Medical Marijuana Research in Pennsylvania Kent E. Vrana, PhD Elliot S. Vesell Professor and Chair Department of Pharmacology Penn State College of Medicine 17th June 2021 PA Psychological Association Annual Convention (PPA2021) The speaker receives a sponsored research agreement from PA Options for Wellness – a PA-approved medical marijuana company ## **OBJECTIVES** - Compare and contrast medical marijuana programs in PA and the rest of the nation - Explore barriers and concerns for medical marijuana/CBD use and research. - Discuss marijuana versus hemp (THC versus CBD) ## **Historical Perspective - I** - 1500 BC Written reference to cannabis in Chinese pharmacopeia - 1621 English mental health book (depression) - 1745-1824 Washington/Jefferson cultivated hemp - 1850 Officially in the US Pharmacopeia - Neuralgia Tetanus - AlcoholismDysentery - Convulsive disorders Insanity ## **Historical Perspective - II** - 1906 US Food and Drugs Act - 1911-1927 States begin prohibiting use of marijuana - 1930s "Reefer Madness" and Marijuana Tax Act (1937) although it was universally illegal at this point - 1942 Removed from the US Pharmacopeia - 1964 THC characterized - 1968 University of Mississippi designated as source - 1970 Controlled Substances Act declares "Marijuana is a drug with no accepted medical use" - 1990 Cannabinoid receptors discovered ## What are the Options - Legalize everything including recreational marijuana (e.g., Washington, Colorado) - Legalize medical "pot" - Legalize medical extracts - -Pennsylvania Act 16 (April 17, 2016) - No legalization, but no prosecution of nonpsychoactive molecules (e.g., CBD and the 2018 Farm Bill) – but the unintended consequences for delta-8-THC. ### Pennsylvania Act 16 – Medical Marijuana Act - Section 102 The general assembly finds and declares as follows: - 1) Scientific evidence suggests that medical marijuana is one potential therapy that may mitigate suffering in some patients and also enhance the quality of life. - 2) Carefully regulating the program which allows access to medical marijuana will enhance patient safety . . . - 3) It is the intent of the General Assembly to: - i) Provide a program of access to medical marijuana. . - ii) Provide a safe and effective method of delivery of medical marijuana to patients. - iii) Promote high quality research . . . ## Act 16 – Approved Indications - Cancer - HIV/AIDS - Amyotrophic lateral sclerosis (ALS) - Parkinson's disease - Multiple sclerosis - Spinal cord injury (with spasticity) - Epilepsy - Inflammatory bowel disease - Neuropathies - Huntington's disease - Crohn's disease - Post-traumatic stress disorder - Intractable seizures - Glaucoma - Sickle cell anemia - Intractable pain - Autism ``` May 15th, 2018 – added Opioid Addiction; Spasticity; Neurodegeneration; and Terminal Illness July 11, 2019 – added Anxiety; Tourette's Syndrome ``` ## Medical