Medical Marijuana Research in Pennsylvania

Kent E. Vrana, PhD
Elliot S. Vesell Professor and Chair
Department of Pharmacology
Penn State College of Medicine

17th June 2021

PA Psychological Association Annual Convention

(PPA2021)

The speaker receives a sponsored research agreement from PA Options for Wellness – a PA-approved medical marijuana company

OBJECTIVES

- Compare and contrast medical marijuana programs in PA and the rest of the nation
- Explore barriers and concerns for medical marijuana/CBD use and research.
- Discuss marijuana versus hemp (THC versus CBD)

Historical Perspective - I

- 1500 BC Written reference to cannabis in Chinese pharmacopeia
- 1621 English mental health book (depression)
- 1745-1824 Washington/Jefferson cultivated hemp
- 1850 Officially in the US Pharmacopeia
 - Neuralgia Tetanus
 - AlcoholismDysentery
 - Convulsive disorders Insanity

Historical Perspective - II

- 1906 US Food and Drugs Act
- 1911-1927 States begin prohibiting use of marijuana
- 1930s "Reefer Madness" and Marijuana Tax Act (1937) although it was universally illegal at this point
- 1942 Removed from the US Pharmacopeia
- 1964 THC characterized
- 1968 University of Mississippi designated as source
- 1970 Controlled Substances Act declares "Marijuana is a drug with no accepted medical use"
- 1990 Cannabinoid receptors discovered

What are the Options

- Legalize everything including recreational marijuana (e.g., Washington, Colorado)
- Legalize medical "pot"
- Legalize medical extracts
 - -Pennsylvania Act 16 (April 17, 2016)
- No legalization, but no prosecution of nonpsychoactive molecules (e.g., CBD and the 2018 Farm Bill) – but the unintended consequences for delta-8-THC.

Pennsylvania Act 16 – Medical Marijuana Act

- Section 102 The general assembly finds and declares as follows:
- 1) Scientific evidence suggests that medical marijuana is one potential therapy that may mitigate suffering in some patients and also enhance the quality of life.
- 2) Carefully regulating the program which allows access to medical marijuana will enhance patient safety . . .
- 3) It is the intent of the General Assembly to:
 - i) Provide a program of access to medical marijuana. .
 - ii) Provide a safe and effective method of delivery of medical marijuana to patients.
 - iii) Promote high quality research . . .

Act 16 – Approved Indications

- Cancer
- HIV/AIDS
- Amyotrophic lateral sclerosis (ALS)
- Parkinson's disease
- Multiple sclerosis
- Spinal cord injury (with spasticity)
- Epilepsy
- Inflammatory bowel disease

- Neuropathies
- Huntington's disease
- Crohn's disease
- Post-traumatic stress disorder
- Intractable seizures
- Glaucoma
- Sickle cell anemia
- Intractable pain
- Autism

```
May 15<sup>th</sup>, 2018 – added Opioid Addiction; Spasticity;
Neurodegeneration; and Terminal Illness
July 11, 2019 – added Anxiety; Tourette's Syndrome
```

Medical Marijuana: The Pharmacology of Medicinal Cannabinoids

Medicinal Cannabinoids: Endocannabinoids

Busquets-Garcia et al. (2018) Neuropsychopharm Rev 43:4-20.

Phytocannabinoids: Medical Marijuana

Tetrahydrocannabinol (THC)

Cannabidiol (CBD)

Strain	Category	CBD	ТНС	Conditions
Acapulco Gold	Sativa	0.1%	15-23%	Fatigue, stress, nausea, pain
Blue Dream	Hybrid	<1%	30%	Pain, cramps, inflammation, insomnia, mental fog, PTSD
Purple Kush	Indica	<1%	17-22%	Chronic pain, muscle spasms, insomnia
Sour Diesel	Sativa	<1%	20-22%	Fatigue, stress, acute pain, mental fog, anxiety, PTSD
Bubba Kush	Indica	<1%	14-25%	Insomnia, acute pain, nausea, low appetite, PTSD
Granddaddy Purple	Indica	<0.1%	17-23%	Low appetite, restless leg syndrome, insomnia
Afghan Kush	Indica	6%	16-21%	Acute pain, insomnia, low appetite
LA Confidential	Indica	0.3%	16-20%	Inflammation, pain, stress
Maui Waui	Sativa	0.55%	13-19%	Fatigue, depression
Golden Goat	Hybrid	1%	23%	Depression, anxiety, mental fog, low energy
Northern Lights	Indica	0.1%	16%	Pain, mood disorders, insomnia, low appetite
White Widow	Hybrid	<1%	12-20%	Low mood, mental fog, social anxiety
Super Silver Haze	Sativa	<0.1%	16%	Stress, anxiety, mental fog, low energy
Pineapple Express	Hybrid	<0.1%	23%	Mental fog, acute pain, social anxiety
Supernatural	Sativa	<1%	22%	Migraine, glaucoma, headaches, low moods

