables.

- Peak sled acceleration or peak linear horizontal acceleration at T1
- 2. Euler 1 (head roll angle)
- 3. Euler 2 (head pitch angle)
- 4. Neck roll angle
- 5. Neck pitch angle

A stepwise multiple linear regression was used in which independent variables were eliminated from the regression on the basis of an F test if found not to be significant at the five percent level.

RESULTS

Figures 1 through 4 show photographs of a subject at the times of critical events in the dynamic response profile for each of the initial conditions investigated in this study. The NUCU initial condition is shown in Figure 1. The conditions shown in Figures 2 through 4 should be compared to NUCU, Figure 1. The uppermost photograph for each initial condition is just prior to first motion of the sled and illustrates the configuration of the head and neck for that condition. The thrust vector direction is from the right to the left shoulder and is indicated in each figure. The events depicted in each figure are in chronological order and are as follows:

- a. The time of first motion of the sled.
- b. The time at which the peak resultant angular acceleration of the head occurs.
- c. The time at which the peak resultant linear acceleration of the head anatomical origin occurs.
- d. The time at which the peak resultant angular velocity of of the head occurs.
- e. The time at which the maximum angular displacement of the head occurs.

Observation of these figures indicates that these critical events in the dynamic response to +Y acceleration occur at greatly different head and neck orientation for the different initial conditions. This is particularly evident for the HTLT initial condition. The average times of occurrence of these events are

G LEVEL

		TIME TO PEAK LIN ACC	SEC	25.55. 25.55. 25.55.	<u> </u>	138		.140 .138 .133	7.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
		PK RES HEAD LIN ACC	8/S/W	55.9 47.8 47.6 5.6	45.0 84.0 6.0 6.0	58.0 5.0 7.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	58.0 46.9 47.4	48.0 1.9 58.3 48.3	66.83.80 843.80 843.80 84.30 8.31 8.31 8.5 8.5 6.5 7.7
	TIME TO PK HEAD ANG VEL	238	148 136 136	135	151.	941. 139 571. 5751.	85.1.3.4. 85.65.	272 272 282 273 273 273 273 273 273 273 273 273 27	
		PK RES HEAD ANG VEL	RAD/SEC	12.65 12.65 6.98 12.80	10.47 9.72 57.82 10.61	13.26 5.35 14.13	13.66 10.70 8.98 11.91	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	17.22 11.81 9.14 13.54 12.70 2.49 11.33 1.35 7.74 7.74 1.29 11.64
!		TIME TO PK HEAD ANG ACC	SEC	E 55.	25. 11. 11. 11.	- 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13	82 82	. 120 . 107 . 102	153 115 115 115 115 115 115 115 115 115
	ĸ	PK RES HEAD ANG ACC	RAD/5/5	400.0 383.0 179.0 409.0	314.0 340.0 230.0 309.0	401.0 330.0 137.0 462.0	439.0 388.0 233.0 413.0	295.0 273.0 232.0 242.0	560.0 354.0 165.0 382.0 401.5 87.1 344.7 38.3 195.0 37.8 36.9.5 73.1
•		TIME TO PK ACC AT TI	SEC	2====	.103 .106 .090	± 55 ± 60	¥11. 111. 102.	.105 .096 .096 .099	135 115 110 110 113 113 113 113 113 113 113
		PK ACC AT T1	8/S/W	-67.4 -72.7 -53.8 -60.3	-54.8 -55.4 -46.6	-98.2 -102.0 -57.5 -105.0	-91.7 -98.1 -90.7 -94.1	-57.2 -53.9 -70.3 -60.0	-91.0 -80.5 -99.1 -71.8 -76.7 -77.1 -70.7 -18.2 -18.2 -19.0
	PEAK SLED ACC	8/8/W	29.7 30.6 29.5 31.1	30.2 29.8 30.6 30.6	30.53 30.53 30.53 30.53	29.9 30.3 31.3	30.3 30.6 30.4	30.0 33.1 30.1 30.1 30.1 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.0 30.1 30.1	
	COND		NUCU HTLT HTRT HOWN	NUCU HTL1 HTR1 HDMN	NUCU HILI HIRI HOMN	NUCU HTLT HDKN	NUCU HTLT HTRT HDWN	NUCCU HTLT HTRT HDWN NUCU HTLT HDMN	
		SUBJECT		សសស	86 87 86 87	<u> </u>	88888	చేచేచేచే	AVG AVG AVG DEV DEV DEV
		RUN		1625 2544 2376 2463	1780 2540 2378 2460	1779 2546 2379 2534	1785 2537 2384 2466	1880 2531 2385 2459	1875 2524 2732 2450