Marijuana: The Pharmacology of Medicinal Cannabinoids ## Medicinal Cannabinoids: Endocannabinoids Busquets-Garcia et al. (2018) Neuropsychopharm Rev 43:4-20. ## Phytocannabinoids: Medical Marijuana Tetrahydrocannabinol (THC) Cannabidiol (CBD) | Strain | Category | CBD | ТНС | Conditions | |-------------------|----------|-------|--------|--| | Acapulco Gold | Sativa | 0.1% | 15-23% | Fatigue, stress, nausea, pain | | Blue Dream | Hybrid | <1% | 30% | Pain, cramps, inflammation, insomnia, mental fog, PTSD | | Purple Kush | Indica | <1% | 17-22% | Chronic pain, muscle spasms, insomnia | | Sour Diesel | Sativa | <1% | 20-22% | Fatigue, stress, acute pain, mental fog, anxiety, PTSD | | Bubba Kush | Indica | <1% | 14-25% | Insomnia, acute pain, nausea, low appetite, PTSD | | Granddaddy Purple | Indica | <0.1% | 17-23% | Low appetite, restless leg syndrome, insomnia | | Afghan Kush | Indica | 6% | 16-21% | Acute pain, insomnia, low appetite | | LA Confidential | Indica | 0.3% | 16-20% | Inflammation, pain, stress | | Maui Waui | Sativa | 0.55% | 13-19% | Fatigue, depression | | Golden Goat | Hybrid | 1% | 23% | Depression, anxiety, mental fog, low energy | | Northern Lights | Indica | 0.1% | 16% | Pain, mood disorders, insomnia, low appetite | | White Widow | Hybrid | <1% | 12-20% | Low mood, mental fog, social anxiety | | Super Silver Haze | Sativa | <0.1% | 16% | Stress, anxiety, mental fog, low energy | | Pineapple Express | Hybrid | <0.1% | 23% | Mental fog, acute pain, social anxiety | | Supernatural | Sativa | <1% | 22% | Migraine, glaucoma, headaches, low moods | ## **Cannabinoid Receptors** - Four types of cannabinoid receptors (CB1, CB2, GPR-55 (CB3?), and TRPV1 (capsaicin receptor) - 7TM-GPCRs (CB1/2, GPR-55) and cation channel (TRPV1) - CB1 is in brain and periphery and most abundant GPCR – responsible for psychoactive effects - CB2 in periphery promising target for therapeutics #### **Phytocannabinoids** (THC, CBD, CBG, etc.) #### **Endocannabinoids** (2-AG, AEA, etc.) #### **Synthetic Cannabinoids** (Win 55,212, CP-55,940, etc.) **GPCRs** (CB1, CB2, GPR55) > **MAPK** activation **PPAR** activation PI3K activation #### **Physiological Effects on:** Pain **Appetite** Mood **Immunology Cognition/Neural Activity** Neoplasia Spasticity/Motility Increased intracellular Ca2+ **MAPK** activation Cytochrome C release & **Cell Death** # Medicinal Cannabinoids: Medical Marijuana - THC is a partial agonist - CBD is controversial (weak antagonist, inverse agonist at CBs, and weak agonist at TRPV1), but clearly not psychoactive ## Legal Cannabinoid Drugs - Marinol (dronabinol) - Appetite stimulant (HIV/AIDS; cancer chemotherapy) - Syndros (liquid dronabinol) - Cesamet (nabilone) - Structure similar to Δ9-THC - Antiemetic (treat nausea and vomiting) - Sativex (equal parts Δ9-THC and CBD [plus other cannabinoids]) - Treating spasticity in