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Manuscripts selected for publication are done so based on a peer-review process.  See instructions 
to authors for information on manuscript submission.  The journal is edited and published by the 
Connections Editorial Group: 
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Professor, Director of the Master of Public Health Program  
Professor in the Department of Preventive Medicine,  
University of Southern California, Alhambra, CA 91803 
 
Dr. Kathryn Coronges, Managing Editor 
Assistant Professor, Department of Behavioral Sciences & Leadership 
United States Military Academy, West Point, NY 10996 
 
Joseph Dunn, Associate Editor 
305 Route 403, Garrison, New York 10524 
 
Editorial Headquarters  
University of Southern California, Institute of Prevention Research 
1000 Fremont Ave., Unit #8, Building A, Room 5133, Alhambra, CA 91803  
Tel: (626) 457-4139; fax: (626) 457-6699 

 
Email tvalente@usc.edu or kate.coronges@usma.edu for questions or change in address.  
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International Network for Social Network Analysis 
Hardcopy circulation of Connections is sent to all members of INSNA, the International Network 
for Social Network Analysis, which has over 1300 members.  Subscription to CONNECTIONS 
can be obtained by registering for INSNA membership through the website: www.insna.org.  
Standard annual membership fee is US$60 ($40 for students).  Wherever possible, items 
referenced in articles (such as data and software) are made available electronically through the 
INSNA website.  In addition, the website provides access to a directory of members’ email 
addresses, network datasets, software programs, and other items that lend themselves to 
electronic storage.   
 
Sunbelt Social Network Conferences 
Annual conferences for INSNA members take place in the United States for two years and in 
Europe every third year.  The Sunbelt Conferences bring researchers together from all over the 
world to share current theoretical, empirical and methodological findings around social networks. 
Information on the annual Sunbelt Social Network Conferences can also be found on the INSNA 
website.  Sunbelt XXXI will be held in St. Pete Beach, Florida from February 8 - 15, 2011.  
 
Letters to the Editor 
As a new feature of CONNECTIONS, we welcome letters to the Editor on all issues of academic 
interest. Letters should be brief and will be subject to editing and condensation. In addition, book 
reviews, network images or review articles will be considered for publication.   
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Instructions to Authors 
 
CONNECTIONS publishes original empirical, theoretical, tutorial, and methodological articles 
that use social network analysis.  The journal publishes significant work from any domain that is 
relevant to social network applications and methods.  Commentaries or short papers in response 
to previous articles published in the journal are considered for publication.  Review articles that 
critically synthesize a body of published research are also considered, but normally are included 
by invitation only.  Authors who wish to submit a commentary, book review, network image or 
review article are welcome to do so.   
 
Submitting Manuscripts  
Authors are required to submit manuscripts online to the editor, Thomas Valente at 
tvalente@usc.edu.  Expect a notice of receipt of your manuscript via email within one week.  
Feedback from the editor and reviewers will be sent to the corresponding author within six 
months after receipt.  Revised or resubmitted manuscripts should include a detailed explanation 
of how the author has dealt with each of the reviewer's and editor's comments.  For questions or 
concerns about the submission process, authors should contact the editor. 
 
Manuscripts must be in MS Word format and should not exceed 40 pages including tables, 
figures and references.  Manuscripts should be arranged in the following order: title page, 
abstract, corresponding author contact information, acknowledgments, text, references, and 
appendices.  Abstracts should be limited to 250 words.  Please embed all images, tables and 
figures in the document.  Format and style of manuscript and references should conform to the 
conventions specified in the latest edition of Publication Manual of the American Psychological 
Association.  Please disable any automatic formatting when possible. A figure and its legend 
should be sufficiently informative that the results can be understood without reference to the text.  
Every issue, we select an image from an accepted article to appear on the front cover of the 
journal.  
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Abstract 
This research presents an intuitive and straight forward method of capturing both structural redundancy and the 
multiplicity of social ties in a small network of 20 corporate directors across four different social spheres in 1962.  
Structural redundancy is best thought of as the opposite of a unique tie which emerges in a network of interlocking 
corporate directors once the affiliations from other non-corporate organizations are included.  Unlike the analysis of 
structural redundancy, the multiplicity of ties recognizes that the number and the configuration of ties between a 
given pair of directors are both meaningful.  By utilizing these concepts, the paper shows how social club ties in 
1962 were especially important in adding unique (i.e., non-redundant) ties among the corporate directors.  The 
analysis of multiplicity reveals that over 60 percent of the directors had multiple ties and that 56 percent of the 
directors possessed ties stemming from two or more different types of social affiliations.  These results underscore 
that there is more to the social cohesion among corporate directors than interlocks alone.  
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INTRODUCTION 
 
At the second meeting of the Politics and 
Interlocking Directorates Research Community, 
Burris (2006, p. 2) called for a “Sociology of 
Elites” in which corporate interlocks would be 
“only one thread in a much denser fabric of 
social ties among corporations and corporate 
elites.”  Moreover, Burris cautioned those 
interested in pursuing a research agenda 
involving interlocking directorates “not to reify 
or isolate director interlocks from other social 
networks within which they are embedded.”  
This paper is a methodological response to this 
charge and explores the concepts of structural 
redundancy and multiplicity. 
 
