Dynamic Response of the Human Head and Neck to +Gy Impact Acceleration

C. L. Ewing, D. J. Thomas, L. Lustik, W. H. Muzzy III, G. C. Willems, and P. Majewski Naval Aerospace Medical Research Laboratory Detachment, LA

TWENTY-FIRST STAPP CAR CRASH CONFERENCE

Dynamic Response of the Human Head and Neck to +Gy Impact Acceleration

C. L. Ewing, D. J. Thomas, L. Lustik, W. H. Muzzy III, G. C. Willems, and P. Majewski Naval Aerospace Medical Research Laboratory Detachment, LA

Abstract

A series of human volunteer experiments has been conducted to measure the inertial response of the head and the first thoracic vertebra (T_1) to +Gy whole body impact acceleration; that is, acceleration applied to the subject from right to left. The 12-inch HYGE accelerator, instrumentation system and procedures were identical to those used for measuring the response to -Gx impact acceleration, previously reported.

Three categories of sled acceleration profile were used: high onset, long duration from 2G to 7.5G with end stroke sled velocity limit of 6.5 meters/sec; low onset, long duration with the same peak acceleration and velocity limits; and high onset, short duration from 5G to 11G. Comparison time profiles of angular acceleration, angular velocity and linear resultant acceleration at the head anatomical origin and horizontal linear acceleration at the T₁ origin are presented at selected peak sled acceleration levels for 5 subjects of various anthropometric dimensions.

Statistical and analytical modeling efforts from this data base are compared with similar efforts for previously reported -Gx experiments.

WEIS, ET AL, CONDUCTED a number of human exposures to -Gy acceleration using a vertical drop tower on which a rigid vehicle was mounted and executed a series of drops using a "non-extensible chest and pelvic harness in the sitting position" in which vector direction was changed by rotating and then re-affixing the vehicle of the instrumentation was not mounted on the man. Heavy torso restraint included a contoured couch in some experiments and a vest in others. A full-coverage beimet was worn for all fests, but after a few initial tests, was tied to the vehicle so that no helmet dynamic response relative to the chair was possible, although it allowed a limited head response relative to the helmet. In this condition of rigid restraint, sixteen exposures using a contoured couch in the -Gy vector, reaching as high as 21.5 -Gy with a rate of onset of 1190 G/sec with total duration of 37 ms and a velocity change of 6.04 m/sec, showed that no structural tolerance limit was reached.

Using an omnidirectional vehicle on 6 volunteers with similar heavy restraints, peak vehicular acceleration of 23.1 -Gy, with rate of onset of 980 G/sec and total time duration of 63 ms, with a velocity change of 7.99 m/sec also showed that no structural, physiological or neurophysiological tolerance limit was attained (1).

Sonntag, in a series of experiments on individuals with heavy lap and torso restraints, but without head-neck restraint, gave volunteers lateral impact accelerations of 9 to 10 -Gy sled) without injury (2). The seat was instrumented and no -Gx or -Gz accelerations were produced. No man-mounted accelerometers were used.

Stapp and Taylor used human volunteers instrumented with a single triaxial accelerometer mounted on the chest in a series of exposures to lateral acceleration up to 24 - Gy without voluntary tolerance limits being reached (3). However, in these runs the subjects were a Mercury astronaut helmet on a neck ring attached to a nylon vest and held by a strap passing through the crotch. In addition, side panels were extended on each side of the head-rest (4).

Zaborowski conducted experiments on human volunteers in the lateral vector 1-Gy) with unrestrained head and neck (5).

[&]quot;Numbers in parentheses designate References at end of paper.

In these experiments, the subject, while restrained in a sear by lap belt and shoulder harness, was accelerated in the #Gy vector until a constant velocity was attained, then was decelerated by a programmable braking system in the -Gv vector. Inertial instrumentation consisted of a triaxial accelerometer strapped tightly to the sternum and a triaxial pack of accelerometers strapped over the right temporal region of the head. Five series of runs were scheduled with 20 tests accomplished at 4G, 20 at 6G, 25 at 8G, 20 at 10G and 2 at 12G levels. Time duration for these exposures ranged from 220 ms for 4G to approximately 50 ms at 12G. (Table 1)

These experiments ceased when a subject suffered a marked decrease in blood pressure and heart rate following a 12G run. Approximately one minute post run, the subject fainted in his seat and his blood pressure could not be detected. Pulse rate was measured at 20-30 beats/min. Within 5 minutes of being laid down in a supine position, the subject fully recovered but complained of impingement of the left shoulder strap on the left side of the neck (5).

Several points can be made about these experiments:

- a. Sled velocity change was relatively constant.
- b. From the data presented, it is difficult to separate the effects of changes in peak sled acceleration from those of changes in sled rare of onsets.
- c. The head-mounted instrumentation system was inadequate to measure angular acceleration or velocity.
- d. Sled peak acceleration was amplified on the head presumably at the right temporal attachment location by a factor of roughly 2:1 throughout all sled acceleration levels. However, there was no attempt to transfer these data to a standardized head anatomical coordinate system.

A previous study by Zaborowski used lap belt restraint only (6). The vector direction was -Gy induced as noted previously. The seat was an ejection seat with a padded restraint plate applied to the left side at a 30 percent angle from the vertical, in order to prevent lateral motion of the torso beyond this angle, which was believed to be the maximum angle aboveble of lateral spinal flexion without injury. Subject-mounted instrumentation was the same as noted previously.

None of the aforementioned studies provide the input-output data required for precise mathematical modeling or design and/or validation of a dummy.

Acceleration Head (G)	7.1	10.1	15.0	19.9	21.7
Peak Sled Onset (G/sec)	228.6	363.2	429.9	408.2	1088.5
Peak Sled (G)	4.47	6.64	8.80	10.56	11.59
Peak Sled Velocity (m/s)	4.21	4.49	4.49	4.20	4.25
Average	4 G	99	86	10G	12G

PURPOSE

The Naval Aerospace Medical Research Laboratory Detachment (NAMRL Detachment), New Orleans, Louisiana, is conducting a continuing program to determine the dynamic response of volunteer subjects to impact acceleration (7, 8, 9, 10). The effect of duration and onset of -Gx acceleration runs has been reported (11).