MS; approved in 16 countries outside US) ## Legal Cannabinoid Drugs - Acomplia (rimonabant) - Potent CB1 inverse agonist/antagonist (weak at CB2) - Appetite suppressant in Europe (withdrawn in 2009) - Latest change occurred on June 25, 2018 when the FDA approved Epidiolex (cannabidiol) - Oral solution - Treatment of seizures associated with two rare and severe forms of childhood epilepsy - Lennox-Gastaut syndrome and Dravet syndrome - CBD Oil (Over the Counter) (Farm Bill of 2018) #### 2-Arachidonoylglycerol(2-AG) #### Cannabidiol (CBD) Win 55, 212-2 #### Anandamide (AEA) #### Δ9-tetrahydrocannabinol (THC) #### Rimonabant ## Legal Cannabinoid Delivery - Section 303 – - Medical marijuana may <u>only</u> be dispensed in the following forms: - Pill - Oil - Topical forms - Form for vaporization - Tincture - Liquid - Medical marijuana <u>may not</u> be dispensed to a patient in dry leaf or plant form. - May not grow or prepare in edible form (flexibility at home) ## Legal Cannabinoid Delivery (in PA) - Section 303 – - Medical marijuana may <u>only</u> be dispensed in the following forms: - Pill - Oil - Topical forms - Form for vaporization - Tincture - Liquid - Medical marijuana <u>may not</u> be dispensed to a patient in dry leaf or plant form. Not anymore (as of April 16th, 2018) - May not grow or prepare in edible form (flexibility at home) ## Supercritical CO₂ Extraction - Medicinal cannabinoids are very hydrophobic (lipophilic) compounds - Carbon dioxide usually behaves as a gas in air at standard temperature and pressure or as a solid called dry ice when frozen. If the temperature and pressure are both increased at or above the critical point for carbon dioxide it can adopt properties midway between a gas and a liquid. It behaves as a supercritical fluid above its critical temperature (87.98 °F) and critical pressure (72.9 atm), expanding to fill its container like a gas, but with a density like that of a liquid. #### Grind #### Dried Plant Material Plant Extract Supercritical CO_2 Decarboxylate | CBD | 70.0 mg/ml | |--------|------------| | CBDV | 1.14 mg/ml | | Δ9-ΤΗС | 1.59 mg/ml | Cannabinoid & Terpene Profile of Extracted Hemp | β-Caryophyllene | 7373.8 ppm | Linalool | 110.2 ppm | |----------------------|------------|-------------------------|------------| | α-Humulene | 2141.3 ppm | (-)-Caryophyllene Oxide | 1458.0 ppm | | (-) α-Bisabolol | 138.9 ppm | Camphene | 0.9 ppm | | β-Myrcene | 6.3 ppm | α-Terpinene | 6.1 ppm | | R (+) Limonene | 6.6 ppm | Eucalyptol | 25.1 ppm | | Endo-Fenchyl Alcohol | 166.4 ppm | γ-Terpinene | 2.1 ppm | | α-Terpineol | 14.3 ppm | Fenchone | 0.3 ppm | | α-Pinene | 0.5 ppm | Trans-Nerolidol | 150.4 ppm | ### **Dosages** - Sativex (~2.5 mg THC and CBD) - Dronabinol (2.5, 5.0, 10 mg THC) - Typical dosages of medical marijuana in PA will be 10 mg of THC (in extracts) - Diversion: - Low dose (esp. compared to