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Abstract

The response of the human head and neck to impact accel-
eration has been previously reported for the =X (chest to back)
and +Y (right to left) directions. Wide ranges of sled peck ac=
celeration, rate of onset of acceleration and duration of accel=
eration have been investigated and reported. A major mechan=
ical effect on the dynamic response due to initial position for
the =X direction has been reported. The purpose of this study
is to report the initial position effect on the human head and
neck response for +Y direction experiments.

Four initial positions of the head relative to the first tho-
racic vertebral body (T,) have been investigated over a range
of sled acceleration pedks from 2 to 7G. The data from six
young adult male volunteers representative of a wide range of
anthropometry will be presented. There are 18 experiments
for each volunteer for a total of 108 experiments.

The effect of initial position on the resulting head angular
and linear acceleration, velocity and displacement will be
presented. A comparison of the initial position effect for =X
and +Y direction experiments will be made. The ability to
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model the initial position effect will be discussed.

PURPOSE

The Naval Aerospace Medical Research Laboratory Detach-
ment (NAMRLD) New Orleans, Louisiana, is conducting a con-
tinuing program to determine the dynamic response of volunteer
subjects to impact acceleration (1,2,3,4,5,6).* The effect of
initial condition on the dynamic response for =X acceleration
experiments has been previously reported (1), The specific
purpose of this paper is to present the effect of initial head and
neck orientation on the dynamic response for +Y acceleration
experiments and to compare these results with the study for the
=X data base. In addition, the Implications that initial posi=
tion has on modeling +Y head and neck response will also be
discussed.

METHODOLOGY
SLED ACCELERATION PROFILES = A Bendix HYGE® phey=

matically driven ,3048m diameter accelerator was used to ac=
celerate an approximately 1.2m by 3.7m sled of 1,669 kg mass
which was rail mounted on 12 Delrin AF™ pucks. The accel=
eration siroke is limited to 1.52m and sled mounted brakes were
not used. The effective drag is about .2G and the sled was
allowed to coast to a stop. Total rail length is 213m, The sub-
ject was restrained in a nominally upright position by shoulder
straps, a lop belt and an inverted V pelvic strap tied o the lap
belt. A loose sofety belt around the chest was also employed.
The thrust vector of the sled was nominally directed from the
right to the left shoulder and the subject was positioned snugly
against a lightly padded wooden board used to limit the upper
torso motion (Figures T through 4), The sled pulse duration was
controlled so that the end stroke velocity was approximately
constant and independent of G level.

The pertinent sled parometers for each run in each of the
four initial conditions are shown in Figures 5 through 8. The
averages and standard deviations at each G level within the
initial conditions are shown in the same figures. Pedk Sled
Acceleration (PSA) is the maximum obsolute value of the mea-
sured sled acceleration profile. Rate of onset (ROQ) is defined

*Numbers in parentheses designate References at end of paper.
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Fig. 1 - Photographs of a subject at critical events in

run profile ~ NUCU (5G)
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Fig. 2 - Photographs of a subject at critical events
run profile - HTLT (5G)
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Fig. 4 - Photographs of a subject at critical events in
run profile - HDWN (5G)
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as the slope on the rising portion of the acceleration profile
between 20 and 50 percent of pedk sled acceleration and dura=-
tion is defined as the time spent above 75 percent of peck sled
acceleration. End stroke velocity (END STV) is the maximum
sled velocity determined from integration of the sled profile and
for a given G level correlates with duration. Figure 9 shows
the sled acceleration profiles for each condition defined by on-
set and duration averaged over subjects at 5G. The sled profiles
are controlled very closely and the comparison at other G levels
would be similar,

As can be seen in Figures 5 through 8 the sled profile pare-
meters are confrolled very accurately across initial conditions
and subiecfsg. The rate of onset ingeases with G level from
1,000m/sec” at 2G to 7,000m/sec” at 7G peck sled accelera=
tion. The duration is relatively long decreasing with increas-
ing G level in order to keep the end stroke velocity near con=~
stant at slightly greater than 6m/sec.