Cannabinoid Receptors

- Four types of cannabinoid receptors (CB1, CB2, GPR-55 (CB3?), and TRPV1 (capsaicin receptor)
- 7TM-GPCRs (CB1/2, GPR-55) and cation channel (TRPV1)
- CB1 is in brain and periphery and most abundant GPCR – responsible for psychoactive effects
- CB2 in periphery promising target for therapeutics

Phytocannabinoids (THC, CBD, CBG, etc.)

Endocannabinoids (2-AG, AEA, etc.)

Synthetic Cannabinoids (Win 55,212, CP-55,940, etc.)

GPCRs (CB1, CB2, GPR55)

> **MAPK** activation **PPAR** activation PI3K activation

Physiological Effects on:

Pain **Appetite** Mood **Immunology Cognition/Neural Activity** Neoplasia Spasticity/Motility

Increased intracellular Ca2+ **MAPK** activation Cytochrome C release & **Cell Death**

Medicinal Cannabinoids: Medical Marijuana

- THC is a partial agonist
- CBD is controversial (weak antagonist, inverse agonist at CBs, and weak agonist at TRPV1), but clearly not psychoactive

Legal Cannabinoid Drugs

- Marinol (dronabinol)
 - Appetite stimulant (HIV/AIDS; cancer chemotherapy)
- Syndros (liquid dronabinol)
- Cesamet (nabilone)
 - Structure similar to Δ9-THC
 - Antiemetic (treat nausea and vomiting)
- Sativex (equal parts Δ9-THC and CBD [plus other cannabinoids])
 - Treating spasticity in MS; approved in 16 countries outside US)

Legal Cannabinoid Drugs

- Acomplia (rimonabant)
 - Potent CB1 inverse agonist/antagonist (weak at CB2)
 - Appetite suppressant in Europe (withdrawn in 2009)
- Latest change occurred on June 25, 2018 when the FDA approved Epidiolex (cannabidiol)
 - Oral solution
 - Treatment of seizures associated with two rare and severe forms of childhood epilepsy - Lennox-Gastaut syndrome and Dravet syndrome
- CBD Oil (Over the Counter) (Farm Bill of 2018)

2-Arachidonoylglycerol(2-AG)

Cannabidiol (CBD)

Win 55, 212-2

Anandamide (AEA)

Δ9-tetrahydrocannabinol (THC)

Rimonabant

Legal Cannabinoid Delivery

- Section 303 –
- Medical marijuana may <u>only</u> be dispensed in the following forms:
 - Pill
 - Oil
 - Topical forms
 - Form for vaporization
 - Tincture
 - Liquid
- Medical marijuana <u>may not</u> be dispensed to a patient in dry leaf or plant form.
- May not grow or prepare in edible form (flexibility at home)

Legal Cannabinoid Delivery (in PA)

- Section 303 –
- Medical marijuana may <u>only</u> be dispensed in the following forms:
 - Pill
 - Oil
 - Topical forms
 - Form for vaporization
 - Tincture
 - Liquid
- Medical marijuana <u>may not</u> be dispensed to a patient in dry leaf or plant form. Not anymore (as of April 16th, 2018)
- May not grow or prepare in edible form (flexibility at home)

Supercritical CO₂ Extraction

- Medicinal cannabinoids are very hydrophobic (lipophilic) compounds
- Carbon dioxide usually behaves as a gas in air at standard temperature and pressure or as a solid called dry ice when frozen. If the temperature and pressure are both increased at or above the critical point for carbon dioxide it can adopt properties midway between a gas and a liquid. It behaves as a supercritical fluid above its critical temperature (87.98 °F) and critical pressure (72.9 atm), expanding to fill its container like a gas, but with a density like that of a liquid.