There is certainly a rich literature on the 
sociology of elites.  The early works of Mills 
(1956) and Domhoff (1967, 1970, 1983, 1998) 
which document and map the inter-
organizational ties among the directors of the 
United States’ major corporations are clearly 
foundational to contemporary analyses of the 
structure and exercise of economic and political 
power in America.  For example, Thomas Dye’s 
work (2001) on his so-called “top down 
policymaking” begins with the national, i.e., 
corporate, elite.  Similarly, Useem’s concept of 
the “Inner Circle” emphasizes how interlocking 
corporate directors obtain information on 
“contemporary business practices and the 
general business environment” (1984, p. 85).  
Likewise, in their study of policy domains, 
Laumann and Knoke (1987) envision dyadic 
communication among decision-makers as a 
means of monitoring streams of activities that 
may present opportunities or threats to their 
organizations.  However, the men and women of 
the corporate elite are simultaneously directors 
of corporations and trustees or directors of 
museums, research universities, and members of 
social clubs.  The notion that elites fulfill 
multiple roles and positions within a number of 
different types of organizations is captured by 
Breiger’s concept of “duality” (1974).  
Subsequently, many researchers, including those 
mentioned above, have examined ties between 
corporations and a variety of non-corporate 
organizations as a means of assessing the 

interpersonal network of the business 
community. 
 
In 1979, Moore published an article on the 
national elite network using data from the 
American Leadership Study from 1971-72.  
Based on personal interviews and the snowball 
sampling of other leaders, Moore constructed an 
interpersonal network that was used to identify a 
“central circle” of influential elites.  Given this 
network clique, Moore was able to determine 
which individual business leaders were members 
of this “central circle” and whether such 
membership was associated with higher 
participation in non-profit foundations and 
policy planning organizations.  In the early 
1980s, Domhoff and a series of collaborators 
(Bonacich & Domhoff 1981; Salzman & 
Domhoff 1980, 1983) produced an extremely 
interesting set of findings concerning the links 
between corporations and policy planning 
groups, social clubs, universities, foundations 
and cultural/civic organizations. 
 
While certainly praiseworthy for establishing the 
empirical foundations for the study of the inter-
organizational ties between the corporate elite 
and policy planning organizations, nonprofit 
foundations and cultural organizations, these 
studies are not without problems.  To begin, 
Useem’s and Domhoff’s analyses share the 
difficulty of operating solely at the 
organizational level of analysis.  As such, in 
addition to analyzing inter-organizational 
connections, research into the formation, 
structure, and operation of the social mosaic of 
corporate directors would benefit from 
examining the inter-personal ties.  Although 
Moore’s work operates at this interpersonal level 
of analysis, the reputational and snowball 
sampling methodology do not allow the 
complete analysis of the interpersonal network 
formed by corporate and noncorporate directors.  
These criticisms do not apply to the work by 
Carroll, Fennema and Heemskerk (2010) which 
examines directors among the global 500 
corporations and the European Round Table of 
Industrialists, or to Carroll’s earlier work which 
examined the links between corporate directors 
and five leading transnational policy groups 
(2004).  However, by focusing on one type of 
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American Leadership Study from 1971-72.  
Based on personal interviews and the snowball 
sampling of other leaders, Moore constructed an 
interpersonal network that was used to identify a 
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structure, and operation of the social mosaic of 
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formed by corporate and noncorporate directors.  
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(2004).  However, by focusing on one type of 
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extra-corporate relation, the issue of capturing 
the multiplicity of ties does not arise in these 
studies. 
 
One of the classic problems accompanying the 
examination of affiliation network data is the 
loss of information when relations and ties are 
reduced from two-modes to a single mode 
(Field, Frank, Schiller, Riegle-Crumb & Mulle, 
2006).  When networks are reduced to a single 
mode, the duality of social experience – the 
intersection of actors and events described by 
Breiger (1974) – is no longer fully captured.  As 
noted by Bonacich and Domhoff (1981), there 
are few methods that preserve the duality of 
persons and groups.  Instead, researchers must 
rely on techniques that focus on a single set of 
actors or events, such as the directors of large 
American corporations in the present study.  The 
methods that do exist to preserve information 
from both modes have focused chiefly on 
identifying sets of actors, clusters, and structural 
positions, rather than the contributions and 
configurations of types of ties across social 
space (See Laumann & Knoke 1987, Skvoretz & 
Faust 1999 and Doreian et al 2004 for examples 
of techniques.) 
 