Fig. 17 - Summary of peak values for each variable and each initial condition by subject (3G)

	•	TIME TO PEAK LIN ACC	SEC	8 + 2 = 1 = 1 = 0	# D # S & C & C & C & C & C & C & C & C & C &	138 138 138 138 138 138 138 138 138 138	751. 711. 851. 151. 551.	22	122 137 137 120 121 121 120 120 120 121 121
G LEVEL 5		PK RES HEAD LIN ACC	M/S/S	83.2 83.2 64.3 71.5 102.0	80.6 65.2 79.8 76.4	88.9 65.6 112.0 91.1 87.3	និង	69.5 70.3 57.7 82.7	105.0 83.0 83.0 11.7 11.7 11.7 11.0 66.1 66.1 13.2 84.9
		TIME TO PK HEAD ANG VEL	SEC	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	* O M M N	55 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 118 193 193 193 193 193	133 133 133 133 133 133 123 123 123 123
		PK RES HEAD ANG VEL	RAD/SEC	18.44 17.69 13.01 26.43	17.99 18.35 23.61 11.12	22.24 20.97 12.90 22.85 17.53	19.52 16.48 19.70 13.64 20.16	17.47 17.72 16.90 13.73	20.89 19.69 25.34 19.93 15.50 21.96 18.85 13.55
		TIME TO PK HEAD ANG ACC	238	<u> </u>	2111011 251001	22220 22220	111. 699. 699. 601. 601.	. 106 . 106 . 039 . 110	for each
	ທ	PK RES HEAD ANG ACC	RAD/5/5	604-0 64-0 64-0 64-0 64-0 64-0 64-0 64-0	668.0 695.0 844.9 366.0 517.0	941.0 770.0 534.0 830.0 526.0	772.0 498.0 577.0 518.0 840.0	587.0 600.0 677.0 403.0 705.0	896.0 835.0 835.0 386.0 717.0 689.9 135.0 711.7 101.4 431.6 62.0 763.0 157.2 Values '
		TIME TO PK ACC AT TI	235	201. 201. 201. 500. 700.	. 100 . 093 . 104 . 104	. 098 . 093 . 093 . 095	. 102 . 093 . 097 . 098	780. .089 .989 .20.	.098 .098 .107 .107 .005 .005 .005 .005 .005 .005 .005 .0
		PK ACC AT T1	8/S/W	-117.0 -122.0 -118.0 -101.0 -127.0	-91.3 -105.0 -126.0 -70.1	-252.0 -148.0 -236.0 -291.0 -188.0	-227.0 -141.0 -120.0 -166.0 -188.0	-106.0 -116.0 -101.0 -104.0	156.0 -139.0 -153.0 -111.0 -111.0 -139.0 -155.0 -130.2 -130.2 -156.9 -156.9 -156.9
		PEAK SLED ACC	W/S/S	48.2 50.6 50.7 47.6 49.9	50.0 50.1 50.1 50.4 50.4	8.60.00 8.00.00 8.00.00 7.00.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.9 50.7 5.0 6.1 6.1 6.1 7.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8	2
		TINI		NUCU NUCU HTLT HTRT HDKN	NUCU HTCT HTRT HOAN	NUCU HILT HDAN HDAN	NUCC HICC HICC HOWN	NUCU HUCU HTRT HOAN	NUCU HILLT HIRRT H
		SUBJECT	•	ឯកសត់ស	87 87 87 87 87	\$\overline{a} \overline{a} \ove	8888888	គឺ គឺ គឺ គឺ	26 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		25		1635 1827 2575 2397 2470 2712	1824 2703 2577 2400 2400	1796 2596 2408 2580 2711	1831 2341 2585 2409 2478 2710	2317 2359 2586 2405 2479	2312 25334 25439 2752 2722 2487

