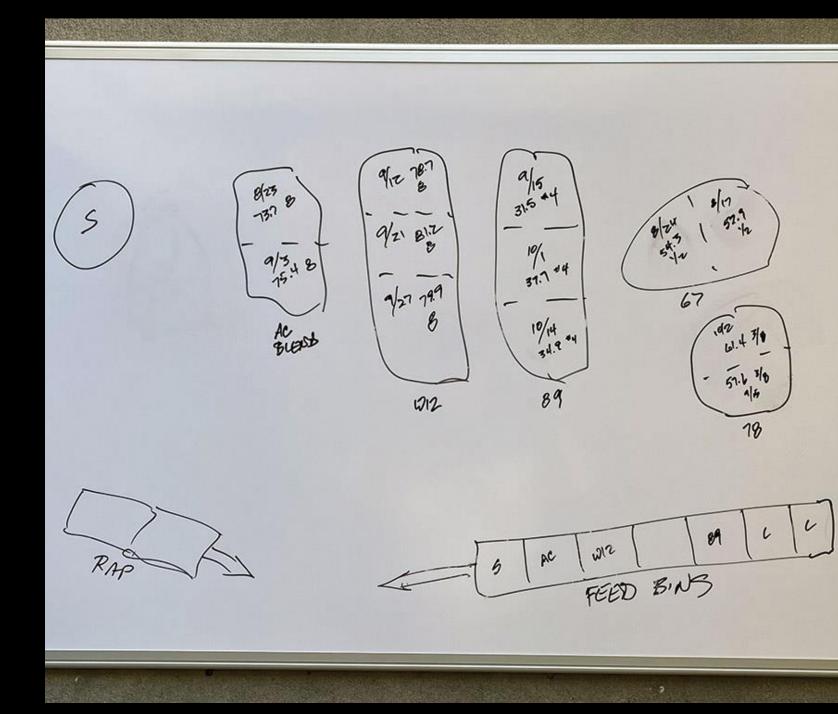
Steve McReynolds Asphalt Testing Solutions & Engineering

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes


- Gradation will vary from the quarry
 - Between transportation from the quarry to the plant, then delivery to the stockpiles, the material has many chances to adjust or get contaminated

- Gradation will vary from the quarry
 - Best practice is to check the gradations as material is delivered to your plant, every 1000 to 5000 tons. We recommend every 1000 tons.

- "Map" your stockpiles
 - Draw a diagram of your stockpiles and date each pile as the material is delivered
 - Successful producers always know the gradation of each stockpile before they run them through the plant

- Use a First In First Out (FIFO) method for materials
 - Running your "oldest" material through the plant is best practice. This gives the QC team time to test the newest material at the plant.

- Separate material into "cells"
 - Front / back or left / right
 - Recharge one cell at a time

- Use blend sheets to adjust bin pulls
 - Asphalt mix designers and producers are allowed to make small adjustments to the mix to account for variations in stockpile gradations – document these changes in a blend sheet.

	PLANT 2	A0216	BLEND CHANGE for PLANT PRODUCTION							
	Start up	9/23/13						S-1 - 50%		
	RAP	BIN #1	BIN #2	BIN #3	BIN #4	BIN #5	Design			
MATERIAL:	RAP	78	89	W-12	M-10	Sand	JMF	Virgin Matl		
%'s	50%	16%	18%	10%	0%	6%	100%	100%		
Set-up	50%	16%	18%	10%	0%	6%	100%	NEW JMF	Difference	
3/4"	100	100	100	100	100	100	100	100	0	
1/2"	100	90.97	100	100	100	100	99	99	0	
3/8"	97.57	55.34	95.73	100	100	100	91	91	0	
#4	85.02	10.94	23.79	99.28	99.38	100	65	64	1	
#8	70.11	2.86	3.8	73.99	78.97	100	49	50	-1	
#16	56.83	1.96	2.11	47.73	56.84	100	39	40	-1	
#30	47.82	1.72	1.77	32.5	42.36	97.58	33	34	-1	
#50	38.99	1.55	1.6	21.11	32.83	86.03	26	27	-1	
#100	22.20	1.32	1.4	11.86	24.16	18.91	13	14	-1	
#200	10.6	1.1	1.1	5.5	15.7	1.3	5.6	6.32	-1	
Gsb	2.638	2.729	2.705	2.713	2.735	2.626	Design	2.692		
Gsb	0.000	0.059	0.067	0.037	0.000	0.000	New	6.172		
	DESIGN					CHA	NGE			
	Optimum Asphalt		5.1%	Plant AC Setting 4.9%		Optimum Asphalt		5.1%		
	Milled Material		1.2%	PG52-28		Milled Material		1.2%		
		/irgin Asphalt 3.9%				Virgin Asphalt		3.9%		
	Mixing Temperture		300			girt		0.075		
	.50% Antistrip		0000							