Grind

Dried Plant Material

Plant Extract

Supercritical

 CO_2

Decarboxylate

CBD	70.0 mg/ml
CBDV	1.14 mg/ml
Δ9-ΤΗС	1.59 mg/ml

Cannabinoid & Terpene Profile of Extracted Hemp

β-Caryophyllene	7373.8 ppm	Linalool	110.2 ppm
α-Humulene	2141.3 ppm	(-)-Caryophyllene Oxide	1458.0 ppm
(-) α-Bisabolol	138.9 ppm	Camphene	0.9 ppm
β-Myrcene	6.3 ppm	α-Terpinene	6.1 ppm
R (+) Limonene	6.6 ppm	Eucalyptol	25.1 ppm
Endo-Fenchyl Alcohol	166.4 ppm	γ-Terpinene	2.1 ppm
α-Terpineol	14.3 ppm	Fenchone	0.3 ppm
α-Pinene	0.5 ppm	Trans-Nerolidol	150.4 ppm

Dosages

- Sativex (~2.5 mg THC and CBD)
- Dronabinol (2.5, 5.0, 10 mg THC)
- Typical dosages of medical marijuana in PA will be 10 mg of THC (in extracts)
- Diversion:
 - Low dose (esp. compared to marijuana cigarette)
 - Expensive
 - Centralized state-wide tracking
 - Combustible now available

↓

Certification (Card)

Certification (Card)

Recommendation

Two Public Health Concerns

CBG Oil
 Delta-8-THC

The Pharmacological Case for Cannabigerol

Rahul Nachnani, Wesley M. Raup-Konsavage and Kent E. Vrana

Journal of Pharmacology and Experimental Therapeutics February 2021, 376(2) 204-212; DOI: https://doi.org/10.1124/jpet.120.000340

Cannabigerol (CBG) & CBG Oil

Cannabigerol (CBG)

	THC		CBD		CBG	
Receptor	Affinity (nM)	Function	Affinity (nM)	Function	Affinity (nM)	Function
CB1	5.1-80.3 (Ki)	Partial Agonist	1458.5-4900 (Ki)	Inverse Agonist/ Antagonist	440-1045 (Ki)	Weak Agonist
CB2	3.1-75.3 (Ki)	Agonist	372.4-4200 (Ki)	Inverse Agonist	153.4-1225 (Ki)	Partial Agonist
GPR55	8 (EC50)	Agonist	445 (IC50)	Antagonist	N.T.	Unknown

Cannabigerol (CBG)

	ТНС		Cl	BD	CBG	
Receptor	Affinity (nM)	Function	Affinity (nM)	Function	Affinity (nM)	Function
adrenoceptor	N.T.	Unknown	N.T.	Unknown	0.2-72.8	Agonist
5-HT _{1A}	N.T.	Unknown	N.D.	Indirect Agonist	51.9	Antagonist

Delta-8 Tetrahydrocannabinol (Δ⁸-THC)

A.

Δ⁸-Tetrahydrocannbinol (THC)

Δ⁹-Tetrahydrocannbinol (THC)

44±12 nM

44±17 nM

CB1

CB2

OH J,H

40.7±1.7 nM

36±10 nM

В.

Research Initiatives at Penn State

- Cannabinoids and Cancer (Lu, Vrana, and Yun)
 - Identifying cannabinoids that reduce cancer cell viability
 - Elucidating mechanisms
- Cannabinoids and Pain
 - Preclinical (ratios of THC:CBD) (Graziane and Kamal)
 - Acute Pain
 - Inflammatory Pain
 - Osteoarthritis
 - Neuropathic Pain
 - Clinical (Gordin, Thomas, and Deimling)
 - Opioid Limiting and Endometriosis Pain
- Cannabinoids and Novel Receptors and Pathways (Arnold, Mailman, and Dokholyan)
- Pharmacokinetics and Drug-Drug Interactions (Knehans, Raup-Konsavage, Kocis, Neighbors, and Vrana)
- Patient Outcomes Database (Leslie, and Vrana)