EXPERIMENTAL MEASUREMENTS ~ The dynamic parameters
of interest presented in this paper have been derived from mea-~
surements using six piezoresistive accelerometers mounted on «
T=shaped plate ot the mouih and six accelerometers mounted on
a T-plate at the spinous process of T,. The configuration of the
accelerometers on the T-plate and the error propagations associ~
ated with this method for determining linear displacement, ve-
locity, acceleration and angular orientation, angular velocity
and angular acceleration components of a rigid body have been
described previously (7). The cinephotogrophic system (8) was
used fo obtain the initial conditions of the head and T, in this
study. The head and T, instrumentation mount and attached
phototargets were each acquired by two of three camercs.

In order to compare subjects at similar points in the anatomy,
a definition of a head anatomical coordinate system and o T
anatomical coordinate system is required (1,9). These anthro-
pometric coordinate systems are related to the instrumentation
coordinate systems by three dimensional X~ray anthropometry
for each subject (10).

The basic reference frame for the entire series of experiments
is fixed to the laboratory. This is established by first defining
a sled coordinate system, in which the origin is a benchmark
permanently machined into the sled structure. The +X axis is
parallel but in the opposite direction to the thrust vector of the
accelerator (Figure 10). The +Z axis is parallel to gravity and
positive upward and the +Y axis is established so that the XYZ
axes form an orthogonal right hand triad. All coordinate systems
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RUN NO. SYM. PLOTTED SUBJECT DELTA-T ACC.
HTRTO0S ACXXOS = (2) AVERG .0020 50.2
KTLTQS ACXXAS = (X) AVERG . 0020 50.1
HOWNDS ACXXBS = (+) AVERG . 0020 0.0
NUCUDS ACXXDS = (D) AVERG . 0020 49.5
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Fig. 9 - Comparison of average sled profiie for each

initial condition (5G)
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used in this study are right handed where X,Y and Z axes are
taken in that order. The sled acceleration is in the =X labora=
tory direction. The orientation of the subject on the sled for
these +Y experiments is so that the sled acceleration is in the
+Y anatomical direction.

The dependent variables presented in this report are named
and defined as follows:

QHOOXS = Resultant Angular Acceleration = is the magni~
tude of the head angular acceleration relative to the laboratory
coordinate system, The component of angular acceleration about
the anatomical Y axis is not significant for these +Y acceleration
runs.

RHOOXS - Resultant Angular Velocity = is the magnitude of
the head angular velocity relative fo the laboratory coordinate
system. The component of angular velocity about the anatomi-
cal Y axis {pitch) is not significant for these +Y impact acceler-
ation runs,

AAQXQOS - Resultant Linear Acceleration = is the magnitude
of the head {inear acceleration at the origin of the head ana-
tomical coordinate system relative to the laboratory reference
coordinate system,

ANXXQOS - Horizontal Acceleration af T - is the accelera=
tion component of the T, anatomical coordinate system origin
relative to the laboratory reference coordinate system along the
+X axis of the ldboratory reference coordinate system.

ACXXOS ~ Sled Acceleration = is the acceleration of the
sled along the X component of the laborafory coordinate system.
The laboratory Y and Z components of acceleration are negli-
gible. All of the recorded data are relative to a zero time
established as 40 milliseconds prior to sled firsi motion as defer
mined from the sled acceleration profile.

RANGLE - Direction of Angular Velocity Vector = is defined
as the arc tangent of the component of head angular velocity
about the head anatomical Z axis (yaw) divided by the head
angular velocity about the head anatomical X axis (roll). The
component of head angular velocity about the head anatomical
Y axis is not significant for these +Y impact runs.