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

2. Keep Your Plant Calibrated

- Calibrations do shift / will shift
- Routinely check plant calibrations
 - Successful producers check calibrations every 2 – 4 weeks
 - Remember "checking" is not "changing"

2. Keep Your Plant Calibrated

- Don't wait until mix is bad
 - Be proactive
 - Machines wear out, problems develop
- Alert your QC department when making ANY changes

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

3. Produce in Long Runs

- Don't bounce between mixes rapidly
 - Drum plants are not designed to make short runs, switching between different materials
 - It takes time to "level out" between mixes
 - Stagger start times when producing multiple mixes

3. Produce in Long Runs

- Try to produce one silo at a time
 - Fill one silo, then ship out that mix while you switch to the next mix
 - Another option is to run 100 ton runs as your minimum
 - PID Loops in automation affect switching between mixes

CONTROL			_				8	m m			
Ingredient		Target	Rate	% Deviation	Total						
Agg Belt		0.00	0.00	0.00	0.00						
Reclaim Belt CF1 Sand CF2 1/4" CF3 3/8" CF4 1/2" AC1 Dust RF1 RAP RF2 RAS Reclaim 1 AC% Reclaim 2 AC%	Create Order Enter info Plant: P-1 Formula: Formula Name Rate:	12345	It this order	ur)	Silo: Job: Phase:	Silo_1 243 KEYSTONE			×		
Formula: DriveWay Target Rate: 250 Actual Rate:	Comment:				Exect	te Order Save	lo Queue	Cancel			
0.00 Total Amount: 0.00	_								<u>N</u> ow	<u>E</u> dit	
Job ID:											

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

4. Produce with Steady Runs

- Don't rapidly change your TPH
 - It takes time for controls to adjust
 - Make incremental changes

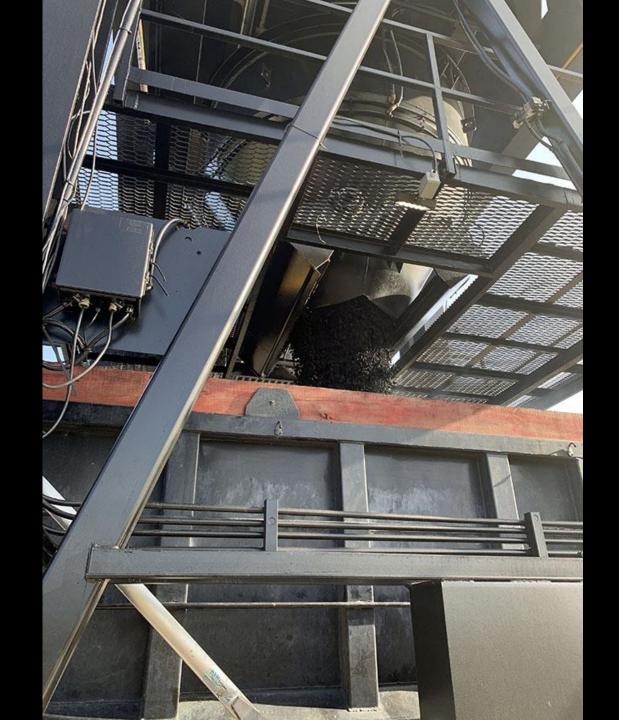
4. Produce with Steady Runs

- Account for time for bag house fines to stabilize
 - It can take 20 40 minutes for fines to be collected, cleaned off the bags, travel through the fines return equipment and return to the mix – the fines are vital for managing air voids
- Steady running produces steady mixes

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

5. Control Mix Temp +/- 10°

- Temperature control is directly related to achieving consistent field density
 - Mix temp influences the rolling patter
- Plant operator and loader operator must have constant communication



- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

6. Load in Multiple Drops

- Socket load the trucks
 - Front back middle
 - This minimizes the chance for segregation in the truck
 - If your tucks are livebottom or bottom dump trucks, find best loading procedure by checking every other load for gradation consistency

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

7. Only Make Calculated Changes

- Wait and look for a trend
 - Work with your QC team
 - Do not make rapid changes based on one test result
- Mixes that bounce back and forth are indicators of segregation

- 1. Know Your Stockpiles
- 2. Keep Your Plant Calibrated
- 3. Produce in Long Runs
- 4. Produce with Steady Runs
- 5. Control Mix Temp +/- 10°
- 6. Load in Multiple Drops
- 7. Make Calculated Mix Changes

7 Habits of Highly Effective Pavers

25

Steve McReynolds Asphalt Testing Solutions & Engineering

7 Habits of Highly Effective Pavers

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

7 Habits of Highly Effective Pavers

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

1. Lead Tailgate Meeting

- Have a quality-minded discussion with points to cover prepared:
 - Mix Type
 - Lanes
 - Lifts
 - Thickness
 - Slope
 - Density Target
 - Compaction Equipment
 - Rolling Pattern