Long Term Goals

- CBG Oil and THC Oil
- Endometriosis pain and CBD (Tim Deimling)
- Clinical pain trial, opioid-sparing
- Evaluating optimum ratios of THC:CBD for pain, anxiety, PTSD, other disorders (preclinical)
- Cannabinoids to treat opioid addiction
- Continuing to monitor and identify Drug-Drug Interactions
 - Mobile App (Paul Kocis and Penn State-Harrisburg)
- Pharmacokinetics of topical cannabinoids
- Begin exploring relationships between genetics and outcomes (personalized medicine)
- Graduate Student Fellowship Program
 - Launching, May, 2021
- Potential undergraduate degree or certificate program

Cannabis and Cannabinoid Research Volume 3.1, 2018 DOI: 10.1089/can.2018.0065

Cannabis and Cannabinoid Research

Mary Ann Liebert, Inc. & publishers

ORIGINAL RESEARCH

Open Access

Synthetic Cannabinoid Activity Against Colorectal Cancer Cells

Wesley M. Raup-Konsavage,¹ Megan Johnson,¹ Christopher A. Legare,¹ Gregory S. Yochum,² Daniel J. Morgan,^{1,3} and Kent E. Vrana^{1,*}

Raup-Konsavage et al. (2018) Cannabis Cannabinoid Res

Compound	SW480	SW620	HT29	DLD-1	HCT116	LS174	RKO
CBD	16.4±0.6	n.d.	23.0±4.4	19.8±1.4	n.d.	n.d.	n.d.
HU-331	5.5±1.6	11.1±2.5	17.0±3.2	7.8±1.8	11.0±4.2	8.36±2.3	10.4±2.1
(±)-5-epi CP 55,940	6.5±1.6	8.1±1.0	7.3±1.0	5.3±0.04	4.9±0.5	6.2±0.5	5.9±0.5
(±) CP 55,940	25.1±3.1	26.8±2.7	21.3±5.5	21.7±2.6	16.2±5.6	16.3±2.2	14.9±1.7
(+) CP 55,940	24.4±5.6	31.1±3.5	24.1±4.6	16.0±1.2	16.8±4.0	16.9±3.6	19.0±3.3
(-) CP 47,497	8.9±0.1	16.5±6.5	24.6±5.7	12.6±2.3	14.7±0.02	23.0±6.1	19.8±4.4
(±) 3-epi CP 47,497 C-8 Homolog	8.9±1.7	13.5±1.4	14.2±5.0	12.4±2.0	12.6±1.5	12.2±0.9	15.0±2.8
(±) CP 47,497 C-8 Homolog	n.d.	n.d.	20.1±4.2	33.4±1.8	32.0±1.8	21.7±6.1	39.0±5.6
PTI-1	11.9±2.3	19.6±0.2	14.4±2.4	19.4±1.1	21.2±5.5	25.0±3.6	27.5±2.7
PTI-2	7.4±1.4	23.9±3.6	8.2±1.6	34.2±7.8	27.7±3.1	n.d.	15.6±2.9
NPB-22	9.7±0.6	n.d.	n.d.	n.d.	15.2±6.3	n.d.	n.d.

Compound	SW480	SW620	HT29	DLD-1	HCT116	LS174	RKO
CBD	16.4±0.6	n.d.	23.0±4.4	19.8±1.4	n.d.	n.d.	n.d.
HU-331	5.5±1.6	11.1±2.5	17.0±3.2	7.8±1.8	11.0±4.2	8.36±2.3	10.4±2.1
(±)-5-epi CP 55,940	6.5±1.6	8.1±1.0	7.3±1.0	5.3±0.04	4.9±0.5	6.2±0.5	5.9±0.5
(±) CP 55,940	25.1±3.1	26.8±2.7	21.3±5.5	21.7±2.6	16.2±5.6	16.3±2.2	14.9±1.7
(+) CP 55,940	24.4±5.6	31.1±3.5	24.1±4.6	16.0±1.2	16.8±4.0	16.9±3.6	19.0±3.3
(-) CP 47,497	8.9±0.1	16.5±6.5	24.6±5.7	12.6±2.3	14.7±0.02	23.0±6.1	19.8±4.4
(±) 3-epi CP 47,497 C-8 Homolog	8.9±1.7	13.5±1.4	14.2±5.0	12.4±2.0	12.6±1.5	12.2±0.9	15.0±2.8
(±) CP 47,497 C-8 Homolog	n.d.	n.d.	20.1±4.2	33.4±1.8	32.0±1.8	21.7±6.1	39.0±5.6
PTI-1	11.9±2.3	19.6±0.2	14.4±2.4	19.4±1.1	21.2±5.5	25.0±3.6	27.5±2.7
PTI-2	7.4±1.4	23.9±3.6	8.2±1.6	34.2±7.8	27.7±3.1	n.d.	15.6±2.9
NPB-22	9.7±0.6	n.d.	n.d.	n.d.	15.2±6.3	n.d.	n.d.