A second problem with affiliation data (as with 
all valued networks) is the loss of information 
that occurs when valued ties are dichotomized in 
order to facilitate analysis.  As noted by Thomas 
and Blitzstein (2009), the transformation of 
valued data to binary data creates analytical 
uncertainty and may result in the loss of 
significant information.  In the case of an 
affiliation matrix of corporate directors, the 
value of each tie represents the number of joint 
corporate, museum, university and social club 
affiliations shared by a set of directors.  When 
ties are simply dichotomized, the relative value 
or the importance of any given type of relation is 
obscured.  Opsahl, Agneessens and Skvoretz 
(2010) have recently introduced a refined set of 
algorithms to measure mode centrality in 
weighted (valued) networks.  While certainly a 
step forward, these techniques still do not 
preserve the information captured by the 
multiplicity of ties.  That is, they still do not 
capture which relations are the most important to 
the actors and the network.  

In this paper, we describe a method of 
preserving important information about the 
context and configuration of ties while still 
allowing for ease of analysis with standard 
algorithms such as measures of centrality and 
density.  Our method is unique in that it allows 
us to understand the context in which ties are 
formed and to judge the types of relational ties 
that are most important or valuable.  Central to 
this project of answering Burris’ call for a richer 
sociology of elites are the concepts of structural 
redundancy and the multiplicity of ties. 
 
Structural Redundancy and the Multiplicity 
of Ties 
 
Redundancy 
 
Structural redundancy is best thought of as the 
opposite of a unique effect which occurs when 
new ties emerge in a network of interlocking 
corporate directors once the affiliations from 
other non-corporate organizations are included.  
On a more technical note, if additional ties are 
detected following the addition of two (or more) 
affiliation matrices and dichotomization of those 
ties, then unique ties exist.  Similarly, if there 
are differences in the structure of the network 
generated by the affiliations from two (or more) 
organizations in comparison to the network of 
corporate ties alone, then the ties added are not 
redundant to the existing ties.  In this paper, we 
will use four simple measures of network 
structure – network density, average degree, 
average betweenness, and average geodesic 
distance to highlight the unique contribution 
made by additional ties, or highlighting which 
ties are not redundant. 
 
Methodologically, capturing the unique effects 
of adding one set of ties is straightforward and 
consists of simply comparing the network 
density, average degree, average betweenness 
and average geodesic distance of a network of 
directors without and with the additional ties.  
However, the methods are somewhat more 
complicated if we want to consider the unique 
effects of adding, say, the ties from university 
board memberships while controlling for the 
effects of all the other non-corporate ties.  Here, 
we would need to compare a different set of 

 

results – the measures of network structure first 
utilizing the ties formed from all of the various 
affiliations with the same measures calculated 
without the organization in question.  In other 
words, if the ties formed through shared 
university board memberships are redundant, 
then there should be no difference between the 
measures based on all ties and those same 
measures based on all ties while excluding those 
from university boards.  Alternatively stated, if 
the analysis of the network with all but the 
university-based ties yields lower average 
degree or betweenness centrality, and higher 
average geodesic distance, then we can conclude 
that university ties have indeed made a unique 
contribution to the structure of the network. 
 
The second set of methodological issues 
concerns capturing the multiplicity of ties.  
Unlike the analysis of structural redundancy 
where we intentionally ignore multiple ties (i.e., 
we dichotomize the ties between a given pair of 
directors so that the tie is present or not), the 
multiplicity of ties recognizes that the number of 
ties between a given pair of directors matters.  
Furthermore, not only is the number of ties 

important, the configuration of those ties is also 
meaningful.  Consider Figure 1 which depicts 
three pairs of directors – all of which possess 
three ties between them. 
 
As seen in Figure 1, there are three types of ties 
represented – a tie formed by serving on the 
same corporate board, ties formed by being on 
the same university board, and a tie generated by 
belonging to the same social club.  Furthermore, 
the relative thickness of the line indicates the 
number of ties.  By extending the multiplicity of 
ties beyond the number of ties, this approach 
allows a researcher to identify those directors 
possessing only corporate ties, versus those 
associated by both corporate and university ties, 
versus those directors that are linked through 
corporate and two or more other organizational 
ties as seen in the last example.  By capturing 
the configuration of ties, this approach will be 
able to distinguish if a given pair of directors 
met only in boardrooms, or whether there were 
opportunities to meet outside board of director 
meetings – at a monthly Regents’ meeting or on 
the golf course during the weekend. 

