BIOMECHANICAL RESPONSE OF THE LUMBAR SPINF IN DYNAMIC COMPRESSION

Stefan M. Duma, Andrew R. Kemper, David M. McNeely, P. Gunnar Brolinson Virginia Tech – Wake Forest, Center for Injury Biomechanics

Fumio Matsuoka
Toyota Motor Corporation

ABSTRACT

The purpose of this study was to investigate the biomechanical properties of the human lumbar spine subjected to dynamic compression. A series of six experiments using the lumbar spines from four human cadavers was performed. The firstests utilized the entire lumbar spine while the remaining four tests used lumbar functional joints to separate the different stability. A high rate material testing machine was used to produce the dynamic compression at a displacement rate of . Custom mounting plates were developed to ensure proper anatomical position of the lumbar spine sections. Both tests the whole lumbar spines resulted in compression fractures at T12 due to combined axial loads of 5009 N and 5911 N bending moments of 237 Nm and 165 Nm respectively. These failures occurred as the spine behaved in first order but which resulted in concentrated loading and bending of the anterior aspects of the vertebral bodies. All tests with functurity resulted in endplate fractures and recorded substantially higher axial loads between 11,203 N and 13,065 N substantially lower bending moments between 47 Nm and 88 Nm. The results indicate that the mechanical stability lumbar spine is critical component in relation to the tolerable compressive loads.

Key Words: Lumbar, spine, dynamic, response, compression, injury, fracture

INTRODUCTION

Injuries to the lumbar spine such as compression fractures can occur in falls as well as automobile aircraft accidents. It is estimated that the cost of spinal fractures in fatal and non-fatal cases is Stephillion per year in the United States [1]. In relatively healthy males and pre-menopausal women, a from heights are the primary causal mechanism for spinal compression fractures [2]. Moreover, Ricci investigated 101 patients who had been treated for a falls from an average height of seven meters reported that 83% of these patients had injuries to the thoracic and lumbar spine. A similar study a Steedman found that the lower limb and thoracolumbar spine injuries were the two most common falls from an average height of 6 meters [3]. In older males and post-menopausal women, or individual with chronic bone pathologies, lumbar spine injuries can occur from falls from much lower heights substantially linked to the increase incidence of osteoporosis in women and men over the age of predominantly linked to the increase incidence of osteoporosis in women and men over the age of [4,5]. Sugata presented case reports of spinal compression fractures from relatively minor falls, but a youngest persons in this study was 61 years of age [6].

Analyzing the literature on the biomechanical response of the lumbar spine is difficult given mastudies present non-biofidelic test methods as they are focused on the treatment and not the cause of injury. For example, Mermelstein presents a very low energy required to cause spinal compression fractures but this was due to the fact that holes were drilled into the bodies to facilitate fracture initiation and thereby substantially weakening the structure [7]. Other studies use only quasi-static loading ration of one ensure proper load distribution on the vertebral bodies [1]. Therefore, the purpose of to paper is to investigate the biomechanical response of the human spine in dynamic compression using biofidelic end conditions.

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org test serie vidual liting Sys gure 1 ai MTS. A fivere and mind to obtatistrano, were placed reform mothers and the data was

METHODS

umbar spine motion segments. For both types of tests configurations a hydraulic Material stem (MTS 810, 22 kN, Eden Prairie, MN) was utilized to apply the dynamic compression and Figure 2). The MTS actuator deflection was measured using the internal LVDT of the we axis load cell (Denton, 1968, 22 kN, Rochester Hills, MI) was used to obtain the reaction moment, and a single axis load cell (Denton, 1210AF-5K, 22 kN, Rochester Hills, MI) was ain the impactor force. Additionally, accelerometers (Endevco, 7264B, 2000 g, San Juan CA) were placed on both the reaction and impactor load cell plates. In addition, markers don L1-L4 and high speed video was taken at 1000 fps in order to provide the capability to notion analysis. All cadaver lumbar spine tests were first preconditioned at a rate of 1 Hz and at rate of 0.0001 m/s. All the failure tests were loaded dynamically at 1.0 m/s. For all tests recorded at 50,000 Hz and then filtered to CFC 600.

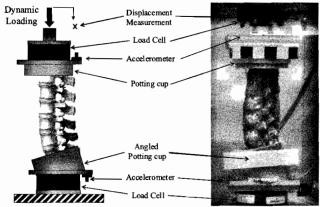


Figure 1: Test configuration for dynamic compression of whole lumbar spines.