		TIME TO LIN ACC	235	80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	11.0	<u> </u>	6.1.		55.
		PK RES HEAD LIN ACC	8/8/W	140.0 0.00 0.00	139.0	143.0 153.0 148.0	139.0	103.0	127.0 85.0 187.0 137.4 5.3 105.4 14.17	
		TIME TO PK HEAD ANG VEL	SEC	 	7-11. 7-11.		911.	. 120 119		!
		PK RES HEAD ANG VEL	RAD/SEC	27.07 26.98 18.71	23.75 30.17 18.75	31.45 34.54 16.17	24.34 20.59	29.40 18.78	28.01 31.63 18.31 26.92 2.77 30.54 2.50 18.55	
		TIME TO PX HEAD ANG ACC	256	.104 .104 .096	.109	.104	.098 .098	. 101		
LEVEL	7	PK RES HEAD ANG ACC	RAD/S/S	1114.0 1146.0 547.0	979.0 995.0 704.0	1614.0 1698.0 703.0	569.0	1127.0 636.0	1546.0 1130.0 742.0 1272.8 256.4 1219.4 245.3 650.2	
 (5)		TIME TO PK ACC AT TI	238	980. 080. 090.	. 093 . 099 . 096	. 090 . 094 . 082	. 1088	.092 .094	. 093 . 096 . 090 . 090 . 093 . 091 . 091	
		PK ACC AT TI	W/S/S	-147.0 -154.0 -131.0	-129.0 -195.0 -175.0	-407.5 -393.0 -185.0	-288.0 -155.0	-219.0 -144.0	-279.0 -184.0 -303.0 -250.0 -229.0 -229.0 -229.0 -182.2 57.0	
		PEAK SLED ACC	M/S/S	71.1 70.4 69.7	68.8 69.5 69.9	69.0 69.6 69.0	69.2 69.1	70.6 69.7	7.0.7 7.0.7 7.0.1 6.9.7 70.2 6.9.6 7.0.2 7.0.2 7.0.2 7.0.2 7.0.2 7.0.2 7.0.2 7.0.2	
	i	TNIT		NUCU HTL T HTRT	NUCU HTL 1 HTRT	NUCU HTLT HTRT	NUCU HTRT	HTL T HTRT	NUCU HTRT HTRT NUCU HTLT	
		SUBJECT		& C C C C C C C C C C C C C C C C C C C	78 87 87	<u> </u>	83 83	<u>.</u>	A 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
		RUN		1921 2669 2421	1926 2673 2423	1927 2674 2441	1928 2438	2677 2437	2337 2694 2430	

Fig. 19 - Summary of peak values for each variable and each initial condition by subject (7G)

shown in Figures 17 through 19 for each initial condition for 3, 5 and 7G respectively. Although the orientation of the head and neck at the time of these critical events is different, the times from first motion are approximately the same for all conditions except the HTRT initial condition. The events occur somewhat earlier for the HTRT initial condition. Subsequently, it will be shown that the dynamic response is greatly different only for this HTRT initial condition where the initial displacement of the head and neck is in the direction of the induced motion.

Comparison of the average response profile for the four initial conditions at the 5G level for the variables horizontal acceleration at T₁, resultant head angular acceleration, resultant angular velocity and resulting head linear acceleration at the head anatomical origin are shown in Figures 12 through 15 respectively. The average for each condition was calculated across all subjects using first motion of the sled to align the individual subject profiles. The 5G level was selected because it was representative of the results at other G levels and it was the highest G level at which all the initial conditions were investigated.

It can be observed from these comparison curves that there is a general similarity in shape for each of these variables independent of initial condition. The most dramatic difference is the relatively low magnitude angular acceleration and velocity of the HTRT condition relative to all other conditions (Figures 13 and 14). This was true for the comparison of average profiles for all G levels investigated in this study and also true for initial conditions compared for each subject.

One exception to the general similarity of the average profiles occur in the peak resultant head angular acceleration (Figure 13) for the HTRT initial condition. For this condition the second peak in the profile (deceleration peak) is much higher relative to the first peak than for the other initial conditions. On individual runs this peak was often higher than the first peak for this initial condition. This increased second peak (deceleration peak) is consistent with the relatively attenuated, narrow angular velocity profile for this initial condition (Figure 14). In contrast to the head angular acceleration and velocity, the resultant linear acceleration at the head anatomical origin (Figure 15) is usually greatest for HTRT condition and lowest for the HTLT condition. This is true for comparisons of averages across subjects as well as on individual subjects at all G levels.