 
 
 Figure 1.  Disaggregating the Multiplicity of Ties Among Corporate Directors 
 

 
   A   B 
 
 

     Joined by 3 Corporate Ties 
 

 
   C   D 
 
 

   Joined by 1 Corporate and 2 
University Ties 

 
   E   F 
 
 
  Joined by 1 Corporate, 1 University 

 and 1 Social Club Tie 
 
 
 
DATA  
 
To more clearly illustrate these concepts and our 
methodology, let us consider the following set of 
directors.  These affiliations represent actual ties 
abstracted from the much larger study of 
corporate directors from the year 1962.1  At its 
                                                           
1  All of the data have been obtained from public 
sources.  The corporate boards of directors were 
taken from various Moody's manuals.  The 
memberships on museum boards and university 
boards were gathered from annual reports or from 

core, the network consists of 11 of the 23 
directors that served on the board of the First 
National Bank of Chicago.  The remaining 9 
directors in this example had affiliations with 14 
other corporations.  Although not representing 
all of the types of ties in this study, some of 
these 20 directors also served on 2 museum 
boards, 2 university boards, and self-reported 
membership in 5 social clubs.  Taken together, 
                                                                                       
university documents.  Data on social club 
membership were obtained from the biographical 
sketches published in Who's Who in America. 
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extra-corporate relation, the issue of capturing 
the multiplicity of ties does not arise in these 
studies. 
 
One of the classic problems accompanying the 
examination of affiliation network data is the 
loss of information when relations and ties are 
reduced from two-modes to a single mode 
(Field, Frank, Schiller, Riegle-Crumb & Mulle, 
2006).  When networks are reduced to a single 
mode, the duality of social experience – the 
intersection of actors and events described by 
Breiger (1974) – is no longer fully captured.  As 
noted by Bonacich and Domhoff (1981), there 
are few methods that preserve the duality of 
persons and groups.  Instead, researchers must 
rely on techniques that focus on a single set of 
actors or events, such as the directors of large 
American corporations in the present study.  The 
methods that do exist to preserve information 
from both modes have focused chiefly on 
identifying sets of actors, clusters, and structural 
positions, rather than the contributions and 
configurations of types of ties across social 
space (See Laumann & Knoke 1987, Skvoretz & 
Faust 1999 and Doreian et al 2004 for examples 
of techniques.) 
 
A second problem with affiliation data (as with 
all valued networks) is the loss of information 
that occurs when valued ties are dichotomized in 
order to facilitate analysis.  As noted by Thomas 
and Blitzstein (2009), the transformation of 
valued data to binary data creates analytical 
uncertainty and may result in the loss of 
significant information.  In the case of an 
affiliation matrix of corporate directors, the 
value of each tie represents the number of joint 
corporate, museum, university and social club 
affiliations shared by a set of directors.  When 
ties are simply dichotomized, the relative value 
or the importance of any given type of relation is 
obscured.  Opsahl, Agneessens and Skvoretz 
(2010) have recently introduced a refined set of 
algorithms to measure mode centrality in 
weighted (valued) networks.  While certainly a 
step forward, these techniques still do not 
preserve the information captured by the 
multiplicity of ties.  That is, they still do not 
capture which relations are the most important to 
the actors and the network.  

In this paper, we describe a method of 
preserving important information about the 
context and configuration of ties while still 
allowing for ease of analysis with standard 
algorithms such as measures of centrality and 
density.  Our method is unique in that it allows 
us to understand the context in which ties are 
formed and to judge the types of relational ties 
that are most important or valuable.  Central to 
this project of answering Burris’ call for a richer 
sociology of elites are the concepts of structural 
redundancy and the multiplicity of ties. 
 
Structural Redundancy and the Multiplicity 
of Ties 
 
Redundancy 
 
Structural redundancy is best thought of as the 
opposite of a unique effect which occurs when 
new ties emerge in a network of interlocking 
corporate directors once the affiliations from 
other non-corporate organizations are included.  
On a more technical note, if additional ties are 
detected following the addition of two (or more) 
affiliation matrices and dichotomization of those 
ties, then unique ties exist.  Similarly, if there 
are differences in the structure of the network 
generated by the affiliations from two (or more) 
organizations in comparison to the network of 
corporate ties alone, then the ties added are not 
redundant to the existing ties.  In this paper, we 
will use four simple measures of network 
structure – network density, average degree, 
average betweenness, and average geodesic 
distance to highlight the unique contribution 
made by additional ties, or highlighting which 
ties are not redundant. 
 