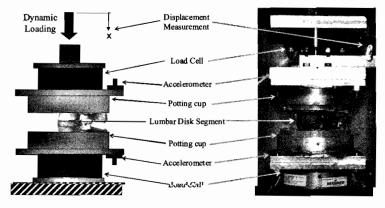


Figure 2: Test configuration for dynamic compression of lumbar spine motion segments.

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org A total of six tests were performed using the lumbar spines from four previously frozen unembalmed human cadavers (Table 1). A series of detailed steps were taken in order to ensure the spines were rigidly secured while maintaining the proper testing orientation. For the whole spine tests, all the softissue except the ligaments were removed from T12 and L5. Next, a custom potting cup was filled with a bonding compound (Bondo Corporation, Atlanta, GA), and one half of the T12 was placed into the bonding compound. Special care was taken to ensure that the distal end of L5 was at an angle of approximately 18°. The L5 angle of 18° was based on the finding of Makhsous who took radiographs of subjects in upright seating positions, and reported that the average angle of the distal end of L5, relative to the transverse plane, was $17.7 \pm 4.8^{\circ}$ [8]. Therefore, the whole lumbar spines were potted in accordant or representative of that seen in normal upright seating. The potted vertebral body was there attached to the impactor, and the distal potting cup was filled with the bonding compound. Finally, one half of L5 was lowered into the distal potting cup was filled with the bonding compound. Finally, one half of L5 was lowered into the distal potting cup (Figure 1). The distal potting cup was oriented at 15° angle in order to provide maximum contact area between L5 and the bonding compound while simulating the angle at which the vertebrae are oriented in the human body. A similar potting method was used by [9].

T-11-	1.	T4		4	subject data	
Lable	1:	lest	ma frix	and	subject data.	

Test	Test Specimen	Gender	Age (Years)	Body Weight (Kg)	
1	Lumbar Spine: L5-T12	M	66	66.2	
2	Lumbar Spine: L5-T12	F	61	44.8	
3	Lumbar Segment: L2-L3	M	15	73.9	
4	Lumbar Segment: L4-L5	141	73	73.9	
5	Lumbar Segment: L1-L2	M	45	53.0	
6	Lumbar Segment: L3-L4	141	73	33.0	

A similar technique was used to prepare the lumbar spine segment tests. After the spine was sectioned into the desired units, all the soft tissue except the ligaments was removed. Next, a custom potting cur was filled with the bonding compound, and one half of the proximal vertebral body was placed into the bonding compound. Special care was taken to ensure that the mid-plane of the disc was parallel with the potting cup, and that the disc was centered in the potting cup (Figure 2). This potting orientation has been used by numerous previous authors [10-12]. The potted vertebrae was then attached to the impactor, and the distal potting cup was filled with the bonding compound. Finally, one half of the distal vertebral body was lowered into the distal potting cup. For both whole and segment tests specimens were lowered into the bonding compound, the bonding compound was allowed to fully before testing. The specimens were kept hydrated during the entire potting process by spraying sales directly on the specimen.

RESULTS

In test 1 with the male whole lumbar spine, the peak axial load at failure was 5009 N with simultaneous moment of 237 Nm (Table 2). The similar test 2 with the female whole lumbar spine a slightly higher axial load of 5911 N but lower moment of 165 Nm. Both tests 1 and 2 resulte compression fractures at T12 and even after fracture, both lumbar spines were able to support substant loads and moments (Figure 2 and Figure 3). Analysis of the high speed video showed that the lumbar

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org spines exhibited first ord from the combined axial

Table 2:

	1 4010 2
Test	Test Spe
1	Lumbar Spin
2	Lumbar Spin
3	Lumbar Segm
4	Lumbar Segm
5	Lumbar Segm
6	Lumbar Segm

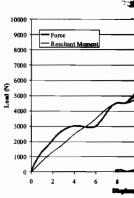


Figure 3: Axial force and b

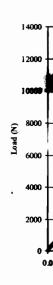


Figure 5: Axial

spines exhibited first order bending modes as the compression was applied. This resulted in fractures from the combined axial load and bending moments on the anterior segments of the vertebral bodies.

Table 2: Failure data for the whole lumbar spine tests and the lumbar segment tests.