The specific purpose of this paper is to present the effect of sled profile parameters (peak sled acceleration, onset and duration) on the dynamic response of the head and neck for +Gy acceleration profiles and to compare these results with the similar study for the -Gx data base.

METHODS

EXPERIMENTAL DESIGN - Five human volunteer subjects* were exposed to +Gy sled acceleration profiles with peak sled accelerations from 2 to 11G in 1G increments. The sled acceleration profile is characterized by the peak sled acceleration, the rate of onset during the rising portion of the acceleration profile and the duration of time spent at acceleration levels above 75 percent of peak sled acceleration. Each subject was run with a sled profile characterized by a high rate of onset and long duration (HOLD), a high rate of onset and short duration (HOSD) and a low rate of onset and long duration (LOLD). More specifically, the HOLD condition from 2 to 7G, the HOSD condition from 5 to 11G and LOLD condition from 3 to 7G were examined in this study.

SLED ACCELERATION PROFILES - A Bendix HYGE **
pneumatically driven .3048m diameter accelerator was used to accelerate an approximately 1.2m by 3.7m sled of 1669 kg mass which was rail mounted on twelve Delrin AF **
pucks. The acceleration stroke is limited to 1.52m and sled mounted brakes were not used. The effective drag is about .2G and the sled was allowed to coast to a stop. Total rail length is 213m. The subject was restrained in a nominally upright position by shoulder straps, a lap belt and an inverted V pelvis strap tied to the lap pelt. A loose safety belt around the chest was also

Anthropometric data on the five subjects used in the study had been measured but was not available at the rime of this writing.

Employed. The injust vector of the med was nominally directed from the regnition to the includer and the society of a courier and the cour

The average arrows are remarked level class on the pertinent ted parameters are shown in Table 1. The of onset is defined as the slope on the risina portion of the acceleration profile perween 10 and 10 percent of peak sied acceleration and duration is derived as the ment above 10 percent is lead as a acceleration. The arganism of the slea profile and for a given G level correlates of autorition. Tigure 2 mows the mediacceleration profiles for sach condition defined by onset and autorition averaged over uplects at 10. The slea profiles are controlled very closely. Table 10 and the comparison at other G levels would be similar.

EXPERIMENTAL MEASUREMENTS in The dynamic parameters of interest presented in this paper were derived from measurements.

sing six plezoresistive accelerometers mounted on a Timped plate at the mouth and six accelerometers mounted on a Timped plate at the mouth and six accelerometers mounted on a Timplate in the spinous process of the first moracic vertebral body (Tim.) configuration of the idoelerometers in the implate and the error propagations associated with this method for determining linear displacement, velocity, acceleration and angular orientation, angular velocity and angular acceleration components of a rigid load have been described previously. The cinephotographic system (13) and two rate gyroscopes were used to validate this measurement system.

n order to compare subjects at similar points in the anatomy. It is required to define a nead anatomical coordinate system and a fil anatomical coordinate system (13,14). These anthropometric coordinate systems are related to the instrumentation coordinate systems by three dimensional x-ray anthropometry for each subject (3).

The trastic reference frame for the entire series of experiments is fixed to the caporatory. This is straplished by first defining a seed coordinate system, in which the origin is a penchmark permanently machined into the sted structure. The mx axis is parallel out to the opposite direction to the thrust vector of the accelerator. The m2 axis is parallel to gravify and positive upward and the mackles is established so that the M2 axes form an

Tip. 16 - Piret motion of glod

Fig. 1B - Peak head angular acceleration

Fig. 1C - Maximum head angular velocity

Fig. 1D - Maximum head angular displacement

			:		- Marine December	Merage Standard	oters of lates	re out the	North and the statement of statement of the statement of		
7 H Z	7 k 7 k t	SCH MERKE SX MESSER SX	Q	PRAM SUED ACCE WASCA	SULD OKSET OKSET OKSET	- 88 80 80 80 80 80 80 80 80 80 80 80 80 8	.cs dens dens	PEAK HPPIT ACOR AT TI MYSEC ²	PEAN HEAD ANG ACOTE, ROUGHS ?	PEAK HEAD WEL WEL KAO SEC	PEA HEAU HESULI ACTEL W/SEC ²
	991 (91 191) 196	8 8 7 •	ŝ	21 400 140	702 S.	500 S	127	48 600 5 941	54. 31. 000 547	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33, 480
,,	\$260 0.51 0.51	:: ::	=	20 mm	7-07-2 200 Vis 375	2.52	110	23 23 23 25	\$40 . S	11.420	63 800 90 039
	1881, 1881		<u>.</u>	874 P	0.5 to 1	¥8.	868 1961	52 K	Sec., 0005 5 - 6060	1.28	85 8 815
-,	27	 x -	4 2	100 to 10	500 1900 232 994	65 G	148	87 400	584 1801 61 452	00 270 272 a	158 11
-			<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105 250	ři	14.0	25 25 25	40th conft	(948 1) 848)	75.750
•	181. 181. 181.	:.	ä	# 22 - 52 - 52	573 208 572 513	4. 4.81	100	1.79 P04 20 SS3	7.Ve tood 167.531	10 200	81 Cyd 9. 138
-7	1917, 1918		2.52	200	11152 405	515.5 (0)	D92	112,00F	644 (10) 115 476	17 886 3 531	96 100
٠,-	16.1 106.1	ਵੱ ਹ	0 4	\$ 17-16 \$17-16 \$17-16	1970,000 8 41,178	2 03g	956 150	94 Sau	553 nd0 24 49 <u>8</u>	5.5 860 1 45	8
<i>-</i>		17.11	## ##	69 878 1 259	5815 250 1407 324	6,475 ,048	090 100	161,250 16,520	1075 F.03 139 F.93	52.5	9. 5 9. 5
-5	200 ACC	:	6163	97.4 eV	1201 500 45 618	\$ Q2	078 00:1	18 E	25,8 cost 106, o.2	\$8 86	e y
e.		1	STATE OF THE STATE	00 8 TO	271 FEE	170 100 100 100 100 100 100 100 100 100	2000	143 (NI) 27 No.	825c 4100 1231 4110	\$ 10.00	Res .
r	154 1421, 1956, 1921	1: 	<u>-</u>	94 N	1977 405 5 1 945	988 9	080 691	740 6318 36 398	28.43	200 v	143 800
	1961 1367 1964 1367	É	Chris	11 k p =	24.88.756 A1.526	1111	540°	119 000	20 20 MA	100	13 Year
	981 G.	ÿ Zien	11 12	70 A.09 50-8	3,500 (A) 8 3,100 (A) 1,100 (A) 1,10	1,000	100	148 000 22 540	1955 regis 845 1312	947 T	8 f
u.	174. 1714. 178. 1739	: 	$\frac{\hat{\Sigma}}{\Sigma}$	361 125.0 503	10 tel 562	7. Rest (PR)	2007	193, 193 541, 359	1942 on 17 on	22 986 597	58 470 16 589
ø.	17.69, 1734, 1738	2	i i	40.5	980° A87	585	945	59 500	91. 31. 32. (27.	75 825 2 486	20 805 20 805
<u>c</u>	1361 1361	F 	# 2B	7,6 1	354ms 205 1132-395	PLI:	5,50	116 250	\$1.5 v8	1 390	199, 500
z	1849, 1853,	-	#SE#	178 A.1	346.25.400	7.2	028 033	241 000 16 696	1502 000 215 841	12 080 3 101	115 400 21 834
ĺ	-			White the same of		The second second					

