## **EXTENDING METER SERVICE LIFE**

Mary Ellen Wimberly Stoll Keenon Ogden PLLC

#### **Overview**

- 1. Meter Testing Requirements
- 2. Meter Accuracy
- 3. Utilities Achieving Extended Service Life
- 4. Sample Testing
- 5. Case No. 2016-00432
- 6. Case No. 2019-00115

- KRS 278.210
  - Establishes statutory standard for meters
  - Meter may not be more than two percent to the disadvantage of the customer (2% fast)

• KRS 278.210(4):

 – "If a utility demonstrates through sample testing that no statistically significant number of its meters over-register above the limits set out in subsection (3) of this section, the meter testing frequency shall be that <u>which is determined by</u> <u>the utility to be cost effective</u>."

- 807 KAR 5:066, Section 15
  - Requires meters be tested prior to initial placement into service
  - Provides accuracy limits for new, rebuilt, and repaired cold water meters
  - Prohibits any new, rebuilt, or repaired meter from being placed in service if it does not register within accuracy limits

## Accuracy Limits: 5/8 x 3/4 Inch Displacement Meters

- Maximum Rate
  - Flow Rate: 15 gpm
  - Accuracy Limit: 98.5-101.5%
- Intermediate Rate
  - Flow Rate: 2 gpm
  - Accuracy Limit: 98.5-101.5%

## Accuracy Limits: 5/8 x 3/4 Inch Displacement Meters

- Minimum Rate
  - Flow Rate: 1/4 gpm
  - Accuracy Limit:
    - 95-101% (New and Rebuilt)
    - 90% (Repaired)

- 807 KAR 5:066, Section 16
  - "Each utility shall test periodically <u>all water</u>
    <u>meters</u> so that no meter will remain in service without test for a period longer than specified[.]"
  - 5/8 x 3/4 Inch: 10 years

#### Significant Savings Example

- Utility: 5,000 meters
- Meter cost: \$100
- Annual Savings:
  - 10 years: 500 meters replaced yearly
  - 15 years: 333 meters replaced yearly
  - − 167 fewer meters purchased annually → \$16,700 annual savings

#### Significant Savings Example

- Utility: 5,000 meters
- Meter cost: \$100
- Avoided Capital Expenditures:
  - Utility avoids replacing 2,500 meters over next five years (500 meters per year)
  - One-time savings: \$250,000

# Meter Accuracy

#### Meter Accuracy

- Meter accuracy > 10 years
- Most meters warranted for accuracy for at least 15 years
  - Example: Sensus warranty
    - Sensus SRII: 15 years
    - Sensus iPERL: 20 years

**Meter Accuracy Over Time** 



Implementing an Advanced Metering Analytics (AMA) Managed

Morrice Blackwell & Jason Wilson

#### Meter Accuracy

- Declining meter accuracy = slow meters
- Without regulation, utilities would change meters when revenue loss from slow meters > cost to replace meters

## Utilities Achieving Extended Service Life

#### Warren County Water Dist. v. PSC

- Case No. 2011-00220
  - Joint Applicants sought deviation from 10-year testing requirement based upon results of sample testing from Case No. 2003-00391
  - Testing Results:
    - Meters remained within standards for 15 years
    - Lost revenue from inaccurate meters did not exceed cost of testing until 21 years in service
  - PSC authorized deviation to permit meters in service for 15 years without testing

#### Warren County Water Dist. v. PSC

- Utility brings action for review  $\rightarrow$  REVERSED
- Franklin Circuit Court found:
  - Significant that meters do not over register
  - − Sampling plan was cost-effective → met KRS
    278.210(4)

#### Case No. 2009-00253

- Kentucky-American sample tested group of meters
- Meters tested within standard after 15 years of service
- PSC extended time in service to 15 years for meters
- Estimated annual savings: \$90,000
- Estimated annual capital expenditure savings: \$545,000

# Sample Testing

### Sample Testing

- Sample = subset containing characteristics of a larger population
- Statutes and regulations acknowledge sample testing

### Sample Testing

- KRS 278.210(4)
  - "If a utility demonstrates through <u>sample testing</u> that no statistically significant number of its meters over-register . . . ."
- 807 KAR 5:041, Section 16 (Electric)
- 807 KAR 5:022, Section 8(5)(c) (Gas)

#### Sample Testing

- ANSI/ASQ Z1.9-2003 (R2013), Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming ["ANSI Standard"]
  - Three Inputs
  - Acceptance Calculation

- Three Inputs
  - 1. Acceptance Quality Limit ("AQL")
    - Worst tolerable product average
    - Table A-1
    - PSC Cases
      - Use AQL of 2.0
      - Converts to 2.5

*Table A-1* AQL Conversion Table

| For specif<br>falling wit | fied A<br>hin th | OL values<br>lese ranges | Use this AQL<br>value |
|---------------------------|------------------|--------------------------|-----------------------|
|                           | to               | 0.109                    | 0.10                  |
| 0.110                     | to               | 0.164                    | 0.15                  |
| 0.165                     | to               | 0.279                    | 0.25                  |
| 0.280                     | to               | 0.439                    | 0.40                  |
| 0.440                     | to               | 0.669                    | 0.65                  |
| 0.700                     | to               | 1.09                     | 1.0                   |
| 1.10                      | to               | 1.64                     | 1.5                   |
| 1.65                      | to               | 2.79                     | 2.5                   |
| 2.80                      | to               | 4.39                     | 4.0                   |
| 4.40                      | to               | 6.99                     | 6.5                   |
| 7.00                      | to               | 10.9                     | 10.0                  |