The average and standard deviation in this variable has been
calculated in a time window where the resultant angular veloc=
ity was greater than 0.2 of the pedk resultant angular velocity.
The calculation was terminated af o time greater than the time
of occurrence of the maximum resultant angular velocity if
either the angular velocity component about the anatomical X
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axis (roll) was less than 0.15 or the resultant angular accelera=
tion was less than 0,2 of the maximum resultant angular velocity.
Average RANGLE and its deviation were thus calculated only

in a region where the angular velocity components were signi-
ficant,

If the RANGLE angle were constant it would indicate that
the rotation was taking place about an axis fixed in the head
anafomy or laboratory, The standard deviation in the RANGLE
angle is therefore a measure of the departure from this fixed
axis rotation model.

The time on all plofs is relative to a time (data processing
time zero - DPTZ) established as 40 milliseconds prior to first
motion of the sled. First motion of the sled is determined by
the best straight line fit to the rising portion of the sled accel=
eration profile between 20 and 50 percent of peck sled accel=-
eration. The extropolation of this line to its intercept with the
time axis establishes the time of first motion,

INITIAL CONDITIONS = For all +Y runs the subject is seat-
ed upright in a chair so that the sled thrust vector is nominally
in the direction from the right to the left shoulder, and the
gravity vector is downward from the head through the subject's
seat. Therefore, the initial nominal orientation of the head
anatomical and the T, anatomical coordinate system is such that
the anatomical +X is nearly along the laboratory +Y and the
anatomical +Y is parallel with the laboratory =X as shown in
Figure 10, The initial conditions of the neck link and the head
are defined relafive to a coordinate system with the Y' axis
directed along the sled thrust vector, the Z' axis directed up-
ward in the opposite direction to the gravity vector, and the
X' axis directed so that X', Y', Z' form a right hand orthogonal
coordinate system. This coordinafe system and its orientation
relative to the laboratory coordinate system and the nominal
head anatomical coordinate system are shown in Figure 10.

The neck link is-defined by the location of the origin of the
head anatomical coordinate system relative to the origin of the
coordinate system for the first thoracic vertebral body (T5).
The neck link is defined by a length (NECK LEN) and two
angles as shown in Figure 10. The initial orientation of the
head anatomical coordinate system is defined by three Euler
angles, Assuming that the head anatomical X,Y,Z coordinate
system is aligned with the X', Y*, Z' system in Figure 10, then
Euler 1 is a rotation about the head anatomical X axis {roll),
Euler 2 is a rotation about the carried head Y anatomical axis
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{pitch}, and Euler 3 is a rotation about the carried head Z
anatomical axis (yaw).

The four initial conditions investigated in this study cre
shown in Figures 1 through 4, The Neck Up/Chin Up (NUCU)
initial condition (1) is the canonical configuration in which
the subject is usually run. The other three initial conditions
are variations from the normal run configuration. Each initial
condition has been produced by having the subject bend his
head and neck in a specified direction as far as comfortably
possible. As far as possible, the bending of the head and neck
were in concert with no attempt to control the head independent
of the neck. Reproducibility for each initial condition was
obtained by the use of a phototarget template on a TV monitor
established for each subject on his first run in thet initial con-
dition. On subsequent runs, the subject was asked to align the
phototargets as seen on the TV monitor with the femplate. This
was done for all initial conditions except during the head down
condition, at which time the TV monitor was not in the subject's
visual field.

The definition and approximate characterization of each of
the four initial conditions of this study are described in the
following paragraph:

T. Neck Up/Chin Up (NUCU). In this initial condition
the neck was nearty vertical or pitched slightly forward and
the plane determined by the auditory meatuses and orbital ridges
of the eyes was near horizontal.

2. Head Tilted Left (HTLT)., The subject sitting in the NUCU
position bends his head and neck toward the left shoulder as far
as comfortably possible.

3. Head Tilted Right (HTRT). The subject sitting in the
NUCU position bends his head and neck toward the right shoul-
der as far as comfortably possible,

4. Head Down (HDWN). The subject sitting in the NUCU
position bends his head and neck forward as far as comfortably
possible. '

The significant descriptors for the initial conditions HTLT
and HTRT are Euler 1 (roll} in Figures 6 and 7 respectively.