Figure 6

Legal and Regulatory Aspects – Commentary

Medical Cannabis and Cannabinoids

Med Cannabis Cannabinoids 2018;1:65–72 DOI: 10.1159/000489287 Received: April 9, 2018 Accepted: April 11, 2018 Published online: June 12, 2018

The Trouble with CBD Oil

Arno Hazekamp

Hazekamp Herbal Consulting, Leiden, The Netherlands

Table 1. Analysis of Dutch cannabis oil samples obtained from actual patients, comparing the claimed cannabinoid content on the product label with lab results measured in the study [51]

Sample ID	CBD(A)			THC(A)	·	,
	label, %	measured, %	deviation, rel. %	label, %	measured, %	deviation, rel. %
1	27	2.3	-91.5	17	0.1	-99.4
2	25	0	-100	35	4.6	-86.9
3	12	0.2	-98.3	_	0	*
4	10.9	2.8	-74.3	_	0.1	4
5	10	2.2	-78	10	4	-60
6	8	0.6	-92.5	4	0.2	-95
7	8	0.6	-92.5	4	0.1	-97.5
8	6	0.2	-96.7	5	0.1	-98
9	5	0	-100	40	3.4	-91.5
				_	0.2	*
11	4	5.4	+35	_	0.3	*
12	4	4	0	_	0	4
13	4	4.2	+5	_	0	M
14	3	3.1	+3.3	_	0.2	4
15	2.75	2.8	+1.8	_	0.1	+
16	0.1	0.1	0	4	6.3	+57.5
17	_	0.1	#	7	7.9	+12.9
18	_	0	*	5	0.7	-86
19	_	0	H ⁻	5	0.9	-82
20	_	0.1	*	20	15.8	-21
21	_	0	*	7	6.4	-8.6

CBD, cannabidiol; THC, tetrahydrocannabinol; CBD(A), total sum of CBD plus CBD-acid; THC(A), total sum of THC plus THC-acid. * Not applicable because no label claim was made.

MEDICAL CANNABIS AND CANNABINOIDS

Cannabidiol (CBD) Oil Does Not Display an Entourage Effect in Reducing Cancer Cell Viability In Vitro

Wesley M. Raup-Konsavage, Nurgul Carkaci-Salli, Kelly Greenland, Robert Gearheart Jr., Kent E. Vrana

Med Cannabis Cannabinoids 2020;3:95–102

CBD Variably Reduces Cancer Cell Viability

Vehicle CBD

Vehicle CBD

Comparison of CBD Oils

Oil A Oil B Oil C

Pigment	Wavelength	Oil A	Oil B	Oil C
Chlorophyll a	430 nm	0.21	0.57	0.08
Chlorophyll b	453 nm	0.14	0.37	0.09
Carotenoids	500 nm	0.06	0.16	0.05

CBD Oils Have Variable Potencies or Efficacies

No CBD Oil is More Potent than Pure CBD

Medical Cannabis and Cannabinoids

Preclinical Science and Clinical Studies – Review Article

Med Cannabis Cannabinoids DOI: 10.1159/000507998

Received: March 16, 2020 Accepted: April 19, 2020 Published online: July 7, 2020

Delta-9-Tetrahydrocannabinol and Cannabidiol Drug-Drug Interactions

Paul T. Kocis^{a, b} Kent E. Vrana^b

^aDepartment of Pharmacy, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA;