marijuana cigarette) - Expensive - Centralized state-wide tracking - Combustible now available ## **↓** #### **Certification (Card)** #### **Certification (Card)** Recommendation ### **Two Public Health Concerns** CBG Oil Delta-8-THC #### The Pharmacological Case for Cannabigerol Rahul Nachnani, Wesley M. Raup-Konsavage and Kent E. Vrana Journal of Pharmacology and Experimental Therapeutics February 2021, 376(2) 204-212; DOI: https://doi.org/10.1124/jpet.120.000340 ### Cannabigerol (CBG) & CBG Oil ## Cannabigerol (CBG) | | THC | | CBD | | CBG | | |----------|------------------|--------------------|---------------------|-----------------------------------|--------------------|--------------------| | Receptor | Affinity
(nM) | Function | Affinity
(nM) | Function | Affinity
(nM) | Function | | CB1 | 5.1-80.3 (Ki) | Partial
Agonist | 1458.5-4900
(Ki) | Inverse
Agonist/
Antagonist | 440-1045
(Ki) | Weak
Agonist | | CB2 | 3.1-75.3 (Ki) | Agonist | 372.4-4200
(Ki) | Inverse
Agonist | 153.4-1225
(Ki) | Partial
Agonist | | GPR55 | 8 (EC50) | Agonist | 445 (IC50) | Antagonist | N.T. | Unknown | ## Cannabigerol (CBG) | | ТНС | | Cl | BD | CBG | | |--------------------|------------------|----------|------------------|---------------------|------------------|------------| | Receptor | Affinity
(nM) | Function | Affinity
(nM) | Function | Affinity
(nM) | Function | | adrenoceptor | N.T. | Unknown | N.T. | Unknown | 0.2-72.8 | Agonist | | 5-HT _{1A} | N.T. | Unknown | N.D. | Indirect
Agonist | 51.9 | Antagonist | #### Delta-8 Tetrahydrocannabinol (Δ⁸-THC) #### A. #### **Δ**⁸-Tetrahydrocannbinol (THC) #### **Δ**⁹-Tetrahydrocannbinol (THC) 44±12 nM 44±17 nM CB1 CB2 OH J,H 40.7±1.7 nM 36±10 nM В. ### Research Initiatives at Penn State - Cannabinoids and Cancer (Lu, Vrana, and Yun) - Identifying cannabinoids that reduce cancer cell viability - Elucidating mechanisms - Cannabinoids and Pain - Preclinical (ratios of THC:CBD) (Graziane and Kamal) - Acute Pain - Inflammatory Pain - Osteoarthritis - Neuropathic Pain - Clinical (Gordin, Thomas, and Deimling) - Opioid Limiting and Endometriosis Pain - Cannabinoids and Novel Receptors and Pathways (Arnold, Mailman, and Dokholyan) - Pharmacokinetics and Drug-Drug Interactions (Knehans, Raup-Konsavage, Kocis, Neighbors, and Vrana) - Patient Outcomes Database (Leslie, and Vrana) ## **Long Term Goals** - CBG Oil and THC Oil - Endometriosis pain and CBD (Tim Deimling) - Clinical pain trial, opioid-sparing - Evaluating optimum ratios of THC:CBD for pain, anxiety, PTSD, other disorders (preclinical) - Cannabinoids to treat opioid addiction - Continuing to monitor and identify Drug-Drug Interactions - Mobile App (Paul Kocis and Penn State-Harrisburg) - Pharmacokinetics of topical cannabinoids - Begin exploring relationships between genetics and outcomes (personalized medicine) - Graduate Student Fellowship Program - Launching, May, 2021 - Potential undergraduate degree or certificate program Cannabis and Cannabinoid Research Volume 3.1, 2018 DOI: 10.1089/can.2018.0065 ## Cannabis and Cannabinoid Research Mary Ann Liebert, Inc. & publishers #### ORIGINAL RESEARCH **Open Access** # Synthetic Cannabinoid Activity Against Colorectal Cancer Cells Wesley M. Raup-Konsavage,¹ Megan Johnson,¹ Christopher A. Legare,¹ Gregory S. Yochum,² Daniel J. Morgan,^{1,3} and Kent E. Vrana^{1,*} Raup-Konsavage et al. (2018) Cannabis Cannabinoid Res | Compound | SW480 | SW620 | HT29 | DLD-1 | HCT116 | LS174 | RKO | |---------------------------------|----------|----------|----------|----------|-----------|----------|----------| | CBD | 16.4±0.6 | n.d. | 23.0±4.4 | 19.8±1.4 | n.d. | n.d. | n.d. | | HU-331 | 5.5±1.6 | 11.1±2.5 | 17.0±3.2 | 7.8±1.8 | 11.0±4.2 | 8.36±2.3 | 10.4±2.1 | | (±)-5-epi CP 55,940 | 6.5±1.6 | 8.1±1.0 | 7.3±1.0 | 5.3±0.04 | 4.9±0.5 | 6.2±0.5 | 5.9±0.5 | | (±) CP 55,940 | 25.1±3.1 | 26.8±2.7 | 21.3±5.5 | 21.7±2.6 | 16.2±5.6 | 16.3±2.2 | 14.9±1.7 | | (+) CP 55,940 | 24.4±5.6 | 31.1±3.5 | 24.1±4.6 | 16.0±1.2 | 16.8±4.0 | 16.9±3.6 | 19.0±3.3 | | (-) CP 47,497 | 8.9±0.1 | 16.5±6.5 | 24.6±5.7 | 12.6±2.3 | 14.7±0.02 | 23.0±6.1 | 19.8±4.4 | | (±) 3-epi CP 47,497 C-8 Homolog | 8.9±1.7 | 13.5±1.4 | 14.2±5.0 | 12.4±2.0 | 12.6±1.5 | 12.2±0.9 | 15.0±2.8 | | (±) CP 47,497 C-8 Homolog | n.d. | n.d. | 20.1±4.2 | 33.4±1.8 | 32.0±1.8 | 21.7±6.1 | 39.0±5.6 | | PTI-1 | 11.9±2.3 | 19.6±0.2 | 14.4±2.4 | 19.4±1.1 | 21.2±5.5 | 25.0±3.6 | 27.5±2.7 | | PTI-2 | 7.4±1.4 | 23.9±3.6 | 8.2±1.6 | 34.2±7.8 | 27.7±3.1 | n.d. | 15.6±2.9 | | NPB-22 | 9.7±0.6 | n.d. | n.d. | n.d. | 15.2±6.3 | n.d. | n.d. | | Compound | SW480 | SW620 | HT29 | DLD-1 | HCT116 | LS174 | RKO | |---------------------------------|----------|----------|----------|----------|-----------|----------|----------| | CBD | 16.4±0.6 | n.d. | 23.0±4.4 | 19.8±1.4 | n.d. | n.d. | n.d. | | HU-331 | 5.5±1.6 | 11.1±2.5 | 17.0±3.2 | 7.8±1.8 | 11.0±4.2 | 8.36±2.3 | 10.4±2.1 | | (±)-5-epi CP 55,940 | 6.5±1.6 | 8.1±1.0 | 7.3±1.0 | 5.3±0.04 | 4.9±0.5 | 6.2±0.5 | 5.9±0.5 | | (±) CP 55,940 | 25.1±3.1 | 26.8±2.7 | 21.3±5.5 | 21.7±2.6 | 16.2±5.6 | 16.3±2.2 | 14.9±1.7 | | (+) CP 55,940 | 24.4±5.6 | 31.1±3.5 | 24.1±4.6 | 16.0±1.2 | 16.8±4.0 | 16.9±3.6 | 19.0±3.3 | | (-) CP 47,497 | 8.9±0.1 | 16.5±6.5 | 24.6±5.7 | 12.6±2.3 | 14.7±0.02 | 23.0±6.1 | 19.8±4.4 | | (±) 3-epi CP 47,497 C-8 Homolog | 8.9±1.7 | 13.5±1.4 | 14.2±5.0 | 12.4±2.0 | 12.6±1.5 | 12.2±0.9 | 15.0±2.8 | | (±) CP 47,497 C-8 Homolog | n.d. | n.d. | 20.1±4.2 | 33.4±1.8 | 32.0±1.8 | 21.7±6.1 | 39.0±5.6 | | PTI-1 | 11.9±2.3 | 19.6±0.2 | 14.4±2.4 | 19.4±1.1 | 21.2±5.5 | 25.0±3.6 | 27.5±2.7 | | PTI-2 | 7.4±1.4 | 23.9±3.6 | 8.2±1.6 | 34.2±7.8 | 27.7±3.1 | n.d. | 15.6±2.9 | | NPB-22 | 9.7±0.6 | n.d. | n.d. | n.d. | 15.2±6.3 | n.d. | n.d. | Figure 6 #### Legal and Regulatory Aspects – Commentary Medical Cannabis and Cannabinoids Med Cannabis Cannabinoids 2018;1:65–72 DOI: 10.1159/000489287 Received: April 9, 2018 Accepted: April 11, 2018 Published online: June 12, 2018 ### The Trouble with CBD Oil Arno Hazekamp Hazekamp Herbal Consulting, Leiden, The Netherlands **Table 1.