Test	Test Specimen	Subject	Failure	Failure	Failure
		Gender	Displacement (mm)	Force (N)	Moment (Nm)
1	Lumbar Spine: L5-T12	Male	9.66	5009	237
2	Lumbar Spine: L5-T12	Female	4.03	5911	165
3	Lumbar Segment: L2-L3	Male	1.94	12777	88
4	Lumbar Segment: L4-L5	Wiale	2.29	13068	47
5	Lumbar Segment: L1-L2	Male	2.05	11203	83
6	Lumbar Segment: L3-L4	iviale	2.04	12597	60

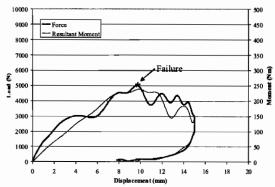


Figure 3: Axial force and bending moment from Test 1.

Figure 4: Axial force and bending moment from Test 2.

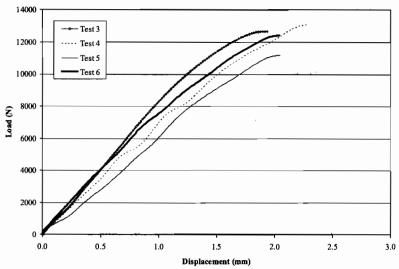


Figure 5: Axial compression load versus displacement for the lumbar segment tests 3, 4, 5, and 6.

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org All lumbar spine segment tests resulted in superior endplate fractures of the inferior vertebral body. For example, test 3 resulted in a superior endplate fracture of L3. There was no substantial difference between the results for the segment tests, but these results were very different than the whole spine test. In particular, since only one motion segment was tested, the specimens were very stable and buckling was not possible. This allowed the axial loads to reach double seen in the whole spine testing (Table and Figure 5). Moreover, the moments were reduced in half as well.

DISCUSSION

The whole spine tests illustrated that combined axial load and bending moment can contribute to vertebral compression fractures. Fundamentally, the fracture starts when a local stress or strain exceed the local tissue tolerance. In these tests, the stress from the axial load and the stress from the bending moment both contributed to the fracture generation. In comparison to the segment tests, the stress from the bending moment was reduced due to the increased stability, and therefore the bone could carry most stress from the axial load prior to failure. It is important to recognize both loading mechanism-however, most research only presents the axial load as a tolerance even though bending is present.

Previous research by Coltman found that the L1 fracture load for the average population approximately 7,040 N [13]. Similarly, the Federal Aviation Administration uses a axial load tolerant for the lumbar spine of 6,600 N [14]. Another study involving cadaver specimens found the average burst fracture load for T12 and L1 vertebral bodies to be 6,384 N [15]. Willen also performed tests human cadaver lumbar spines and found an average failure tolerance of 7,916 N [16]. There are two factors to consider when comparing the axial failure loads of 5009 N and 5911 N for the whole lumbar spine tests to the previous research. First, the two spines in the current study were 66 and 61 years of and likely weaker than the average population. Second, it is difficult to compare the contribution from bending moments in the previous studies as they are often not presented. Given the natural curvature the lumbar spine, it is likely there is always some amount of bending present, but it may be less in the previous studies compared to the current.

CONCLUSIONS

This study investigated the biomechanical properties of the human lumbar spine using whole lumbar spine tests and sectioned functional unit tests. A high rate material testing machine provided displacement rate of 1 m/s to simulate dynamic compression. Both tests with the whole lumbar spreadled in compression fractures at T12 due to combined axial loads of 5009 N and 5911 N and bendure moments of 237 Nm and 165 Nm respectively. These failures occurred as the spine behaved in first order buckling which resulted in concentrated loading and bending of the anterior aspects of the vertebral bodies. All tests with functional units resulted in endplate fractures and recorded substantial higher axial loads between 11,203 N and 13,065 N and substantially lower bending moments between 47 Nm and 88 Nm. These results indicate that the mechanical stability of the lumbar spine is critical component in relation to the tolerable compressive loads. When analyzing spinal compression fracture tolerance data, it is critically important to evaluate the specific loading boundary conditions of study, the contribution of axial loading and bending moments, and the targeted age population.