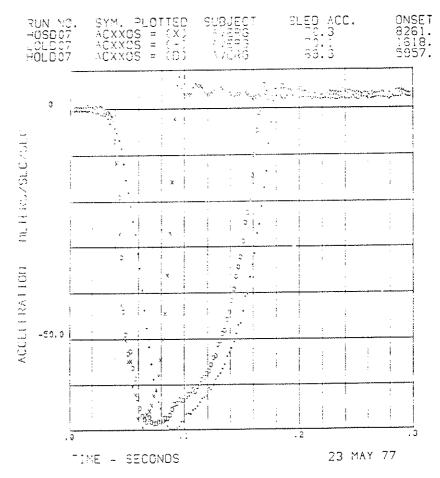


Fig. 2 - Average sled acceleration profile (7G)

orthogonal right hand triad. All coordinate systems used in this study are right handed where X, Y and Z axes are taken in that order. The sled acceleration is in the -X laboratory direction. The orientation of the subject on the sled is such that the sled acceleration is in the +Y anatomical direction. The determination and definition of both the head and neck anatomical coordinate systems are described in Reference 15.

The dependent variables presented in this report are named and defined as follows:

- a. RHACXS Resultant Angular Velocity is the resultant of the head angular velocity about the head anatomical X and Z axes. The component of angular velocity about the anatomical Y axis (pitching of the head) is not significant for these +Y impact acceleration runs.
- b. QHACXS Resultant Angular Acceleration is the resultant of the head angular acceleration about the head anatomical X and Z axes. The component of angular acceleration about the anatomical Y axis is not significant for these +Y impact acceleration runs.
- c. AAOXOS Resultant Linear Acceleration is the magnitude of the head linear acceleration at the origin of the head anatomical coordinate system relative to the laboratory reference coordinate system.
- d. ANXXOS Horizontal acceleration at T_1 is the acceleration component of the T_1 anatomical coordinate system origin relative to the laboratory reference coordinate system along the +X axis of the laboratory reference coordinate system.
- e. ACXXOS Sled acceleration is the acceleration of the sled along the X component of the laboratory coordinate system. The laboratory Y and Z components of acceleration are negligible. All of the recorded data are relative to a zero time established as 40 milliseconds prior to sled first motion as determined from the sled acceleration profile.
- f. RANGLE Direction of angular velocity vector is defined as the arc tangent of the component of head angular velocity about the head anatomical $\mathbb Z$ axis divided by the head angular velocity about the head anatomical $\mathbb X$ axis. The component of head angular velocity about the head anatomical $\mathbb Y$ axis is not significant for these $+\mathbb Y$ impact runs.

The time on all plots is relative to a time (data processing time zero – DPTZ) established as 40 milliseconds prior to first motion of the sled. First motion of the sled is determined by the best straight line fit to the rising portion of the sled acceleration

profile between 20 and 50 percent of peak sled acceleration. The extrapolation of this line to its intercept with the time axis establishes time of first motion.

This study is directed toward the evaluation of the average effects of onset and duration over subjects. The subjects were pooled to obtain average profiles of parameters of interest as well as for purposes of subsequent regression analysis on peak values of interest. The average profile for each variable of interest was calculated for each experimental condition and comparison plots of these average profiles are shown for a peak sted acceleration level of 7G in Figures 3-6. The comparison at other G levels was calculated and would have indicated similar results.

The average profile for each condition was obtained by averaging across subjects using first motion as determined from the sled profile to align the profiles of the subjects. The variations in time at which peak values of head and T1 response measurements occurred were small enough across subjects so that the average profiles were an excellent summary of the replications.

Table III shows the average standard deviation between profiles averaged in a time window from 80 to 250 milliseconds.

In this study, the relationship of head peak angular acceleration, head peak angular velocity, head peak resultant acceleration and T1 peak horizontal acceleration to sled onset, duration and peak acceleration were of particular interest.

For each variable of interest, the peaks were read manually from the variable profile. The first positive major peak was used for the parameters of head angular acceleration, angular velocity and resultant linear acceleration. These first peaks were ordinarily found to be the largest for these runs with the exception that the angular acceleration for one subject was characterized by two peaks of almost equal value.

An unambiguous first peak was found to be more difficult to define for the horizontal linear acceleration at T1. The first peak was always negative and was usually followed by a relatively sharp decrease in magnitude followed by a series of lesser peaks. The first peak was selected as the peak value as long as the decrease subsequent to it was of sufficient magnitude. However, if the decrease was minor and the continuing part of the curve fit in well lith its antecedent, the second peak was selected.