The average value of Euler 1 for these conditions is approximate~
ly +30 and =30 degrees for the HTRT and HTLT initial conditions
respectively. If one caleulates the angle the neck {ink pro=
jected into the XZ laboratory plane makes with the Z axis

{neck roll), it is found to be approximately equal to the head
roll (Euler 1) for most runs. This justifies that the head and neck
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do move in concert and that the neck link orientation in the
head anatomy does not change appreciably,

The significant angle for the HDWN condition is Euler 2
(head pitch), Asshown in Figure 8, and the average angle of
Euler 2 for the HDWN condition is approximately +42 degrees.
In some subjects the angle decreases at the higher G levels to
avoid the possibility of a chin sirike on the right shoulder.

Once again, if one calculates the angle that the neck link
projected into the laboratory YZ plane makes with the labora-
tory Z axis (neck pitch angle), it is found to be approximately
equal to the head pitch angle (Euler 2). The selection of these
particular angles to represent the neck link configuration was
made to facilitate direct comparison with angles defining head
orienfafion,

EXPERIMENTAL DESIGN « Six human volunteer subjects
covering a wide range of anthropometric parameters (Figure 11)
were each exposed to +Y sled acceleration profiles ot nominal
peck sled accelerations of 2,3,5,6 and 7G. Each subject was
run in four distinct initial conditions defined by the orientation
of the head anatomy and the neck link, relative to the thrust
vector of the sled. The thrust vector was perpendicular to
gravity. A photograph of a subject in each of the four initial
condition configurations is shown in the uppermost picture of
Figures 1 through 4. The direction of the sled thrust vector is
shown on these same photographs and is nominally directed from
the right to left shoulder of the subject. The time of center of
shutter opening of the Milliken cameras is shown to the right on each
frame in hours, minutes and seconds to one fenth of a millisecond.

The results presented in this paper encompass a total of 100
separate +Y experiments including duplications ot the 5G level
for each of the initial conditions. More specifically, two of the
four initial conditions (NUCU, HTLT) were investigated for each
subject ot the 2G level. All four initial conditions (NUCU, HTLT,
HTRT and HDWN) were studied at 3 and 5G. Three initial con=
ditions (NUCU, HTLT and HDWN) were investigated at 6G, and
three initial conditions (NUCU, HTLT and HTRT) were investi=
gated at 7G. The assignment of the initial condition ot each
G level was determined by the response of the subject to the
HDWN condition. Subjects who nearly struck their chin against
the right shoulder or right shoulder restraint ot 5G were not run
at 6G and no subjects were run in this HDWN condition at 7G.
Sled acceleration profile parameters and the initial condition
for each subject and for each run are listed by run number and
subject number, Figures 5 through 8.
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ANALYTICAL METHODS = This study is directed toward the
evaluation of the average effects of initial conditions over
subjects. The data from the subjects were pooled fo obtain aver-
age profiles of parameters of interest as well as for purposes of
subsequent regression analysis on pedk values of interest. The
average profile for each variable of interest was calculated for
each experimental initial condition and comparison plots of
these average profiles are shown for a peck sled acceleration
level of 5G in Figures 12 through 15, The 5G level was selected
because it was the highest G level for which all four initial con-
ditions were investigated. The comparison of other G levels has
been calculated and would have indicated similar results.

The average profile for each condition has been obtained by
averaging across subjects using the time of first motion as deter-
mined from the sled profile to align the profiles of the subjects.
The variations in time of which peck values of head and T
response measurements occured were small enough across subjects
so that the average profiles were an excellent summary of the
replications.