The standard deviation evaluated across subjects from the average profiles presented in Figures 12 through 15 are shown

for each initial condition at the 3, 5 and 7G levels in Figure 16. As mentioned previously, these standard deviations were evaluated in a time window between 60 to 220 milliseconds where the significant portion of the dynamic response occurs. The variability is appreciable and can be seen to increase with G level. At the 5G level, a number of duplicate runs were made on several subjects. Subjects 75, 83, 84 and 94 had duplicate runs in the NUCU condition, whereas subject 75, 81 and 83 had duplicate runs in the HDWN condition. Subject 78 and 94 had duplicate runs in the HTLT and HTRT conditions respectively. For comparisons, the standard deviation corresponding to within subject variability is also presented for each initial condition at 5G. It should be noted that within subject variability is significantly less than among subject variability.

This result is not suprising since in these $\pm Y$ experiments with the transmission of forces from the sled through the slightly padded wood board to the right shoulder one would expect a subject dependent response at T_1 . The variability between subjects is not so much a profile shape change as it is a magnitude and time shift change due to the response at T_1 .

In Figures 17 through 19, the peak values of the linear horizontal acceleration at T₁, the resultant head angular acceleration and angular velocity, the resultant head linear acceleration at the head anatomical origin are compared for each initial condition for each subject at the 3, 5 and 7G level respectively. The times of occurrence of these peak values are also compared in these same figures.

At the bottom of Figures 17 through 19, the average peak values across subjects and the standard deviations are given for each initial condition. Comparison of average peak values from these figures with the peaks of the average profiles shows the average profile peak values to be somewhat smaller. This is to be expected as the average profile peaks are attenuated because the peak values for each subject in the average do not occur at the same time. This is particularly noticeable in the higher bandwidth profiles such as peak horizontal acceleration at T₁ and peak resultant angular acceleration. Although the average peak values of Figures 17 through 19 are greater than the peaks on the average profiles, both qualitatively indicate the similar result that the peak resultant head angular acceleration and angular velocity are drastically reduced for the HTRT initial condition. As with the average profiles, Figures 17 through 19 indicate that the resultant linear acceleration at the

head anatomical origin is in general greatest for the HTRT condition and least for the HTLT condition. The same conclusions are reached when comparing the initial conditions for each subject. It is interesting to point out that a similar result was obtained in the study of initial condition with the -X experiments (1). The initial condition (neck forward/head down) where the head and neck were initially displaced in the direction of induced motion had much lower angular accelerations and velocities.

The data in Figures 17 through 19 augmented with similar data at the 2 and 6G levels were used in a stepwise multiple regression to quantify the effect of initial head and neck orientation on the peak values of interest. The results of the stepwise multiple regression for the peak resultant head angular acceleration and velocity, and the peak linear resultant acceleration at the head anatomical origin are presented in Figure 20. A dash in a particular coefficient column indicates that a particular independent variable was not considered in the regression whereas a notation of "INSIGN" indicates that regression on that variable was not found significant at the five percent level. The units for each coefficient are the units of the dependent variable divided by the units of the independent variable. The column labeled "condition" specified what G levels and initial conditions were pooled in the regression analysis. Figure 20a, b and c are for all initial conditions pooled, all except HTLT and all except HTRT respectively.

Observations of Figure 20a where all the initial conditions are pooled, indicate that a positive Euler 1 angle (head roll to right) reduces the angular acceleration by 9.7 rad/sec 2 per degree and the angular velocity by 0.22 rad/sec per degree. Neck roll to the right, on the other hand, increases the angular acceleration and angular velocity by 8.4 rad/sec 2 per degree and 0.18 rad/sec per degree respectively. Hence head tilted to the right relative to the neck magnifies the decrease in angular acceleration and angular velocity. The linear acceleration at the head anatomical origin increases with neck roll to the right (0.73m/sec 2 per degree). The head angular acceleration and velocity also increase with increased neck pitch angle (2.74 rad/sec 2 per degree and 0.073 rad/sec per degree respectively). The horizontal acceleration at T₁ decreases with head roll to the right and increases with neck roll to the right.