^bDepartment of Pharmacology, Penn State College of Medicine, Hershey, PA, USA

sites.psu.edu/cannabinoid

Table 2. List of Narrow Therapeutic Index (NTI) medications to be closely monitored when coadministered with cannabinoids, either therapeutically or recreationally

Narrow Therapeutic Index (NTI) medication	Enzyme/metabolism
acenocoumarol (VKA)	CYP1A2, CYP2C9, CYP2C19, CYP3A4
alfentanil	CYP3A, CYP3A4
aminophylline	CYP1A2, CYP3A4
amiodarone	CYP1A2, CYP2C8, CYP2C19, CYP3A4
amitriptyline	CYP1A2, CYP2B6, CYP2C19, CYP3A4
amphotericin B	Protein binding
argatroban	CYP3A4
busulfan	CYP3A4
carbamazepine	CYP1A2, CYP3A4, UGT2B7
dindamycin	CYP3A4
domipramine	CYP1A2, CYP2B6, CYP2C19, CYP3A4, UGT2B7
donidine	CYP1A2, CYP3A4
dorindione (VKA)	CYP3A4
cyclobenzaprine	CYP1A2, CYP3A4
cyclosporine	CYP3A4
dabigatran etexilate	UGT1A9, UGT2B7
desipramine	CYP1A2, CYP2B6
dicoumarol (VKA)	CYP2C9
digitoxin	CYP3A4
dihydroergotamine	CYP3A4
diphenadione (VKA)	CYP3A4
dofetilide	CYP3A4
dosulepin	CYP2B6
doxepin	CYP1A2, CYP2C9, CYP2C19, CYP3A4
ergotamine	CYP3A4
sketamine	CYP2B6, CYP3A4
ethinyl estradiol (oral contraceptives)	UGT1A9, UGT2B7
ethosuximide	CYP2E1, CYP3A4
ethyl biscoumacetate (VKA)	CYP3A4
everolimus	CYP3A, CYP3A4
fentanyl	CYP3A4
fluindione (VKA)	CYP2C9, CYP3A4
osphenytoin	CYP2C8, CYP2C9, CYP2C19, CYP3A4
mipramine	CYP1A2, CYP2B6, CYP2C19, CYP3A4
evothyroxine	CYP3A4
ofepramine	CYP2B6
melitracen	CYP2B6
meperidine	CYP2B6, CYP3A4
mephenytoin	CYP1A2, CYP2C19
mycophenolic acid	UGT1A9, UGT2B7
nortriptyline	CYP1A2, CYP2B6, CYP3A4
paclitaxel	CYP2C8, CYP3A4
phenobarbital	CYP2C19
phenprocoumon (VKA)	CYP2C8, CYP2C9, CYP3A4
phenytoin	CYP2C8, CYP2C9, CYP2C19
pimozide	CYP1A2, CYP3A, CYP3A4
propofol	UGT1A9
quinidine	CYP2C9, CYP2E1, CYP3A4
sirolimus	CYP3A, CYP3A4
acrolimus	CYP3A, CYP3A4
emsirolimus	CYP3A4
heophylline	CYP1A2, CYP3A4
hiopental	CYP2C19
tianeptine	CYP3A4
rimipramine	CYP2B6
valproic acid	CYP2C9, UGT1A9, UGT2B7
warfarin (VKA)	CYP1A2, CYP2C9, CYP2C19, CYP3A4

Collaborators

- Wesley Raup-Konsavage, PhD
- Nurgul Carkaci-Salli, PhD
- Paul Kocis, PharmD
- Rahul Nachnani, MD/PhD student
- Christopher Legare, MD
- Amy Knehans
- Diana Sepulveda
- Fadia Kamal, PhD
- Doug Leslie, PhD

- Nick Graziane, PhD
- Dhimant Desai, PhD
- Greg Yochum, PhD
- Dan Morgan, PhD
- Richard Mailman, PhD
- Johnny Lu, PhD
- Jung Yun, PhD
- Amy Arnold, PhD
- Yuval Silberman, PhD
- Kelly Greenland, PhD and Robert Gearhart

Many thanks to Tom Trite and PA Options for Wellness and the Elliot S. Vesell Professorship (for financial support)

Questions?

(kvrana@psu.edu)