The standard deviation across subjects and within subject was
evaluated in a time window from 60 to 220 milliseconds for each
of the plotted average profiles and is presented in Figure 16.

tn this study, the effects of initial conditions on head peck
angular acceleration, head pedk angular velocity, head peak
resultant Hinear acceleration and pedk horizontal acceleration
at T, were of particular inferest.

or each variable of interest, the pedks were read manually
from the time profile for that variable. The first positive major
peak was used for the parameters of head angular acceleration,
angular velocity, and resultant linear acceleration. These pedks
were ordinarily found to be the largest for these runs with the
exception that the second pedk in the head angular acceleration
profile was often larger than the first pedk for the HTRT initial
condition,

An unambiguous first peck was found to be more difficult to
define for the horizontal linear acceleration af T,. The first
peak was always negative and wes usually followed by a rela=-
tively sharp decrease in magnitude followed by a series of lesser
peaks. The first peck was selected as the pedk value as long as
the decrease subsequent to it was of sufficient magnitude. How=
ever, if the decrease was minor and the continuing part of the
curve fit in well with its antecedent the second pedk was select-
ed,
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RUN NO. SYM. PLOTTED SUBJECT DBELTA-T ACC. ONSET
HTRTQ0S ANXXOS = (2) AVERG 0020 50,2 4769,
HTLTO0S ANXXDOS = (X) AVERG 0020 50.1 5797,
HOWNGCS ANXXOS = (+) AVERG 0620 50.0 4875,
NUCUQS ANXXOS = (D) AVERS 0020 49.5 4203.
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Fig. 12 - Comparison of average horizontal acceleration a
Ty for each initial condition (5G)
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Fig. 13 - Comparison of average resultant angular
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RUN NO. SYM. PLOTTED SUBJECT DELTA-T ACC. ONSET
HTRT0GS RHOOXS = (22 AVERG 0020 50.2 47689.
HTLTO0S RHQOXS = (X)) AVERG 0020 20.1 5797.
HOWNDS RHOOXS = [+ AVERG 0020 30.0 4875.
NUCU05 RHBOXS = {02 AVERG 0020 49.5 4203.
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RUN NO SYM, PLOTTED SUBJECT DELTA-T ACC ONSET
HTRTO0S AADXOS = (23 AVERG . 0020 20.2 47869,
HTLT0S AADXOS = (X) AVERD 0020 °0.1 5797
HOWNGS AADXDS = (+) AVERG 0020 20.0 4875,
NUCUGS AAGXOS = (D3 AVERG 0020 43.3 4203.

50. 6

ACCELERATION - METERS/SEC/SEC

.0
TIME - SECONDS 22 MAY 78

Fig. 15 - Comparison of resultant linear acceleration of
head anatomical origin for each initial condition (5G)




(94 pue G *€£) UOLILPUOD Lel3lul yoea 403} 3| 1joud
abeJaAe wouy u9raweded 9| Ljoud uo uoLletasq - g 614

126

"zl 971 ¢ el SOXOVY
9T 7z SXOOHY
"SE1 9°081 2'Z8L | SXOOH®
"ze G°Z¢e 182> SOXXNY
0'S {9 87 |06 §'S | ¥6 - SOXOVY
9°0 | 1°C 0'l |§°C 88°0 | L' SXOOHY
L 0°6¢ | 6°101 G'5L{egs 0°951 £°501 | SXOOHD
L 0Ll | €62 ('8 |9°€l 9°Cl | 8°¢€Z SOXXNY
"lgns . *lgns *lgns
UM UIim Uiyt im
14 8¢ £y d8s/w i 0°9 SOXOVY
Z Il 61 os/poi | g7 SXOOHY
€L 82y L°4S | zoos/Pet| 1og/ SXOOHD
0l Lzt 0°el il WA SOXXNY
YA
L31H L171H NONN aNoO
JINT




C.L.EWING,ET AL. ‘ 127

The peak values for the variables of interest are compared for
the four initial conditions for each subject at the 3,5 and 7G
levels in Figures 17 through 19. These pedk values, together
with the peak values at 2 and 6G, were regressed on combina-
tions of sets of the following varidbles,

1. Peck sled acceleration or peak linear horizontal acceler-

ation at Ty
. Euler 1 (head roll angle)
Euler 2 (head pitch angle)
Neck roll angle
Neck pitch angle

A stepwise multiple linear regression was used in which in-
dependent variables were eliminated from the regression on the
basis of an F test if found not to be significant of the five per-
cent level.