Of course, the coefficients in Figure 20 imply just the opposite effect for head and neck rolled to the left. The average

Dep. Var. Condition All G levels NUCU, 169.0 HTLT, HTRT, HDWN 3.85 ". 20.7 ".	Α	10					160.0 HTRT, HDWN 3.33 "		173.0 All G levels NUCU, 3.96 " 19.1 "	
	2 2	(4		•	······································				, 	
Deg.	2.74		0.073	Insign.	insign.		2.30 0.061 Insign.		Insign. 0.06 Insign.	
•	Deg.	Insign.	Insign.	Insign.	Insign.		Insign. Insign. Insign.	.	Insign. Insign. Insign.	•
-	Deg.	+8.4	0.18	0.73	2.84	Figure 20a	10.11 +0.18 0.77	Figure 20b	8.43 +0.19 0.603	
_	Deg.	-9.70	-0.22	Insign.	-1.68	ĬĒ.	-14.02 -0.27 Insign.		-6.11 -0.19 Insign.	
_	m/sec_	-3.84	-0.072	-0.33	!		-3.55 -0.064 -0.35		-3.91 -0.075 -0.300	
, 2	m/sec	1	1	1	-3,5]				111	
:	Dep. Var	112.0	7.38	4	50.7		211.0 9.37 38.8		198.0 7.77 42.2	
/	Variable	QHOOXS rad/sec RHOOXS	rad/sec AAOXOS	m/sec ANXXOS	m/sec		QHOOXS RHOOXS AAOXOS		QHOOXS RHOOXS AAOXOS	

Fig. 20A-C - Summary of coefficients from stepwise multiple regression

Figure 20c

profiles (Figures 12 through 15) and the peak value tables (Figures 17 through 19) indicated a much bigger effect on the dynamic response for the HTRT condition than for the HTLT condition. Comparison of the top, middle and bottom portions of Figure 20 support this asymmetry in response indicating much larger effects on peak values of interest when the head is rolled to the right than when it is rolled to the left.

In a previous paper presented at the Twenty-First Stapp Car Crash Conference, (3) it was indicated that the angle the angular velocity vector makes in the head anatomical coordinate system (RANGLE angle) is approximately constant during the time for which the magnitude of the angular velocity vector was significant. The head rotation for most runs appeared to be taking place around a fixed axis between the anatomical X and -Z axis. The apparent fixed axis made an angle of approximately 35 degrees with the anatomical X axis for most subjects. Because of the possible implications to modeling the response to +Y accelerations, this same angle was calculated in this study for each initial condition.

The RANGLE angle is presented in the next to last column of Figures 5 through 8 for the NUCU, HTLT, HTRT and HDWN initial conditions respectively. This angle is shown for each subject at each G level as well as the average angle across G levels for each subject. The last column of these same figures indicates the standard deviation in this angle calculated in a time window where the resultant angular velocity was significant as indicated in the methods sections of this paper. The smaller the deviations in RANGLE angle the more reasonable the assumptions of a fixed axis model.

Observation of Figure 5 for the NUCU condition shows that this angle is approximately =35 degrees for all subjects and in most runs the standard deviation in this angle is relatively small. The fixed axis assumption is approximately true for the HTLT and HTRT initial conditions where the average angle is once again about -35 degrees. In the HDWN initial conditions however, the RANGLE angle is less than for other initial conditions and the variability in this angle is greater indicating a motion with more degrees of freedom than implied by the fixed axis model for this initial condition. This more complicated motion in the HDWN condition is easily observed in Figure 4.

A possible explanation for the near constant RANGLE angle can be obtained by considering a hinge point located between the head and neck links of a model in which the torque develop-

ed is negligible. Under these conditions a simple relationship exists between the linear acceleration of the head center of gravity and the angular accelerations of the head. This should provide an excellent means of locating the head/neck hinge point for modeling purposes and will be explored in detail in a subsequent paper.

CONCLUSIONS

A study of 100 (+Y) impact acceleration experiments on six human subjects in four different initial head and neck configurations has indicated the following:

- 1. Lateral bending of the head and neck in the direction of the acceleration induced motion significantly reduces the resultant peak head angular acceleration and velocity. This result for +Y acceleration is similar to that found in the -X direction.
- 2. Lateral bending of the head and neck in the direction of the acceleration induced motion often produces an angular acceleration profile with a deceleration peak greater than the acceleration peak. This result was also reported in the -X impact experiments.
- 3. Lateral bending of the head and neck in direction of the acceleration induced motion increases the linear resultant acceleration at the head anatomical origin.
- 4. Regression analysis indicates that the roll of the head has a larger but opposite effect to the roll of the neck, so that bending of the head relative to the neck in the direction of the induced motion tends to make the reduction of head angular acceleration and velocity greater.
- 5. Bending of the head and neck forward (pitch) increases the angular acceleration and velocity.
- 6. The effects of bending of the head and neck in the direction of the acceleration induced motion (roll) are greater than for the bending in the opposite direction.
- 7. The direction of the head angular velocity vector in the head anatomy is in most cases near constant for head and neck roll conditions but departs from this model quite significantly for the initial condition where the head and neck are pitched forward.
- 8. With the possible exception of the initial condition where the head and neck are pitched forward significantly, one should be able to approximate all of the other initial conditions in this study with the same type of fixed axis model.