The peak values of the parameters of interest were regressed on the three parameters defining the sted profile. A stepwise, multiple linear regression analysis was used in which parameters were eliminated on the basis of an F test if found to be not signi-

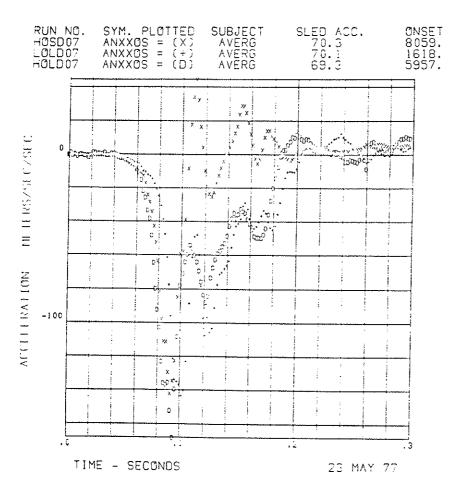


Fig. 3 - Average profiles of horizontal acceleration at T_1 anatomical origin (7G)

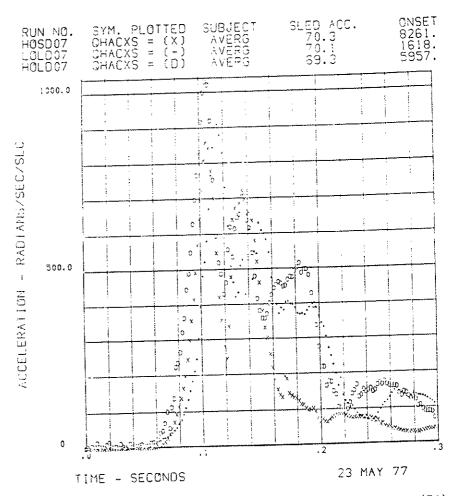


Fig. 4 - Average head angular acceleration profile (7G)

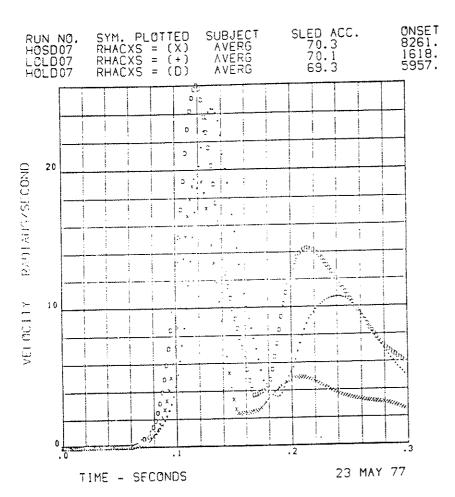
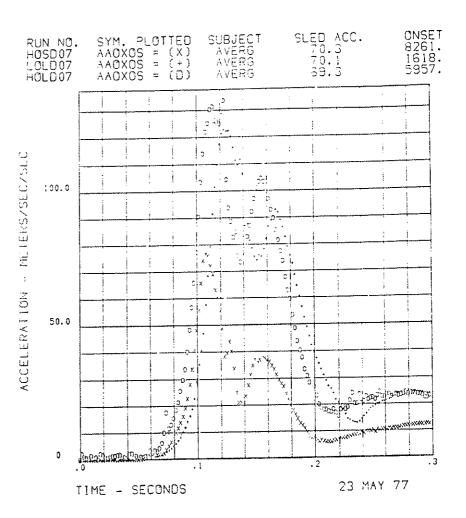



Fig. 5 - Average head angular velocity (7G)

ı

Fig. 6 - Average resultant linear acceleration at head anatomical origin (7G)

ficant at the 5 percent level.

In addition, regression of head kinematic variables on peak horizontal linear acceleration at the T₁ anatomical origin was also obtained. Previous attempts to define equivalent onset and duration parameters for the horizontal acceleration at T₁ were only partially successful and were not attempted in this study.

RESULTS

The 7G average profiles for horizontal acceleration at the T₁ anatomical origin (ANXXOS), resultant head angular acceleration (QHACXS), resultant head angular velocity (RHACXS) and resultant linear acceleration of the head (AAOXOS) are presented in Figures 3 through 6. Each figure shows the comparison of the average profile for the three conditions defined by onset and duration. The profile for each condition was determined by averaging over the subjects. The variability across subjects was evaluated by calculating the average root mean square error in a time window from 80 to 250 milliseconds. Table III shows this error for each variable condition and G level. This time window for the evaluation of the average standard deviation was selected to include the region of interest for all of the output variables without including regions that would have misleadingly reduced the variability

Observation of Figure 3 indicates that the profile structure for horizontal acceleration at T_1 is very similar for each of the conditions. Corresponding peaks can be found for each condition and it is possible that we are observing the impulse response of the restraint torso dynamic system. As to be expected, the latency for the first peak of the LOLD condition is larger—when compared to the HOLD or HOSD condition. The delay in the first peak for the LOLD condition relative to that for the HOSD and HOLD condition can be observed in the plots for all the variables (Figures 3 through 6). The magnitude of the HOLD condition is greatest, with little difference between the HOSD and LOLD conditions.

The magnitude of the head angular acceleration for the HOLD condition is greatest with little difference between the HOSD and LOLD condition. The magnitude of the second peaks (maximum angular deceleration) is a large percentage of the magnitude of the first peak and on individual runs is often as great as the first peak. This effect seems to be subject dependent and is most pronounced for one particular subject who was quite short and muscular. Semiquantitatively, the magnitude of the peak head angular

Table III - Root Mean Square Error in Average Profile (Time Window for RMS was 80-250 MScc.)