- Three Inputs
  - 2. Inspection Level
    - Five different inspection levels
    - A7: "Unless otherwise specified, Inspection Level II shall be used."
    - PSC Cases
      - Inspection Level II

- Three Inputs
  - 3. Lot Size
    - Size of entire group
    - Example: Total number of meters of a certain age
  - Based on inputs, ANSI Standard provides sample size
  - Must randomly select sample!
    - PSC has approved selections by Excel, billing software, or other computerized process

| Lot Size        | Sample Size |
|-----------------|-------------|
| Less than 16    | 3           |
| 16 to 25        | 4           |
| 26 to 50        | 5           |
| 51 to 90        | 7           |
| 91 to 150       | 10          |
| 151 to 280      | 15          |
| 281 to 400      | 20          |
| 401 to 500      | 25          |
| 501 to 1,200    | 35          |
| 1,201 to 3,200  | 50          |
| 3,201 to 10,000 | 75          |

### Case No. 2016-00432: Maximum Flow Results

| 1.  | 99.5  | 13. | 99.2 | 25. | 99.6  |
|-----|-------|-----|------|-----|-------|
| 2.  | 99.4  | 14. | 99.6 | 26. | 99.7  |
| 3.  | 99.2  | 15. | 99.9 | 27. | 101.0 |
| 4.  | 98.5  | 16. | 99.6 | 28. | 99.0  |
| 5.  | 99.3  | 17. | 99.5 | 29. | 99.6  |
| 6.  | 100.0 | 18. | 99.4 | 30. | 99.3  |
| 7.  | 99.5  | 19. | 99.5 | 31. | 98.5  |
| 8.  | 100.0 | 20. | 99.2 | 32. | 99.2  |
| 9.  | 100.2 | 21. | 99.4 | 33. | 98.5  |
| 10. | 99.8  | 22. | 99.6 | 34. | 99.5  |
| 11. | 100.3 | 23. | 99.6 | 35. | 99.3  |
| 12. | 100.0 | 24. | 99.5 |     |       |

#### ANSI Standard Acceptance for Maximum Flow

| 1                                                   | Sample Size: n                                                           | 35       |  |
|-----------------------------------------------------|--------------------------------------------------------------------------|----------|--|
| 2                                                   | Sum of Measurements                                                      | 3482.9   |  |
| 3                                                   | Sum of Squared Measurements                                              | 346596.6 |  |
| 4                                                   | Correction Factor (CF)                                                   | 346588.4 |  |
| 5                                                   | Corrected Sum of Squares (SS)                                            | 8.235429 |  |
| 6                                                   | Variance (V)                                                             | 0.242218 |  |
| 7                                                   | Estimate of Lot Standard Deviation                                       | 0.492157 |  |
| 8                                                   | Sample Mean                                                              | 99.51143 |  |
| 9                                                   | Upper Specification Limit                                                | 101.5    |  |
| 10                                                  | Lower Specification Limit                                                | 98.5     |  |
| 11                                                  | Quality Index: QU (Upper)                                                | 4.040523 |  |
| 12                                                  | Quality Index: QL (Lower)                                                | 2.055093 |  |
| ANSI Standard Table B-5 used to derive values below |                                                                          |          |  |
| 13                                                  | Estimate of Lot Percent Nonconforming above Upper                        | 0.000%   |  |
| 14                                                  | Estimate of Lot Percent Nonconforming below Lower                        | 1.720%   |  |
| 15                                                  | Total Estimate Percent Nonconforming in Lot (P)                          | 1.720%   |  |
| 16                                                  | Maximum Allowable Percent Nonconforming (M)                              | 5.580%   |  |
| 17                                                  | Acceptability Criterion (to accept, P <m)< td=""><td>Accepted</td></m)<> | Accepted |  |

#### Low Flow Calculation

- Commission approved using a lower level of scrutiny for low flow test
  - AQL: 10
  - Inspection Level I

# Case No. 2016-00432

#### Case No. 2016-00432

- Request: Sample testing satisfies 807 KAR 5:066, Section 16(1)
  - "Each utility shall test periodically all water meters
    …"
  - Does sample testing satisfy this requirement?
- Alternatively: Deviation from regulation requirements

#### Case No. 2016-00432

- Request for deviation  $\rightarrow$  GRANTED
  - Lots must be divided by installation year, manufacturer, and type of mechanism used to measure water usage
  - Only damaged meters can be removed
  - Low flow testing method approved
  - Commission found cost savings significant
  - Additional protections for customers are important

#### Proceed With Caution . . .

• Line loss must be low



#### Proceed With Caution . . .

 "Moreover, with respect to any utility that would seek to rely on this Order as the basis for a request for deviation allowing sample testing, the Commission observes that this Order should provide notice that **implementing such a plan prior to** seeking Commission approval is a violation of 807 KAR 5:066, Section 16(1), and doing so may indicate a willful violation justifying the imposition of penalties."

#### Accuracy of Meters

• Have Hardin County Water District's meters remained accurate after 10 years?



#### HCWD2 Meter Accuracy - Maximum Flow

101.5



#### HCWD2 Meter Accuracy - Intermediate Flow



#### HCWD2 Meter Accuracy - Minimum Flow



## Case No. 2019-00115

#### Case No. 2019-00115

- Grayson County Water District requested deviation from 807 KAR 5:066, Section 16(1)
   Badger Model 25: 13 years → 15 years
- Approved with same restrictions as Case No. 2016-00432
- Commission stated Grayson District should test all meters in the sample at low flow rates

#### Case Nos. 2020-00137 & 2020-00138

- Filed June 8, 2020
- Final Order requested by October 1, 2020

#### **Questions?**

Mary Ellen Wimberly maryellen.wimberly@skofirm.com (859) 231-3047