ACKNOWLEDGEMENTS

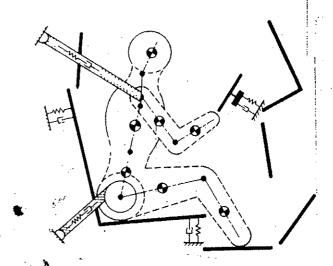
Major funding and support for this work was provided by the Bureau of Medicine and Surgery, the Naval Medical Research and Development Command and the Office of Naval Research.

Volunteer subjects are recruited, evaluated and employed in accordance with procedures specified in Secretary of the Navy Instruction 3900.39 and Bureau of Medicine and Surgery Instruction 3900.6 which are based upon voluntary informed consent, and meet or exceed the most stringent provisions of all prevailing national and international guidelines.

Opinions or conclusions contained in this report are those of the authors and do not necessarily reflect the views or the endorsement of the Navy Department.

Trade names of materials or products of commercial or nongovernment organizations are cited only where essential to precision in describing research procedures or evaluation of results. Their use does not constitute official endorsement or approval of the use of such commercial hardware or software.

The authors wish to express their appreciation to the entire staff of the NAMRL Detachment and especially acknowledge the assistance of Gerald Williamson and Dorothy Francis from the Data Processing Division; Rory MacDowell from QEI, Inc. and Elke Lewis for editorial assistance. Special thanks go to the volunteer subjects who make this project possible.


REFERENCES

- 1. C. L. Ewing, D. J. Thomas, L. Lustick, E. Becker, G. Willems and W. H. Muzzy III, "The Effects of the Initial Position of the Head and Neck on the Dynamic Response of the Human Head and Neck to -Gx Impact Acceleration", Proceedings, Nineteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1975.
- 2. C. L. Ewing, D. J. Thomas, L. Lustick, W. H. Muzzy III, G. Willems and P. L. Majewski, "The Effect of Duration, Rate of Onset and Peak Sled Acceleration on the Dynamic Response of the Human Head and Neck", Proceedings, Twentieth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1976.
- 3. C. L. Ewing, D. J. Thomas, L. Lustick, W. H. Muzzy III, G. Willems and P. L. Majewski, "Dynamic Response of Human Head and Neck to +Gy Impact Acceleration", Proceed-

- ings, Twenty-First Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1975.
- 4. C. L. Ewing and D. J. Thomas, "Human Head and Neck Response to Impact Acceleration", NAMRL Monograph 21 (1972), p. 84.
- 5. C. L. Ewing, D. J. Thomas, L. M. Patrick, C. W. Beeler and M. J. Smith, "Living Human Dynamic Response to -Gx Impact Acceleration. II Accelerations Measured on the Head and Neck", Proceedings, Thirteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1969.
- 6. C. L. Ewing and D. J. Thomas, "Torque versus Angular Displacement Response of Human Head to -Gx Impact Acceleration", Proceedings, Seventeenth Stapp Car Crash Conference, Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA, 1973.
- 7. E. Becker and G. Willems, "An Experimental Validated 3-D Inertial Tracking Package for Application in Biodynamic Research", Proceedings, Nineteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1975.
- 8. E. Becker, "A Photographic Data System for Determination of 3-Dimensional Effects of Multiaxis Impact Acceleration on Living Humans", Proceedings, Society of Photo-Optical Instrumentation Engineers, V.57, Box 1146, Palos Verdes Estates, CA 90274, 1975.
- 9. D. J. Thomas, "Specialized Anthropometry Requirements for Protective Equipment Evaluation", AGARD Conference Proceeding No. 110, Current Status in Aerospace Medicine, Glasgow, Scotland, 1972.
- 10. E. Becker, "Stereoradiographic Measurements for Anatomically Mounted Instruments", Proceedings, Twenty-First Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1977.
- 11. C. Clauser and K. Kennedy, "An Inquiry into the Ranges of Values Existing in the U. S. Navy Acceleration Study", 6570th Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio, April 1975, Unpublished.

22nd Stapp Car Crash Conference

OCTOBER 24-26, 1978 ANN ARBOR, MICHIGAN