:	0101		4.5856	8,6168	9.9497	12,4887	12,6317				
AAOXOS M/Se;2	HOSO LOLD				4.9348		8.2793	9.2385	10.6080	10.3573	11.2222
¥¥	0101 11010	3.4253	4.8901	2.893 5.9524	22.013816.605415.91968.4472	22.596516.0341 18.078 10.9471 7.0141	2.4232 22.205715.9796118.675 13.17c./8.27/93		İ		
	101		7,3325 4.8901	12.893	15.9190	18.078	18.675				
ANXXOS M/Sec ²	ноѕр				16.6054	16.0341	15.9796	23.2240	26.9667	32.7761	37.9990
ZY	ногр	7.7786	8.4709	10.028	22.0138	22.5965	22.2057				
	TOLD		1.0841	1.8633 10.028	2.0577	2.2821	2.4232				
RHACXS Rad/Sec	HOSD					1.2313	1.4404	1.1713	1.6905	1.6906	2.5044
8 4	HOLD	1.2711	1.2503	1.3811	.8336 115.409 60.8129118.8532.0545 1.1694	137.25481.4807159.9142.4074 1.2313	1.1577 179.45091.0262 186.1322.8482 1.4464				
]	1010		41.824	96.16021.3811	118.853	159.916	186.132				
QHACXS Rad/Sec ²	dson				60.8125	81 . 4807	91.0262	82.9429	117.552	149.256	191.010
Ō **	alon	16.6691	9981 63,8131	8456 80.1707	115,409		179.450				
ACXXOS M/Sec ²	0101		1866	.8456	1	2.1782					
	dsoH				6669.	1108.	.6824	-8087	1.8028	.7223	1.0577
	HOLD HOSD	C.4HV.1	.6321	79.14	.8932	1.5509	9066				
\$ /5		٢.	8	4	S	٥	. 7	(0)	6	10	=

deceleration (second peak) relative to the peak head angular acceleration (first peak) is greater for +Gy runs than for +Gx runs.

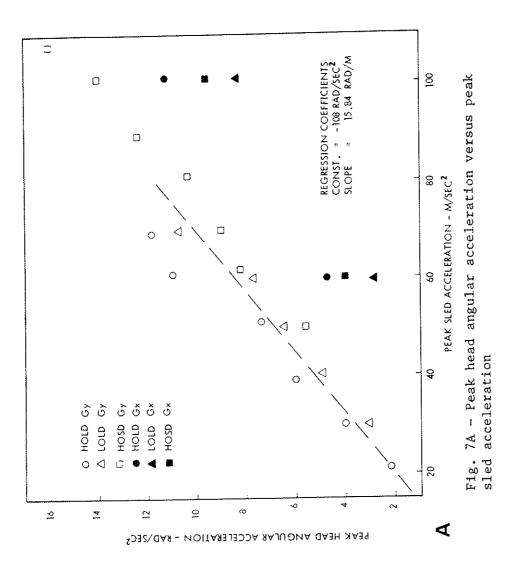
The peak angular velocity for HOLD is the greatest, with the LOLD condition a fairly close second and the HOSD condition significantly less than either of the previous conditions. The resultant head linear acceleration, Figure 6, is a bimodal curve and very similar in structure, independent of onset duration condition. There is little difference in the magnitude of the first peak for HOLD and LOLD conditions, but both are significantly greater than the corresponding peak for the HOSD condition.

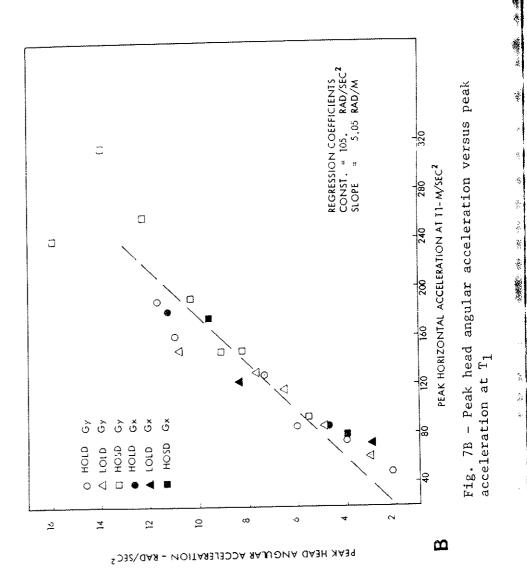
Allowing for the fact that in this study resultant head angular acceleration and velocity are presented, instead of the single component of the -Gx study, the profiles for +Gy are very similar to those for -Gx (11).

In Table III, the small error in the sled acceleration variable indicates the excellent control of sled parameters. For all variables, the error increases with G level, but in terms of peak values for that variable is not appreciable. The error for the HOLD and LOLD condition is approximately the same in each of the profiles. The significantly lower error in the HOSD condition may be somewhat misleading because the time window from 80 to 250 milliseconds for this condition is too large and extends into a region where there is little output and consequently indicates small differences across subjects.

In Table II the average values and standard deviations for sled profile parameters and peaks of kinematic output variables of interest are shown at each G level for each condition. The standard deviation in sled profile parameters is in general small in relation to the average value of the parameters at any G level for any condition. The end stroke velocity was limited to approximately 6.5 m/sec and hence the duration for long duration runs varied from .144 seconds at 3G to .090 seconds for 7G runs. The duration for the LOLD runs was significantly less than for the HOLD runs at all G levels. The duration for the HOSD condition decreased with G level varying from .036 to .028 seconds and is much less than either of the long duration conditions.

The rate of onset increases with G level and is the most variable sled parameter. The onset for the low onset condition (LOLD) is significantly less than that for the high onset conditions and in general is less variable across subjects.


All of the output variables (last four entries of Table II) have significant variability across subjects compared to the average peak value.


Figures 7 through 9 are plots of the average peak values for the output variables of Table II. Each plot has the average value for each condition plotted versus peak sled acceleration in (a) and peak horizontal acceleration at T1 in (b) of Figures 7 through 9. Superimposed on these plots for comparison are the average peak values for the -Gx acceleration vector (11). The dashed line on each curve is the regression line obtained from pooling +Gy data for all subjects and conditions in the peak sled acceleration range from 2 to 8G. Data beyond this point was not used in the regression because many of the curves appeared to require non-linear regression models.