TAILGATE D	ISCUSSION								
DATE:									
TIME:									
PROJECT:									
MEETING CALLED BY :									
MEETING CALLED BY :									
SIZE TYPE AND QUANTITY OF COMPACTION FOUR		Disease mototo annu la sura sulth							
SIZE, TYPE, AND QUANTITY OF COMPACTION EQUI the equi	MENT BEING USED?	Please notate any issues with							
	ROLLING PATTERN : 3 Osc, 2 Staic, 2 Finish								
Roller Operator - 12 TON Roller Operator - 12 TON									
Roller Opera									
WHO ATT									
Mile All									
WHAT WAS DISCUSSED? (The	following items at a m	inimum.)							
Texture/Segregation:									
Straight Lane Lines:									
Don't Bump Joints:									
Don't Back Scatter Unnecessarily:									
Lift Requirements: 1/3, 2/3									
Number of Pulls: Several: 3									
Lane(s) To Be Paved: R3, R2, R1									
Electronic Slope/Joint Matcher On: Yes									
If no electronics are used, will adjustments for thickness be	made using the tow poi	nt or the screws?							
Screed Vibration/Control On: Yes									
Screed Checked w/Straightedge:									
Cross Slope/Depth Requirement: R3 - 3%, R2 - 2%, R1 - 2%									
Density Requirement: 92%									
Workmanship, Especially at Intersections & Joints:									
Intended Use of Mix Placement	Mix Type &	Mix Design #							
(Base, Structural, Friction, Misc., Temp., Curb Pad, etc.) STRUCTURE	Traffic Level SP 12.5 TL-D	SP 19-17435B							
OTHOUTORE	01 12.0 12-0	01 10-114000							
Additional Comments:									
Please email completed form to the desig	nated personnel at the	end of your shift.							
Name email@email.com	narea percentitor at the c	and a generation of the							
Name email@email.com									
inalit@email.com									

7 Habits of Highly Effective Pavers

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

2. Be Mindful of Tack Application

- Ensure the surface to be tacked is dry and has been swept clean
 - power blowers work really well
- Make sure tack bar tips are spraying properly for full coverage
 - no corn rows or wide gaps

2. Be Mindful of Tack Application

- The proper application rate must be used (QC)
- If an emulsion is being used, make sure the tack has broken before paving begins

2. Be Mindful of Tack Application

- Make sure not to over tack in hand wand areas
- Proper tack application can help with density

7 Habits of Highly Effective Pavers

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

3. Manage Haul Trucks

- Balance trucks with production
 - Software available, e.g., CAT Paving Production Calculator App

3. Manage Haul Trucks

- Don't bump paver (or MTV)
- Charge hopper swiftly

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

4. Monitor the Hopper & Screed

- Maintain hopper at 1/3 2/3 full at all times
- Fold wings periodically to keep mix "live"

4. Monitor the Hopper & Screed

- Check depth frequently
- If changing depth, use screws or tow points for both sides
 - Don't use screws on one side and tow points on the other – keep consistent

4. Monitor the Hopper & Screed

- Monitor for marks or drags
- Maintain constant head of material in auger

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

5. Produce a Quality Mat

- Avoid excess luting or raking
- Don't back scatter material
 - lute object out and fill void with shoveled hot mix
- Remove large aggregates from the mat after luting
 - Get rid of it! Don't roll it in!

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

6. Master the Roller

- Ensure your pattern is keeping pace with the paver
 - If not, insist the paver speed be slowed down

6. Master the Roller

- Monitor mat constantly for "pick-up"
- Use proper technique to avoid "roller heads"

- 1. Lead Tailgate Meeting
- 2. Be Mindful of Tack Application
- 3. Manage Haul Trucks
- 4. Monitor the Hopper and Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

- Monitor edge lines for straightness
- Monitor temperatures of incoming trucks and the mat

- Monitor spread rate frequently
- Monitor mat for defects such as pulls, tears, segregation

- Obtain process control (PC) cores to ensure rolling pattern is achieving density
- Adjust rolling pattern if needed based on PC cores or density gauge

 Check all joints and the mat for smoothness with manual or rolling straightedge

- Temperature Guns
- Density Gauges
 - Nuclear
 - Non-Nuclear

- 1. Lead Tailgate Meeting
- 2. Manage Haul Trucks
- 3. Monitor the Hopper
- 4. Pay attention to the Screed
- 5. Produce a Quality Mat
- 6. Master the Roller
- 7. Prioritize Quality Control

Successful paving needs total "buy-in" from everyone. Everyone meaning from upper management all the way through the organization. Praise loudly when deserved and provide constructive correction when needed.

Thank You! Questions? Comments?

Steve McReynolds Asphalt Testing Solutions & Engineering asphalttesting.info | smcreynolds@ats.consulting