Methodologically, capturing the unique effects 
of adding one set of ties is straightforward and 
consists of simply comparing the network 
density, average degree, average betweenness 
and average geodesic distance of a network of 
directors without and with the additional ties.  
However, the methods are somewhat more 
complicated if we want to consider the unique 
effects of adding, say, the ties from university 
board memberships while controlling for the 
effects of all the other non-corporate ties.  Here, 
we would need to compare a different set of 

 

results – the measures of network structure first 
utilizing the ties formed from all of the various 
affiliations with the same measures calculated 
without the organization in question.  In other 
words, if the ties formed through shared 
university board memberships are redundant, 
then there should be no difference between the 
measures based on all ties and those same 
measures based on all ties while excluding those 
from university boards.  Alternatively stated, if 
the analysis of the network with all but the 
university-based ties yields lower average 
degree or betweenness centrality, and higher 
average geodesic distance, then we can conclude 
that university ties have indeed made a unique 
contribution to the structure of the network. 
 
The second set of methodological issues 
concerns capturing the multiplicity of ties.  
Unlike the analysis of structural redundancy 
where we intentionally ignore multiple ties (i.e., 
we dichotomize the ties between a given pair of 
directors so that the tie is present or not), the 
multiplicity of ties recognizes that the number of 
ties between a given pair of directors matters.  
Furthermore, not only is the number of ties 

important, the configuration of those ties is also 
meaningful.  Consider Figure 1 which depicts 
three pairs of directors – all of which possess 
three ties between them. 
 
As seen in Figure 1, there are three types of ties 
represented – a tie formed by serving on the 
same corporate board, ties formed by being on 
the same university board, and a tie generated by 
belonging to the same social club.  Furthermore, 
the relative thickness of the line indicates the 
number of ties.  By extending the multiplicity of 
ties beyond the number of ties, this approach 
allows a researcher to identify those directors 
possessing only corporate ties, versus those 
associated by both corporate and university ties, 
versus those directors that are linked through 
corporate and two or more other organizational 
ties as seen in the last example.  By capturing 
the configuration of ties, this approach will be 
able to distinguish if a given pair of directors 
met only in boardrooms, or whether there were 
opportunities to meet outside board of director 
meetings – at a monthly Regents’ meeting or on 
the golf course during the weekend. 

 
 
 Figure 1.  Disaggregating the Multiplicity of Ties Among Corporate Directors 
 

 
   A   B 
 
 

     Joined by 3 Corporate Ties 
 

 
   C   D 
 
 

   Joined by 1 Corporate and 2 
University Ties 

 
   E   F 
 
 
  Joined by 1 Corporate, 1 University 

 and 1 Social Club Tie 
 
 
 
DATA  
 
To more clearly illustrate these concepts and our 
methodology, let us consider the following set of 
directors.  These affiliations represent actual ties 
abstracted from the much larger study of 
corporate directors from the year 1962.1  At its 
                                                           
1  All of the data have been obtained from public 
sources.  The corporate boards of directors were 
taken from various Moody's manuals.  The 
memberships on museum boards and university 
boards were gathered from annual reports or from 

core, the network consists of 11 of the 23 
directors that served on the board of the First 
National Bank of Chicago.  The remaining 9 
directors in this example had affiliations with 14 
other corporations.  Although not representing 
all of the types of ties in this study, some of 
these 20 directors also served on 2 museum 
boards, 2 university boards, and self-reported 
membership in 5 social clubs.  Taken together, 
                                                                                       
university documents.  Data on social club 
membership were obtained from the biographical 
sketches published in Who's Who in America. 
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Table 1 presents the affiliations of these 20 
directors across the 24 different organizations. 
When transformed into separate 20 x 20 
affiliation matrices representing corporate ties 
only, museum board ties only, university board 
ties only and social club membership ties only, 
each section of the 2-mode network generated a 
distinct set of affiliations. Based on corporate 
ties alone, there were 90 unique ties among the 
directors.  There were 7 ties formed between 
directors through shared affiliations while 
serving on the two museum boards.  Service on 
the boards of Regents or Trustees of the two 
universities created 13 ties.  Finally, in 1962, 
these 20 directors had 97 ties through shared 
social club memberships. 
 
Considering first the question of structural 
redundancy, the individual images in Figure 2 
below show in dramatic fashion how the 
addition of non-corporate ties (museum ties, ties 
based on university board service, and 
affiliations through shared social club 
memberships) represent unique contributions to 
the network’s structure.2 
 
While these visualizations are useful for 
networks of 20 directors, summary measures of 
network structure are needed to precisely 
capture the unique effects of ties from non-
corporate organizations and to accommodate 
larger networks.  Table 2 lays the foundation of 
these measures by reporting the number of total 
possible ties, the number of unique ties, and 
redundant ties.  The first column is simply the 
number of possible ties in a network of 20 
directors. 