O bW N

RESULTS

Figures 1 through 4 show photographs of a subject at the times
of critical events in the dynamic response profile for each of
the initial conditions investigated in this study. The NUCU

_initial condition is shown in Figure 1. The conditions shown in
Figures 2 through 4 should be compared to NUCU, Figure 1.
The uppermost photograph for each initial condition is just prior
to first motion of the sled and illustrates the configuration of
the head and neck for that condition, The thrust vector direc~
tion Ts from the right to the left shoulder and is indicated in
each figure, The events depicted in each figure are in chrono-
logical order and are as follows:

a. The time of first motion of the sled.

b. The time at which the pedk resultant angular accelera=

tion of the head occurs.

c. The time ot which the pedk resultant linear acceleration

of the head anatomical origin occurs.

d. The time at which the peck resultant angular velocity of

of the head occurs.

e. The time at which the maximum angular displacement of

the head occurs.

Observation of these figures indicates that these critical
events in the dynamic response to +Y acceleration occur ot
greatly different head and neck orientation for the different in-
itial conditions. This is particularly evident for the HTLT initial
condition. The average times of occurrence of these events are
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shown in Figures 17 through 19 for each initial condition for 3,
5 and 7G respectively, Although the orientation of the head and
neck af the time of these critical events is different, the times
from first motion are upproximately the same for all conditions
except the HTRT initial condition. The events occur somewhat
earlier for the HTRT initial condition. Subsequently, it will be
shown that the dynamic response is greatly different only for this
HTRT initial condition where the initial displacement of the head
and neck is in the direction of the induced motion.

Comparison of the average response profile for the four initial
conditions af the 5G level for the variables horizontal acceler-
ation ot T,, resultant head angula acceleration, resultant an
gular velocity and resulting head linear acceleration at the head
anatomical origin are shown in Figures 12 through 15 respective~
ly. The average for each condition was calculated across all
subjects using first motion of the sled to align the individual
subject profiles. The 5G level was selected because it was re-
presentative of the results af other G levels and it was the high=
est G level ot which all the initial conditions were investigated.

It can be observed from these comparison curves that there is
a general similarity in shape for each of these variables indepen-
dent of initial condition. The most dramatic difference is the
relatively low magnitude angular acceleration and velocity of
the HTRT condition relative to ail other conditions (Figures 13
and 14). This was true for the comparison of average profiles
for all G levels investigated in this study and also true for in=
itial conditions compared for each subject.

One exception to the general similarity of the average pro=
files oceur in the pedk resultant head angular acceleration
(Figure 13) for the HTRT initial condition. For this condition
the second peak in the profile (deceleration peak) is much high=
er relative to the first peck than for the other initial conditions.
On individual runs this peck was often higher than the first pedk
for this initial condition. This increased second peak (decelera~
tion pedk) is consistent with the relatively attenuated, narrow
angular velocity profile for this initial condition (Figure 14),

In contrast fo the head angular acceleration and velocity, the
resultant linear acceleration at the head anatomical origin (Fig=
ure 15) is usually greatest for HTRT condition and lowest for the
HTLT condition. This is true for comparisons of averages across
subjects as well as on individual subjects ot all G levels,

The standard deviation evaluated across subjects from the
average profiles presented in Figures 12 through 15 are shown
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for each initial condition at the 3, 5 and 7G levels in Figure

16. As mentioned previously, these standard deviations were
evaluated in a time window between 60 to 220 milliseconds

where the significant portion of the dynamic response occurs,

The variability is appreciable and can be seen to increase with

G level. At the 5G level, a number of duplicate runs were

made on several subjects. Subjects 75, 83, 84 and 94 had
duplicate runs in the NUCU condition, whereas subject 75, 81
and 83 had duplicate runs in the HDWN condition. Subject

78 and 94 had duplicate runs in the HTLT and HTRT conditions
respectively. For comparisons, the standard deviation correspond-
ing to within subject variability is also presented for each inifial
condition at 5G. It should be noted that within subject variability
is significantly less than among subject variability.

