

Power Training: Research-Based Insights for Training Older Adults

Joseph Signorile, PhD University of Miami

Power, strength and velocity declines with age

After data from Metter et al., J Gerontol A: Bio Med Sci, 1997

After data from Campitelli et al., J Aging Phys Act, 2021

Power training, daily activities, and fall probability Maintaining independence and reducing fall probability

There is little doubt that lower body and upper body power are linked to maintaining independence (Foldvari et al., 2000; Cuoco et al., 2004; Bean et al., 2002; Reid et al 2012) and reducing the probability of injurious falls (Skelton et al., 2002; Whipple et al., 1987; Sran et al., 2010; Troy et al., 2009).

The optimal load for power

Session Title

POWER = FORCE x VELOCITY

When examining the load-velocity and power curves, there are several questions that become immediately evident.

- Can the effects of the force-velocity curve be visualized during training?
- Is there truly an optimal load for training?
- Can I manipulate loads to target my client's needs?

Can the effects of the force-velocity curve be visualized during training?

Is there truly an optimal load for training?

Biomechanical Considerations

Session Title

Optimal load by exercise

Table 2

Relative peak power at each load among exercises.

Exercise	40%	50%	60%	70%	80%
Multi-joint exercises Leg press Chest press Seated row Shoulder press	$\begin{array}{l} 0.761 \ \pm \ 0.034^{\rm c} \\ 0.859 \ \pm \ 0.025^{\rm bc} \\ 0.859 \ \pm \ 0.025^{\rm s} \\ 0.807 \ \pm \ 0.043 \end{array}$	$\begin{array}{r} 0.841 \pm 0.026^{ab} \\ 0.913 \pm 0.019^{ab\dagger} \\ 0.893 \pm 0.021^{a\dagger} \\ 0.847 \pm 0.041 \end{array}$	$\begin{array}{c} 0.887 \pm 0.023^{ab\dagger} \\ 0.897 \pm 0.018^{bc} \\ 0.874 \pm 0.021^{a} \\ 0.917 \pm 0.024^{\dagger} \end{array}$	$\begin{array}{r} 0.839 \ \pm \ 0.020^{bc} \\ 0.861 \ \pm \ 0.024^{c} \\ 0.809 \ \pm \ 0.024^{b} \\ 0.902 \ \pm \ 0.020 \end{array}$	$\begin{array}{c} 0.822 \ \pm \ 0.027^{bc} \\ 0.735 \ \pm \ 0.028^{d} \\ 0.755 \ \pm \ 0.025^{b} \\ 0.855 \ \pm \ 0.025 \end{array}$
Single-joint exercises Hip adduction Hip abduction Leg curl Calf raise Biceps curl Triceps extension	$\begin{array}{r} 0.869 \ \pm \ 0.021^{cd} \\ 0.884 \ \pm \ 0.021 \\ 0.840 \ \pm \ 0.027 \\ 0.698 \ \pm \ 0.041^c \\ 0.711 \ \pm \ 0.042^c \\ 0.800 \ \pm \ 0.029^b \end{array}$	$\begin{array}{r} 0.929 \pm 0.012^{ab\dagger} \\ 0.922 \pm -0.016^\dagger \\ 0.872 \pm 0.027^\dagger \\ 0.831 \pm 0.039^{ab} \\ 0.777 \pm 0.038^{bc} \\ 0.887 \pm 0.018^a \end{array}$	$\begin{array}{l} 0.922 \ \pm \ 0.017^{ab} \\ 0.910 \ \pm \ 0.019 \\ 0.849 \ \pm \ 0.024 \\ 0.885 \ \pm \ 0.032^{a\dagger} \\ 0.845 \ \pm \ 0.034^{ab\dagger} \\ 0.922 \ \pm \ 0.015^{a\dagger} \end{array}$	$\begin{array}{c} 0.885 \pm 0.885^{bc} \\ 0.870 \pm 0.021 \\ 0.865 \pm 0.023 \\ 0.812 \pm 0.030^{ab} \\ 0.842 \pm 0.048^{ab} \\ 0.898 \pm 0.019^{a} \end{array}$	$\begin{array}{r} 0.827\ \pm\ 0.031^{d}\\ 0.849\ \pm\ 0.024\\ 0.844\ \pm\ 0.024\\ 0.726\ \pm\ 0.036^{bc}\\ 0.837\ \pm\ .046^{ab}\\ 0.891\ \pm\ 0.022^{a} \end{array}$

Values are mean \pm SD. Loads are presented as a percentage of one-repetition maximum (1RM). \dagger indicates load at which peak power was obtained. All values with similar letter are not significantly different from each other (p < 0.05).

Strand et al., Exp Gerontol, 2019

Biomechanical Considerations

...and now a practical example

Strand et al., Exp Gerontol, 2019

Richardson, D. L., et al., *Experimental Gerontology*, 2018

So what?

Can I manipulate loads to target my client's needs?

F-V profiling

Alcazar et al., Exp Gerontol., 2018

Velocity-based Training: Using Power Deficits

- •To target velocity: 10% power deficit
- •To target force: 30% power deficit

Velocity-based Training using Power Deficits:

Velocity Deficit

Velocity-based Training using Power Deficits:

Force Deficit

Velocity-Based Training

While this does allow us to target specific deficits along the force-velocity curve...

Velocity-Based Training

...we are still determining the relationships between these deficits and activities of daily living.

Theoretically, is one of these tests more velocity-based and one more load based...and why?

Set Structures

Background

Traditional Set Structure (TS)

The completion of a training set occurs without any rest being taken between repetitions. Cluster Set Structure (CS)

Adding pre-planned rest intervals within a set alongside normal interset rest periods, thereby breaking sets into small clusters of repetitions. **Rest Redistribution Set Structure (RR)** The addition of shorter, more frequent rests intervals within the set structure.

Traditional Set Structure

Cluster Set Structure

Rest Redistribution Set Structure

What equipment is optimal?

High-speed training and modalities

Although free weights and stack-loaded machines are common modalities used to develop power; however, they have three inherent problems.

- Deceleration
- Momentum
- Safety

High-speed training and modalities

Deceleration

- During explosive movements, the bar, dumbbell or weight-stack must be decelerated at the end of the movement (Gambetta V., 1998)
- In fact, it has been estimated that during a 7RM (81% max) lift, over half the duration of the lift is spent slowing the weight down as you approach your endpoint (Elliot et al., 1989; Wilson et al., 1993; Wolfe et al., 1982).
- The time necessary to slow down the weight would increase as the load is decreased and velocity increases, causing a reduction in maximal power improvements (Schmidtbleicher, D., 1982; Schmidtbleicher et al., 1988).

Momentum

Napoli et al., Human Movement Science, 2015

High-speed training and modalities

Injury Potential

• The highest injury risks occur at the extreme end ranges of motion of a resistance-based exercise (Kumar S., 2001. This may be acerbated by momentum during the use of stack- or plate-loaded machines or free weights Elliot et al., 1989; Wilson et al., 1993; Wolfe et al., 1982).

Plate-Loaded Power Training

Pneumatic-Loaded Power Training

Thank you for attending! We appreciate your support.

Joseph Signorile, PhD University of Miami