Comparing the peak head angular acceleration versus sled acceleration (Figure 7a) for the +Gy with the -Gx runs, the trend appears about the same but the level is much higher with the +Gy runs independent of sled onset and duration. On the other hand, in Figure 7b, the peak head angular acceleration is plotted versus the T1 peak horizontal acceleration and the difference between the +Gy and -Gx vectors is much less apparent. The higher head angular accelerations seen in the +Gy study are undoubtedly the result of higher acceleration at T₁ for the same sled acceleration. The coupling of sled forces to the upper torso of the subject through the lightly padded rigid board contact with the subject's right shoulder, as well as the different transmission path through the torso, are responsible for this increased T1 linear acceleration in the +Gy runs. Figure 10 compares the T₁ horizontal acceleration versus peak sled acceleration for the +Gy and -Gx data base and clearly illustrates the increase in the peak Ty linear acceleration with the +Gy runs independent of sled onset/duration condition

The instrumentation mount at T₁ is a pressure molded mount applied by a strap system designed to compress the skin over the prominence of the spinous process of the first thoracic vertebral body. Relative motion between the mount and the vertebral body is possible. The redundant measurement system on the mount used for validation of instrumentation cannot be used to resolve the question of the extent of relative motion between the mount and the vertebral body.

However, the restraint of the subject for these +Gy experiments is such as to limit torso motion and hence changes in the geometry of the torso in the T_1 mount region. Observation of the photography does not indicate motion of the mount relative to the torso but this does not preclude the existence of high frequency acceleration spikes.

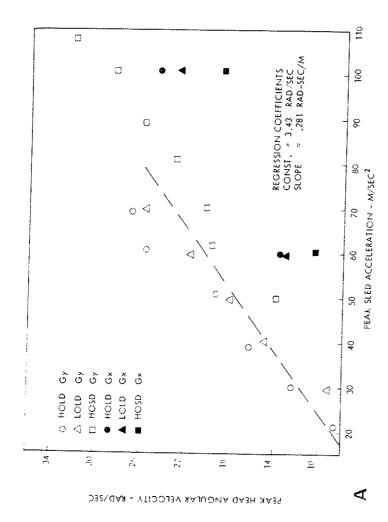


Fig. 8A - Peak head angular velocity versus peak sled acceleration

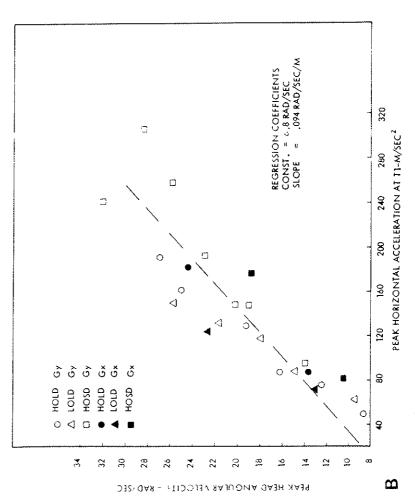


Fig. 8B – Peak head angular velocity versus peak acceleration at $\ensuremath{\mathrm{I}}_1$

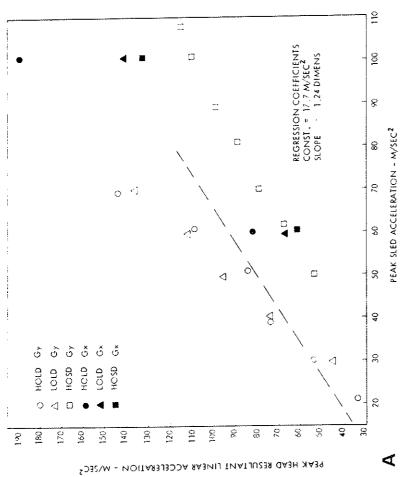


Fig. 9A - Peak resultant linear accelerations of head versus peak sled acceleration

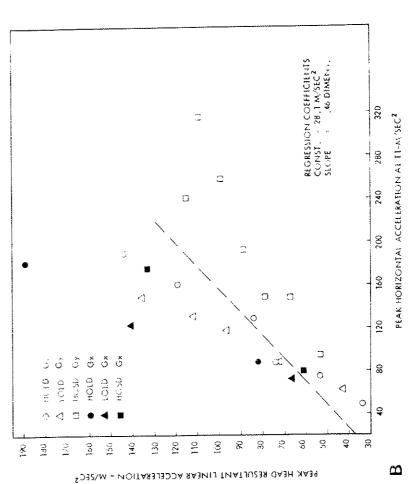


Fig. 9B - Peak resultant linear acceleration of the head versus peak horizontal acceleration at \mathbb{T}_1

The most convincing arguments that the acceleration observed at T_1 is that of the vertebral body and not artifact is the similarity in profile at T_1 across subjects and the orderly change in the time delay of peak acceleration at T_1 with peak acceleration at the sled. In addition, the ratio of peak acceleration at T_1 to that of the sled is approximately the same at all G levels.

Finally, a similarity for +Gy and -Gx data in the regression of the head angular acceleration on peak accelerations at T_1 in the presence of artifactual T_1 data seems unlikely, since the angular acceleration data was derived from accelerometer data from the mouth mount and is independent of the T_1 measurement system.

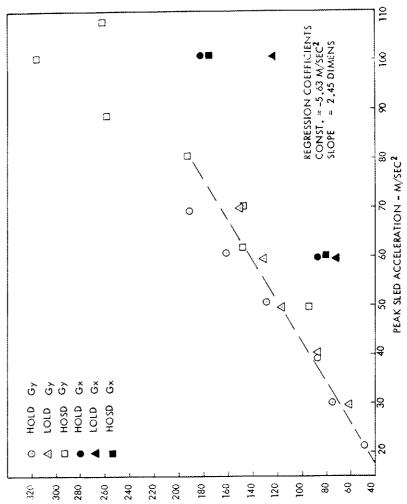

Restricting the discussion to the +Gy data base, it also appears from Figure 7b that all the significant effects of sled onset and duration on peak head angular acceleration can be explained by changes in the peak horizontal acceleration at T1.

Figure 8a is a plot of peak head angular velocity versus peak sled acceleration. Comparing the +Gy and -Gx data, it is observed that the +Gy has a greater angular velocity than the -Gx data independent of condition. Once again, when peak angular velocity is plotted versus peak T₁ horizontal acceleration (Figure 8b), the difference between the two acceleration vectors is much diminished. For the HOLD and LOLD condition, the difference is undetectable, whereas the short duration condition (HOSD) appears to have less angular velocity for both the +Gy and the-Gx runs.