                                                           
2  To add the affiliations from the different 
organizations, there are two options within UCINET.  
Begin by creating four 2-mode networks – the 20 
directors by each set of organizational ties.  The first 
option is to join the columns of the 2-mode matrices 
of interest.  After this command is executed, one can 
use the 2-mode to 1-mode command to generate the 
final affiliation matrix.  Alternatively, one can 
convert each of the four 2-mode networks into their 
respective affiliation matrices.  Then, to combine the 
sets of affiliations of interest, you use the matrix 
algebra tool in UCINET to add the matrices.  Once 
you have joined the matrices and have your 
affiliation matrix, you can dichotomize the ties. 

To determine the number of unique ties, the 
analyses utilize binary ties between directors.  
Consequently, the addition of a tie through 
shared board memberships on the Art Institute of 
Chicago will not add to the network if the tie 
already existed by virtue of being on the same 
corporate board of directors.  Therefore, if one 
compares the 90 ties that are formed through 
shared corporate affiliations with the 93 unique 
ties that emerge when one combines the 
corporate and university based ties, one can then 
conclude that of the 7 ties formed from the 
museum ties alone, 4 of them were redundant.  
In contrast to these relatively small numbers, 
consider the 133 unique ties that emerge when 
we combine corporate and club organizations.  
Since there were 97 ties among these directors 
based solely on social club memberships, we can 
then conclude that from these 5 private social 
clubs, 43 unique ties emerged while 54 were 
redundant to ties already created by shared 
corporate affiliations. 
 
This discussion of the number of unique ties 
leads seamlessly to the first measure of network 
structure, network density.  Network density is 
simply the number of unique ties divided by the 
number of all possible ties.  Since there are 90 
ties formed through shared corporate affiliations, 
and there are 190 total possible ties in a network 
of 20 directors, the density = 90/190 = 0.4737.  
When the 4 unique ties from museum ties are 
added, the network density increases slightly to 
0.4895.  In contrast, when the non-redundant ties 
from social clubs are added to the network of 
interlocking directorates, the network density 
increases to 0.7000.  The second half of Table 2 
compares the network density based on all four 
types of social affiliations with the density when 
a specific type of organization is excluded.  
Based on all of the ties, the network density was 
0.7211.  When the ties based on museum 
affiliations are excluded, the network density 
remains unchanged.  Therefore, museum ties did 
not contribute any unique ties when the social 
ties generated from corporate, university and 
social clubs are considered.  In contrast, when 
we compare the network density from all 
sources with the density excluding university 
ties, we find a slight decrease in network 
density. The exclusion of ties from social clubs 
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Table 1 presents the affiliations of these 20 
directors across the 24 different organizations. 
When transformed into separate 20 x 20 
affiliation matrices representing corporate ties 
only, museum board ties only, university board 
ties only and social club membership ties only, 
each section of the 2-mode network generated a 
distinct set of affiliations. Based on corporate 
ties alone, there were 90 unique ties among the 
directors.  There were 7 ties formed between 
directors through shared affiliations while 
serving on the two museum boards.  Service on 
the boards of Regents or Trustees of the two 
universities created 13 ties.  Finally, in 1962, 
these 20 directors had 97 ties through shared 
social club memberships. 
 
Considering first the question of structural 
redundancy, the individual images in Figure 2 
below show in dramatic fashion how the 
addition of non-corporate ties (museum ties, ties 
based on university board service, and 
affiliations through shared social club 
memberships) represent unique contributions to 
the network’s structure.2 
 
While these visualizations are useful for 
networks of 20 directors, summary measures of 
network structure are needed to precisely 
capture the unique effects of ties from non-
corporate organizations and to accommodate 
larger networks.  Table 2 lays the foundation of 
these measures by reporting the number of total 
possible ties, the number of unique ties, and 
redundant ties.  The first column is simply the 
number of possible ties in a network of 20 
directors. 

                                                           
2  To add the affiliations from the different 
organizations, there are two options within UCINET.  
Begin by creating four 2-mode networks – the 20 
directors by each set of organizational ties.  The first 
option is to join the columns of the 2-mode matrices 
of interest.  After this command is executed, one can 
use the 2-mode to 1-mode command to generate the 
final affiliation matrix.  Alternatively, one can 
convert each of the four 2-mode networks into their 
respective affiliation matrices.  Then, to combine the 
sets of affiliations of interest, you use the matrix 
algebra tool in UCINET to add the matrices.  Once 
you have joined the matrices and have your 
affiliation matrix, you can dichotomize the ties. 

To determine the number of unique ties, the 
analyses utilize binary ties between directors.  
Consequently, the addition of a tie through 
shared board memberships on the Art Institute of 
Chicago will not add to the network if the tie 
already existed by virtue of being on the same 
corporate board of directors.  Therefore, if one 
compares the 90 ties that are formed through 
shared corporate affiliations with the 93 unique 
ties that emerge when one combines the 
corporate and university based ties, one can then 
conclude that of the 7 ties formed from the 
museum ties alone, 4 of them were redundant.  
In contrast to these relatively small numbers, 
consider the 133 unique ties that emerge when 
we combine corporate and club organizations.  
Since there were 97 ties among these directors 
based solely on social club memberships, we can 
then conclude that from these 5 private social 
clubs, 43 unique ties emerged while 54 were 
redundant to ties already created by shared 
corporate affiliations. 
 