This result is not suprising since in these +Y experiments with
the transmission of forces from the sled through the slightly pod-
ded wood board to the right shoulder one would expect a subject
dependent response at T, . The variability between subjects is
not so much a profile shape change as it is a magnitude and fime
shift change due to the response ot T,.

In Figures 17 through 19, the peall< valyes of the linear hori=
zontal acceleration at T,, the resultant head angular accelera~
tion and angular velocity, the resultant head linear acceleration
at the head anatomical origin are compared for each initial con=
dition for each subject at the 3, 5 and 7G level respectively.
The times of occurrence of these peck values are also compared
in these seme figures.

At the bottom of Figures 17 through 19, the average peak
values across subjects and the standard deviations are given for
each initial condition, Comparison of averoge peck values from
these figures with the peaks of the average profiles shows the
average profile peak values to be somewhat smaller, This is

to be expected as the average profile pecks are attenuated be-
cause the pedk values for each subject in the average do not
occur at the same time. This is particularly noticedble in the
higher bandwidth profiies such as pedk horizontal acceleraiion
at T] and peck resultant angular acceleration. Although the
average peck values of Figures 17 through 19 are greater than
the peaks on the average profiles, both qualitatively indicate
the similar result that the peck resultant head angular accelera-
tion and angular velocity are drastically reduced for the HTRT
initial condition. As with the average profiles, Figures 17
through 19 indicate that the resultant linear acceleration at the
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head anatomical origin is in general greatest for the HTRT con=
dition and least for the HTLT condition. The same conclusions
are reached when comparing the initial conditions for each
subject. It is inferesting to point out that a similar result was
obtained in the study of initial condition with the =X experi=
ments (1), The initial condition (neck forward/head down)
where the head and neck were initially displaced in the direction
of induced motion had much lower angular accelerations and
velocities.

The data in Figures 17 through 19 augmented with similar
data at the 2 and 6G levels were used in a stepwise multiple
regression to quantify the effect of initial head and neck orien=
tation on the peck values of interest. The results of the stepwise
multiple regression for the peck resultant head angular accelera~
tion and velocity, and the pedk linear resultant acceleration at
the head anatomical origin are presented in Figure 20. A dash
in a particular coefficient column indicates that a particular
independent variable was not considered in the regression where=
as a notation of "[NSIGN" indicates that regression on that
variable was not found significant af the five percent level.
The units for each coefficient are the units of the dependent
variable divided by the units of the independent variable. The col=
umn labeled "condition" specified what G levels and initial condi=
tions were pooled in the regression analysis. Figure 20a, b and ¢
are for all initial conditions pooled, all except HTLT and all
except HTRT respectively.

Observations of Figure 20a where dll the initial conditions
are pooled, indicate that a positive Euler 1 angle (head roll to
right) reduces the angular acceleration by 9.7 rad/sec “ per
degree and the angular velocity by 0.22 rad/sec per degree.
Neck roll to the right, on the other hand, increases the angular
acceleration and angular velocity by 8.4 rad/sec” per degree
and 0.18 rad/sec per degree respectively, Hence head tilted
to the right relative to the neck magnifies the decrease in angular
acceleration and angular velocity. The linear acceleration at
the head anatomical origin increases with neck roll to the right

(0.73m/sec2 per degree). The head angular acceleration and
velocity also increase with increased neck pitch angle (2.74
rad/sec? per degree and 0.073 rad/sec per degree respectively).
The horizontal acceleration at T, decreases with head roll fo
the right and increases with neck roll to the right.