The major determinant of peak angular velocity for the +Gy data base is the peak T_1 horizontal acceleration with a lesser effect due to duration.

Figures 9a and Figure 9b are the plots of the resultant head linear acceleration at the anatomical origin versus peak sled acceleration and peak T₁ horizontal acceleration respectively. For this variable, the peak resultant head linear acceleration viewed as a function of T₁ acceleration reveals that all sled onset/duration conditions for the -Gx runs are in reasonably good agreement with those for HOLD and LOLD +Gy runs. However, the HOSD +Gy runs have a significantly lower magnitude than those of the other two conditions indicating that in this variable there is a larger effect of duration in the +Gy runs than in the -Gx runs.

In Table IV, the coefficients obtained from regression of the dependent variables of interest on the parameters defining the sled acceleration profile for the +Gy data base are presented.

PEAK HORIZONTAL ACCELERATION 11 - M/SEC²

Fig. 10 - Peak horizontal acceleration at Υ_1 versus peak sled acceleration

579

Table IV - Regression on Sled Parameters

UNITS OF COEFFICIENTS CONSISTENT WITH

ANGLE - RADIANS LENGTH - METERS TIME - SEC.

STD. DEV.	142.1	2.67	17.9	38.4
SLED DUR.	2849	67.9	468	
SLED ONSET		-,00035	0053	
PEAK SLED ACCEL.	16.1	.418	2.59	2.48
CONSTANT	-526	-8.0542	-70.0	
INDEP. VAR. DEPEND. VAR.	ANG. ACCEL.	ANG. VEL.	RESULTANT LINEAR ACCEL	HORIZ, ACCEL,

If one compares these coefficients with those for the -Gx runs (11), there is good agreement in the coefficients for onset and duration but the coefficient on peak sled acceleration is approximately twice the value for +Gy as for -Gx. The explanation for this is found in the regression coefficient relating peak T1 linear acceleration to peak sled acceleration. This coefficient is twice the value for the +Gy runs compared to the -Gx runs.

For the -Gx acceleration vector the only significant component of angular acceleration and angular velocity is around an axis which is normal to the mid-sagittal plane. In contrast to this, analysis of the +Gy data indicates that although the head angular velocity was negligible around the anatomical Y axis (pitch), the component around the anatomical X and Z axes (roll and yaw respectively) were both significant. Therefore, the resultant angular acceleration and angular velocity around these two axes have been used in this +Gy study. The similarity in the shape of the components of angular velocity around the anatomical X and Z axes suggested that perhaps the direction of the angular velocity remained constant during most of the angular travel of the head.

Figure 11 is a plot of the direction of the angular velocity in the head anatomy superimposed on the resultant angular velocity. As can be seen from this figure, the angle that the angular velocity vector makes with the head anatomy is constant over the time where the angular velocity is appreciable. Although this figure is for a particular run in the study, it is indicative of most of the runs in the study independent of conditions or G level.

The angular velocity vector is in the mid-sagittal plane between the +X and -Z anatomical axes and makes an angle of approximately 0.6 radians with the +X axis. Table V shows the angle for five subjects at 5 and 7G for the HOLD condition. The angle is approximately constant across subjects and G levels and is consistent in both value and variability with a direction approximately normal to a neck line for the neck-up/chin-up (NUCU) initial condition (10).

These results together with observation of photographic data have reinforced the idea that for these +Gy runs the head rotates around a direction fixed in the laboratory and oriented approximately normal to the neck line defined between the T1 anatomical origin and the head anatomical origin.

Figures la through 1d show the orientation of the subject's head and neck during a +Gy acceleration run. The successive times selected are first motion of the sled, peak head angular

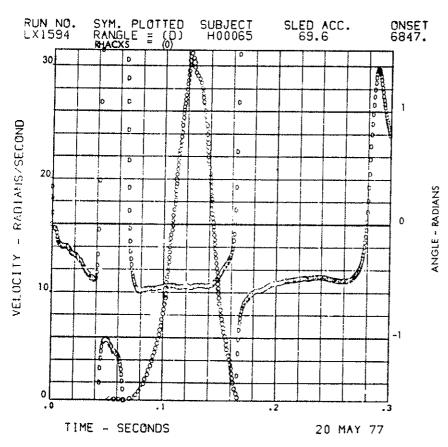


Fig. 11 - Resultant and direction of angular velocity vector (7G HOLD) $\,$

Table V - Direction of Angular Velocity Vector (HOLD Condition)

G level	5	G	7G			
Subject	Run Number	Rangle Radians	Run Number	Rangle Radians		
	1581	.56	1594	. 56		
H065	1600	.58				
	1618	.62				
н075	1635	.60	1921	. 58		
HU/J	1827	.70				
Н077	1633	. 55	1922	.68		
H078	1797	.48	1926	.46		
11070	1824	.50				
H079	1 <i>7</i> 98	.54	1924	.54		
11073	1825	.60				

acceleration, peak head angular velocity and peak head angular displacement. The head appears to rotate as described around a direction fixed in the laboratory until near maximum angular deflection where the yawing component increases relative to the roll angular velocity.

The above result has far reaching implications regarding the degrees of freedom required in a head/neck model for the +Gy data base. A model with a hinge between the head and neck link oriented as described above and located to best fit the displacement data of the head relative to T₁ should be effective in representing the +Gy data base over much of the angular travel of the head. Future experiments are planned to determine the change in orientation of the hinge as a function of head and neck initial position for the +Gy acceleration vector.