This discussion of the number of unique ties 
leads seamlessly to the first measure of network 
structure, network density.  Network density is 
simply the number of unique ties divided by the 
number of all possible ties.  Since there are 90 
ties formed through shared corporate affiliations, 
and there are 190 total possible ties in a network 
of 20 directors, the density = 90/190 = 0.4737.  
When the 4 unique ties from museum ties are 
added, the network density increases slightly to 
0.4895.  In contrast, when the non-redundant ties 
from social clubs are added to the network of 
interlocking directorates, the network density 
increases to 0.7000.  The second half of Table 2 
compares the network density based on all four 
types of social affiliations with the density when 
a specific type of organization is excluded.  
Based on all of the ties, the network density was 
0.7211.  When the ties based on museum 
affiliations are excluded, the network density 
remains unchanged.  Therefore, museum ties did 
not contribute any unique ties when the social 
ties generated from corporate, university and 
social clubs are considered.  In contrast, when 
we compare the network density from all 
sources with the density excluding university 
ties, we find a slight decrease in network 
density. The exclusion of ties from social clubs 
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Figure 2.  Unique Contribution of Non-Corporate Ties 
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Table 2.  Changes in Network Ties with the Addition and Exclusion of Non-Corporate Ties 

 
N of 

Possible 
N of 

Unique 
N of 

Redundant  

N of Unique 
Ties From 

Excluded Org 
Network 
Density 

Corporation Ties Alone 190 90   0.4737 

Corporation and Museum 190 93 4  0.4895 

Corporation and University 190 99 4  0.5211 

Corporation and Social Clubs 190 133 54  0.7000 
      

Corporation and All Other Organizations 190 137 70  0.7211 

All Ties Excluding Museum 190 137 7 0 0.7211 

All Ties Excluding University 190 133 9 4 0.7000 

All Ties Excluding Social Club 190 101 54 36 0.5316 

      
 

 

Table 3.  Changes in Network Structure with the Addition and Exclusion of Non-Corporate Ties 

 

   
Average 
Degree  

Average 
Betweenness 

 Average 
Geodesic 
Distance  

       
Corporation Ties Alone 9.0  0.0345  1.62  

Corporation and Museum 9.3 † 0.0330 ns 1.59 * 

Corporation and University 9.9 * 0.0278 ns 1.50 ** 

Corporation and Social Clubs 13.3 *** 0.0170 ns 1.31 *** 
       

Corporation and All Other Organizations 13.7  0.0155  1.28  

All Ties Excluding Museum 13.7 na 0.0155 
na 

1.28 na 

All Ties Excluding University 13.3 * 0.0170 
ns 

1.31 * 

All Ties Excluding Social Club 10.1 ** 0.0272 
ns 

1.49 *** 
       
na  Wilcoxon Signed Ranks Test is not applicable since there was absolutely no difference between means 
ns  Wilcoxon Signed Ranks Test did not find a difference between ranks among directors 
†  Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.10 level. 
*   Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.05 level 
**  Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.01 level 
*** Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.001 level 
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Figure 2.  Unique Contribution of Non-Corporate Ties 
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Table 2.  Changes in Network Ties with the Addition and Exclusion of Non-Corporate Ties 

 
N of 

Possible 
N of 

Unique 
N of 

Redundant  

N of Unique 
Ties From 

Excluded Org 
Network 
Density 

Corporation Ties Alone 190 90   0.4737 
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All Ties Excluding Museum 190 137 7 0 0.7211 

All Ties Excluding University 190 133 9 4 0.7000 

All Ties Excluding Social Club 190 101 54 36 0.5316 

      
 

 

Table 3.  Changes in Network Structure with the Addition and Exclusion of Non-Corporate Ties 

 

   
Average 
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Average 
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 Average 
Geodesic 
Distance  
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ns 
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All Ties Excluding Social Club 10.1 ** 0.0272 
ns 

1.49 *** 
       
na  Wilcoxon Signed Ranks Test is not applicable since there was absolutely no difference between means 
ns  Wilcoxon Signed Ranks Test did not find a difference between ranks among directors 
†  Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.10 level. 
*   Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.05 level 
**  Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.01 level 
*** Wilcoxon Signed Ranks Test of the difference between ranks among directors significant at the 0.001 level 
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has a dramatic effect on overall network density 
– from 0.7211 to 0.5316. 
 