Of course, the coefficients in Figure 20 imply just the oppo-
site effect for head and neck rolled to the left. The average
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profiles (Figures 12 through 15) and the pedk value tables
(Figures 17 through 19) indicated o much bigger effect on the
dynamic response for the HTRT condition than for the HTLT
condition, Comparison of the top, middle and bottom porfions
of Figure 20 support this asymmetry in response indicating much
larger effects on pedk values of interest when the head is rolled
to the right than when it is rolled to the left,

In a previous paper presented at the Twenty~First Stapp Car
Crash Conference, (3) it was indicated that the angle the angu~
lar velocity vector makes in the head anatomical coordinate
system (RANGLE angle) is approximately constant during the
time for which the magnitude of the angular velocity vector
was significant. The head rotation for most runs appeared to
be taking place around a fixed axis between the anatomical X
and =Z axis. The apparent fixed axis made an angle of approx-
imately 35 degrees with the anatomical X axis for most subjects.
Because of the possible implications to modeling the response
to +Y accelerations, this same angle was calculated in this study
for each initial condition .

The RANGLE angle is presented in the next to last column
of Figures 5 through 8 for the NUCU, HTLT, HTRT and HDWN
initial conditions respectively. This angle is shown for each
subject at each G level as well os the average angle across G
levels for each subject, The last column of these same figures
indicates the standard deviation in this angle calculated in a
time window where the resultant angular velocity was significant
as indicated in the methods sections of this paper. The smaller
the deviations in RANGLE angle the more reasonable the as-
sumptions of a fixed axis model.

Observation of Figure 5 for the NUCU condition shows that
this angle is approximately =35 degrees for all subjects and in
most runs the standard deviation in this angle is relatively small.
The fixed axis assumption is approximately true for the HTLY
and HTRT initial conditions where the average angle is once
again about =35 degrees, [n the HDWN initial conditions how~
ever, the RANGLE angle is less than for other initial conditions
and the variability in this angle is greater indicating a motion
with more degrees of freedom than implied by the fixed axis
model for this initial condition, This more complicated motion
in the HDWN condition is easily observed in Figure 4.

A possible explanation for the near constant RANGLE angle
can be obtained by considering a hinge point located between
the head and neck links of @ model in which the torque develop=~
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ed is negligible. Under these condifions a simple relationship
exists between the linear acceleration of the head center of
gravity and the angular accelerations of the head. This should
provide an excellent means of locating the head/neck hinge
point for modeling purposes and will be explored in detdil in «a

subsequent paper.
CONCLUSIONS

A study of 100 (+Y) impact acceleration experiments on six
human subjects in four different initial head and neck configura-
tions has indicated the following:

1. Lateral bending of the head and neck in the direction of
the acceleration induced motion significantly reduces the re=
sultant peck head angular acceleration and velocity. This result
for +Y acceleration is similar to that found in the =X direction,

2. Lateral bending of the head and neck in the direction
of the acceleration induced motion often produces an anguler
acceleration profile with a deceleration peak greater than the
acceleration pedk. This result was also reported in the =X im=
pact experiments.

3. Lateral bending of the head and neck in direction of the
acceleration induced motion increases the linear resultant ac=
celeration at the head anatomical origin.

4. Regression analysis indicates that the roll of the head
has a larger but opposite effect to the roll of the neck, so
that bending of the head relative to the neck in the direction
of the induced motion tends to make the reduction of head an-
gular acceleration and velocity greater.

5. Bending of the head and neck forward (pitch) increases
the angular acceleration and velocity.

6. The effects of bending of the head and neck in the direc-
tion of the acceleration induced motion (roll} are greater than
for the bending in the opposite direction.

7. The direction of the head angular velocity vector in the
head anatomy is in most cases near constant for head and neck
roll conditions but departs from this model quite significantly
for the initial condition where the head and neck are pitched
forward,

8. With the possible exception of the initial condition where
the head and neck are pitched forward significantly, one should
be able to approximate all of the other initial conditions in this
study with the same type of fixed uxis model.
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