CONCLUSIONS

- 1. The increased head angular acceleration in the +Gy runs relative to the -Gx runs is due to the increased peak acceleration at T_1 for the same sled acceleration. This increased T_1 linear acceleration is undoubtedly due to the different restraint employed with the +Gy runs.
- 2. With either +Gy or -Gx runs, the first peak value of T₁ horizontal acceleration determines the peak angular acceleration of the head.
- 3. Head angular acceleration can be predicted from the combined effects of peak sted acceleration and duration. However, this conclusion is strictly limited to the specific restraint and utilization of the restraint by the staff conducting the experiments.
- 4. The pattern of the time profiles for the output variables for +Gy runs is similar to that for the -Gx data base. However, the relative magnitude of the angular deceleration peak (second peak) to the acceleration peak (first peak) is greater for +Gy than for -Gx runs.
- 5. The head angular velocity for the long duration conditions (HOLD and LOLD) is not a significantly different function of the peak T₁ horizontal linear acceleration for the +Gy and -Gx data bases. The head angular velocity for the short duration condition (HOSD) is less for both +Gy and -Gx data bases. The major determinant on peak head angular velocity in both the +Gy and the -Gx studies is the peak T₁ horizontal acceleration with a secondary effect due to duration.
 - 6. The head linear resultant acceleration is approximately

the same function of peak T₁ linear acceleration for conditions HOLD and LOLD in both +Gy and -Gx runs. The head linear acceleration is significantly less for the short duration condition (HOSD) with the effect of duration more pronounced in the +Gy than in the -Gx runs.

7. For the +Gy runs, the head rotates around an axis with a fixed orientation in the mid-sagittal plane approximately normal to the neck line defined as a line between the T1 anatomical origin and the head anatomical origin. The variation of this axis orientation with subject initial condition will be developed in future experimental studies. Incorporating this constraint into a +Gy head/neck model should greatly simplify modeling efforts.

ACKNOWLEDGEMENTS

Major funding and support for this work was provided by the National Highway Traffic Safety Administration of the U.S. Department of Transportation, the Naval Medical Research and Development Command and the Biophysics Division of the Office of Naval Research

Volunteer subjects are recruited, evaluated and employed in accordance with procedures specified in Secretary of the Navy Instruction 3900.39 and Bureau of Medicine and Surgery Instruction 3900.6 which are based upon voluntary informed consent, and meet or exceed the most stringent provisions of all prevailing national and international guidelines.

Opinions or conclusions contained in this report are those of the authors and do not necessarily reflect the views or the endorsement of the Navy Department.

Trade names of materials or products of commercial or nongovernment organizations are cited only where essential to precision in describing research procedures or evaluation of results. Their use does not constitute official endorsement or approval of the use of such commercial hardware or software.

The authors wish to express their appreciation to the entire staff of the NAMRL Detachment and especially acknowledge the assistance of Gerald Williamson, Bob Martin, Dorothy Francis and Pat Kilgore from the Data Processing Division; Gayle Carp from QEI, Inc. and Elke Lewis for editorial assistance. Special thanks go to the volunteer subjects who make this project possible.

REFERENCES

1.E. B. Weis, N. P. Clarke and J. W. Brinkley, Human Response to Several Impact Acceleration Orientations and Patterns." Aerospace Medicine, 34:12:1122-1129, December 1963.

2. R. W. Sonntag, Jr. (other authors unknown), Untitled, runs 4126, 4127, 4128, 4130, 4131, 4132, 4135. From Daisy Track,

Holloman AFB, New Mexico. Unpublished.

3. J. P. Stapp and E. R. Taylor, "Space Cabin Landing Impact Vector Effects on Human Physiology", Aerospace Medicine, 35:12: 1117-1132, 1964.

4. J. P. Stapp, "Biodynamics of Deceleration Impact and Blast", in: Randel, H. W. (Ed), Aerospace Medicine. Baltimore,

MD, Williams and Wilkins Co., 1971.

5. A. V. Zaborowski, "Lateral Impact Studies, Lap Belt Shoulder Harness Investigations", Proceedings, Ninth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1966. Pp 93-127.

6. A. V. Zaborowski, "Human Tolerance to Lateral Impact with Lap Belt Only", Proceedings, Eighth Stapp Car Crash Conference Published by Wayne State University Press. Available from the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA, Presented October 1964, Published 1966. Pp 34-70.

7. C. L. Ewing, D. J. Thomas, L. M. Patrick, C. W. Beeler and M. J. Smith, "Living Human Dynamic Response to -Gx Impact Acceleration. Il Accelerations Measured on the Head and Neck", Proceedings, Thirteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1969.

8. C. L. Ewing and D. J. Thomas, "Torque versus Angular Displacement Response of Human Head to -Gx Impact Acceleration", Proceedings, Seventeenth Stapp Car Crash Conference, Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA,

1973.

9. C. L. Ewing and D. J. Thomas, "Human Head and Neck Response to Impact Acceleration", NAMRL Monograph 21 (1972),

p. 84.

10. C. L. Ewing, D. J. Thomas, L. Lustick, E. Becker, G. Willems and W. H. Muzzy III, "The Effects of the Initial Position of the Head and Neck on the Dynamic Response of the Human Head and Neck to -Gx Impact Acceleration", Proceedings, Nineteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1975.

11. C. L. Ewing, D. J. Thomas, L. Lustick, W. H. Muzzy III, G. Willems and P. L. Majewski, "The Effect of Duration, Rate of Onset and Peak Sled Acceleration on the Dynamic Response of the Human Head and Neck", Proceedings, Twentieth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA, 1976.

12. E. Becker and G. Willems, "An Experimental Validated 3-D Inertial Tracking Package for Application in Biodynamic Research", Proceedings, Nineteenth Stapp Car Crash Conference, Society of Automotive Engineers, Inc., 400 Commonwealth Drive,

Warrendale, PA, 1975.

13. E. Becker, "A Photographic Data System for Determination of 3-Dimensional Effects of Multiaxis Impact Acceleration on Living Humans", Proceedings, Society of Photo-Optical Instrumentation Engineers, V.57, Dox 1146, Palos Verdes Estates, CA 90274, 1975.

14. D. J. Thomas, "Specialized Anthropometry Requirements for Protective Equipment Evaluation", AGARD Conference Proceeding No. 110, Current Status in Aerospace Medicine, Glasgow, Scotland,

1972.

15. E. Becker, "Stereoradiographic Measurements for Anatomically Mounted Instruments", Submitted to the Twenty-First Stapp Car Crash Conference, Society of Automotive Engineers, Inc., New Orleans, LA, 1977.