** Analysis of Dutch cannabis oil samples obtained from actual patients, comparing the claimed cannabinoid content on the product label with lab results measured in the study [51] | Sample ID | CBD(A) | | | THC(A) | · | , | |-----------|-------------|----------------|----------------------|-------------|----------------|----------------------| | | label,
% | measured,
% | deviation,
rel. % | label,
% | measured,
% | deviation,
rel. % | | 1 | 27 | 2.3 | -91.5 | 17 | 0.1 | -99.4 | | 2 | 25 | 0 | -100 | 35 | 4.6 | -86.9 | | 3 | 12 | 0.2 | -98.3 | _ | 0 | * | | 4 | 10.9 | 2.8 | -74.3 | _ | 0.1 | 4 | | 5 | 10 | 2.2 | -78 | 10 | 4 | -60 | | 6 | 8 | 0.6 | -92.5 | 4 | 0.2 | -95 | | 7 | 8 | 0.6 | -92.5 | 4 | 0.1 | -97.5 | | 8 | 6 | 0.2 | -96.7 | 5 | 0.1 | -98 | | 9 | 5 | 0 | -100 | 40 | 3.4 | -91.5 | | | | | | _ | 0.2 | * | | 11 | 4 | 5.4 | +35 | _ | 0.3 | * | | 12 | 4 | 4 | 0 | _ | 0 | 4 | | 13 | 4 | 4.2 | +5 | _ | 0 | M | | 14 | 3 | 3.1 | +3.3 | _ | 0.2 | 4 | | 15 | 2.75 | 2.8 | +1.8 | _ | 0.1 | + | | 16 | 0.1 | 0.1 | 0 | 4 | 6.3 | +57.5 | | 17 | _ | 0.1 | # | 7 | 7.9 | +12.9 | | 18 | _ | 0 | * | 5 | 0.7 | -86 | | 19 | _ | 0 | H ⁻ | 5 | 0.9 | -82 | | 20 | _ | 0.1 | * | 20 | 15.8 | -21 | | 21 | _ | 0 | * | 7 | 6.4 | -8.6 | CBD, cannabidiol; THC, tetrahydrocannabinol; CBD(A), total sum of CBD plus CBD-acid; THC(A), total sum of THC plus THC-acid. * Not applicable because no label claim was made. #### MEDICAL CANNABIS AND CANNABINOIDS # Cannabidiol (CBD) Oil Does Not Display an Entourage Effect in Reducing Cancer Cell Viability In Vitro Wesley M. Raup-Konsavage, Nurgul Carkaci-Salli, Kelly Greenland, Robert Gearheart Jr., Kent E. Vrana Med Cannabis Cannabinoids 2020;3:95–102 ## **CBD Variably Reduces Cancer Cell Viability** Vehicle CBD Vehicle CBD ## **Comparison of CBD Oils** Oil A Oil B Oil C | Pigment | Wavelength | Oil A | Oil B | Oil C | |---------------|------------|-------|-------|-------| | Chlorophyll a | 430 nm | 0.21 | 0.57 | 0.08 | | Chlorophyll b | 453 nm | 0.14 | 0.37 | 0.09 | | Carotenoids | 500 nm | 0.06 | 0.16 | 0.05 | ### **CBD Oils Have Variable Potencies or Efficacies** ## No CBD Oil is More Potent than Pure CBD ## Medical Cannabis and Cannabinoids #### Preclinical Science and Clinical Studies – Review Article Med Cannabis Cannabinoids DOI: 10.1159/000507998 Received: March 16, 2020 Accepted: April 19, 2020 Published online: July 7, 2020 # Delta-9-Tetrahydrocannabinol and Cannabidiol Drug-Drug Interactions Paul T. Kocis^{a, b} Kent E. Vrana^b ^aDepartment of Pharmacy, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA; ^bDepartment of