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org The authors wish to th

- [1] Fredrickson, B.E., Edr Experimental, Mon
- [2] Richter, D., Hahn, N Comparative Study 659.
- [3] Steidman, D.J., (1989)
- [4] Melton, L.J., Kan, S.H Fractures in Women
- [5] Old, J.L, Calvent, M. (2
- [6] Sugita, M., Watanabe, in the Osteoporotic
- [7] Mermelstein, L.E., Mc. Phosphate Cement
- [8] Makhsous, M., Lin, F., Biomechanical Chan
- [9] Demetropoulos, C.K., and hybrid II Lumb PA. 983160.
- [10] Yoganandan, N., Ray evaluate the threshol
- [11] Gordon, S.J, Yang, K Preliminary Report.
- [12] Adams, M.A., and Hu
- [13] Coltman: Aircraft Cr. Tolerance. (1989) U VA 23604-557.
- [14] Dynamic Evaluation of Aviation Administra
- [15] Oxland, T. R. (1992) Yale University.
- [16] Willen, J., Lindahl, S Experimental Study 9(6):624-63

ACKNOWLEDGEMENTS

The authors wish to thank Toyota Motor Corporation for sponsoring this research.

REFERENCES

- 1] Fredrickson, B.E., Edwards, W.T., Raushning, W., Bayley, J.C, and Yan, H.A. (1992) Vertebral Burst Fractures: An Experimental, Morphologic, and Radiographic Study. Spine. 17(9): 1012-1021.
- [2] Richter, D., Hahn, M.P., Ostermann, P.A.W., Ekkernkamp, A., Muhr, G. (1996) Vertical Deceleration Injuries: A Comparative Study of the Injury Patterns of 101 Patients After Accidental and Intentional High Falls. Injury. 9: 655-659.
- 3] Steidman, D.J., (1989) Severity of free-fall injury. Injury. 20: 259-261.
- 4] Melton, L.J., Kan, S.H., Frye, M.A., Wahner, H.W., O'Fallon, W.M., and Riggs, B.L. (1989) Epidemiology of Vertebral Fractures in Women. American Journal of Epidemiology. 128: 1000-1011
- 5] Old, J.L, Calvent, M. (2004) Vertebral Compression Fractures in the Elderly. American Family Physican. 69(1): 111-116.
- 5] Sugita, M., Watanabe, N., Mikami, Y., Hase, H., and Kubo, T. (2005) Classification of Vertebral Compression Fractures in the Osteoporotic Spine. Journal of Spinal Discord Tech. 18(4): 376-381.
- ⁷⁷] Mermelstein, L.E., McLain, R.F., and Yerby, S.A. (1998) Reinforcement of Thoracolumbar Burst Fractures with calcium Phosphate Cement: A Biomechanical Study. Spine. 23(6): 664-670.
- x] Makhsous, M., Lin, F., Hendrix, R.W., Helper, M., Zhang, L. (2003) Sitting with Adjustable Ischial and Back Supports: Biomechanical Changes. Spine 28 (11):1113-1122.
- ⁷⁰] Demetropoulos, C.K., Yang K.H., Grimm, M.J., Khalil, T.B, King, A.L. (1998) Mechanical Properties of the cadaveric and hybrid II Lumbar spines. Proc. 42nd Stapp Car Crash Conference. Society of Automotive Engineers, Warrendale, PA. 983160.
- [10] Yoganandan, N., Ray, R., Pintar, F.A, Myklebust, J.B., and Sancis, A. (1989) Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J. Biomechanics 22: 135-142.
- [11] Gordon, S.J, Yang, K.H., Mayer, P.J., Mace, A.H., Kish, V.L., and Radin, E.L. (1991) Mechanism of disk rupture: A Preliminary Report. Spine 16(4): 450-456.
- 2] Adams, M.A., and Hutton, W.C. (1981) Prolapsed intervertebral disc: A hyper flexion injury. Spine 7(3):184-191.
- 3] Coltman: Aircraft Crash Survival Design Guide: Volume II- Aircraft Design Crash Impact Conditions and Human Tolerance. (1989) US Army Aviation Research and Technology Activity. USAAVSCOM TR 89-D-22B. Fort Eustis, VA 23604-557.
- 4] Dynamic Evaluation of Seat Restraint Systems and Occupant Protection on Transportation Airplanes. (1996) Federal Aviation Administration. AC No: 25.561.1A.
- 5] Oxland, T. R. (1992) Burst Fractures of the Thoracolumbar Spine: A Biomechancial Investigation. PHD Dissertation, Yale University.
- 6] Willen, J., Lindahl, S., Irstam, L., Aldman, B., and Nordwall, A. (1984) The Thoraclumbar Crush Fracture. An Experimental Study on Instant Axial Dynamic Loading: The Resulting Fracture Type and its Instability. Spine 9(6):624-63

Presented at Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium 7-9 April 2006, Terre Haute, Indiana, www.isa.org