Pharmacology, Penn State College of Medicine, Hershey, PA, USA ## sites.psu.edu/cannabinoid Table 2. List of Narrow Therapeutic Index (NTI) medications to be closely monitored when coadministered with cannabinoids, either therapeutically or recreationally | Narrow Therapeutic Index (NTI) medication | Enzyme/metabolism | |---|---| | acenocoumarol (VKA) | CYP1A2, CYP2C9, CYP2C19, CYP3A4 | | alfentanil | CYP3A, CYP3A4 | | aminophylline | CYP1A2, CYP3A4 | | amiodarone | CYP1A2, CYP2C8, CYP2C19, CYP3A4 | | amitriptyline | CYP1A2, CYP2B6, CYP2C19, CYP3A4 | | amphotericin B | Protein binding | | argatroban | CYP3A4 | | busulfan | CYP3A4 | | carbamazepine | CYP1A2, CYP3A4, UGT2B7 | | dindamycin | CYP3A4 | | domipramine | CYP1A2, CYP2B6, CYP2C19, CYP3A4, UGT2B7 | | donidine | CYP1A2, CYP3A4 | | dorindione (VKA) | CYP3A4 | | cyclobenzaprine | CYP1A2, CYP3A4 | | cyclosporine | CYP3A4 | | dabigatran etexilate | UGT1A9, UGT2B7 | | desipramine | CYP1A2, CYP2B6 | | dicoumarol (VKA) | CYP2C9 | | digitoxin | CYP3A4 | | dihydroergotamine | CYP3A4 | | diphenadione (VKA) | CYP3A4 | | dofetilide | CYP3A4 | | dosulepin | CYP2B6 | | doxepin | CYP1A2, CYP2C9, CYP2C19, CYP3A4 | | ergotamine | CYP3A4 | | sketamine | CYP2B6, CYP3A4 | | ethinyl estradiol (oral contraceptives) | UGT1A9, UGT2B7 | | ethosuximide | CYP2E1, CYP3A4 | | ethyl biscoumacetate (VKA) | CYP3A4 | | everolimus | CYP3A, CYP3A4 | | fentanyl | CYP3A4 | | fluindione (VKA) | CYP2C9, CYP3A4 | | osphenytoin | CYP2C8, CYP2C9, CYP2C19, CYP3A4 | | mipramine | CYP1A2, CYP2B6, CYP2C19, CYP3A4 | | evothyroxine | CYP3A4 | | ofepramine | CYP2B6 | | melitracen | CYP2B6 | | meperidine | CYP2B6, CYP3A4 | | mephenytoin | CYP1A2, CYP2C19 | | mycophenolic acid | UGT1A9, UGT2B7 | | nortriptyline | CYP1A2, CYP2B6, CYP3A4 | | paclitaxel | CYP2C8, CYP3A4 | | phenobarbital | CYP2C19 | | phenprocoumon (VKA) | CYP2C8, CYP2C9, CYP3A4 | | phenytoin | CYP2C8, CYP2C9, CYP2C19 | | pimozide | CYP1A2, CYP3A, CYP3A4 | | propofol | UGT1A9 | | quinidine | CYP2C9, CYP2E1, CYP3A4 | | sirolimus | CYP3A, CYP3A4 | | acrolimus | CYP3A, CYP3A4 | | emsirolimus | CYP3A4 | | heophylline | CYP1A2, CYP3A4 | | hiopental | CYP2C19 | | tianeptine | CYP3A4 | | rimipramine | CYP2B6 | | valproic acid | CYP2C9, UGT1A9, UGT2B7 | | warfarin (VKA) | CYP1A2, CYP2C9, CYP2C19, CYP3A4 | ## Collaborators - Wesley Raup-Konsavage, PhD - Nurgul Carkaci-Salli, PhD - Paul Kocis, PharmD - Rahul Nachnani, MD/PhD student - Christopher Legare, MD - Amy Knehans - Diana Sepulveda - Fadia Kamal, PhD - Doug Leslie, PhD - Nick Graziane, PhD - Dhimant Desai, PhD - Greg Yochum, PhD - Dan Morgan, PhD - Richard Mailman, PhD - Johnny Lu, PhD - Jung Yun, PhD - Amy Arnold, PhD - Yuval Silberman, PhD - Kelly Greenland, PhD and Robert Gearhart Many thanks to Tom Trite and PA Options for Wellness and the Elliot S. Vesell Professorship (for financial support) # Questions? (kvrana@psu.edu)