In addition to overall network density, we can 
also capture the effects of these unique ties from 
museums, research universities, and membership 
in elite social clubs on the network of corporate 
ties by comparing average measures of 
individual centrality and cohesion within the 
network.  The two measures of centrality – 
degree and betweenness – and the single 
measure of cohesion – geodesic distance –
require a more detailed introduction.  Degree 
centrality is simply the number of other directors 
directly tied to a given director (Freeman, 1979).  
Betweenness centrality is the average of the 
proportions in which a given director lies on the 
shortest path between all other pairs of directors 
(Freeman, 1979).  While this is a more 
complicated measure, it essentially captures how 
important a given director is in serving as a link 
between other directors.  The final measure of 
network structure we employ is that of average 
geodesic distance.  The geodesic distance is the 
shortest path between two directors.  While not a 
measure of network importance, geodesic 
distance is a measure of cohesion and as such, a 
director that has low average geodesic distance 
will be closer, on average, to the other directors 
in the network. 
 
Having defined the summary measures of 
network structure, we can now turn to Table 3 
that reports the average degree, average 
betweenness, and average geodesic distance for 
the small network of 20 directors.  Given that 
the distributions of these variables are not 
normal, Table 3 also reports the significance 
levels from the Wilcoxon Signed Ranks tests. 
 
The top half of the table shows how adding 
affiliations from university boards and social 
clubs significantly changes average degree and 
geodesic distance, but not betweenness 
centrality.  There is a significant increase in 
average degree among these 20 directors when 
adding the unique ties from university boards 
and a very significant increase in average degree 
when adding non-redundant social club ties.  In 
contrast, the results for betweenness centrality 
do not show a significant difference and in fact, 

trend in a counterintuitive way.  For example, 
when ties from universities are added the 
average betweenness centrality is noticeably 
lower than for the network based on corporate 
ties alone.  While it might be expected that as 
the number of unique ties increases the centrality 
of the directors would increase, in adding new 
ties, we actually increase the number of direct 
ties and therefore reduce the number of instances 
where a given director will lie on the shortest 
geodesic between two other directors.  Finally, 
regarding average geodesic distance, there were 
significant network changes when the ties from 
each of the three non-corporate organizations are 
added.  While there is only a 0.03 decrease in 
average geodesic distance when museum ties are 
added, this nonetheless represents a significant 
decrease.  Substantively larger decreases in 
geodesic distance are seen when university and 
social club ties are included.  Indeed, when 
social club ties alone are added, the social 
distance drops from 1.62 steps to 1.31 steps. 
 
The bottom half of Table 3 presents the results 
when one compares average degree, 
betweenness, and average geodesic distance 
based on a network of all ties, with the network 
of ties excluding the organization of interest.  
While adding university ties to corporate ties 
may generate unique ties that increase average 
degree or decrease geodesic distance, it is not 
necessarily the case that when we consider all 
sources of social ties, universities will still add 
unique ties not previously in existence from 
museum boards or social clubs.  As it turns out, 
museums do not add to the average degree of 
directors nor lower the average geodesic 
distance.  However, when we compare the 
average degree and geodesic distance based on 
all ties with these measures based on all ties 
except university ties, we do find significant 
differences in average degree centrality and 
geodesic distance.  Even more dramatic 
differences emerge when we compare the 
average degree and geodesic distance based on 
all affiliations versus these measures excluding 
the ties from social clubs.  Average degree 
centrality falls from 13.7 to 10.1 and the average 
social distance increases from 1.28 to 1.49. 
 

 

Multiplicity 
 
While this brief example has documented the 
unique contributions of a variety of social ties, it 
also suggests that only corporations and clubs 
are significant in forming the structure of the 
network.  In terms of structural redundancy, this 
is certainly true.  However, by treating all ties as 
binary, the above analyses discard rich 
information on the multiplicity of social ties that 
exist among these 20 corporate directors.  
Therefore, to complement the above analyses of 
structural redundancy, the following analyses 
next consider the multiplicity of ties.  We have 

chosen to use the term multiplicity in contrast to 
multiplexity since we are not solely concerned 
with modeling networks based on multiple ties.  
The goal of our method is to capture the 
configuration of social ties, not simply their 
presence or absence or even the simple number 
of ties.  Therefore, we wish to answer the 
following types of questions.  Are directors tied 
exclusively or primarily through corporate ties?  
Do ties from other sources of social interaction 
complement or even outweigh the ties created 
through overlapping memberships on corporate 
boards? 

 
Figure 3.  Example of 20 Directors and Sources of Social Ties 
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has a dramatic effect on overall network density 
– from 0.7211 to 0.5316. 
 
In addition to overall network density, we can 
also capture the effects of these unique ties from 
museums, research universities, and membership 
in elite social clubs on the network of corporate 
ties by comparing average measures of 
individual centrality and cohesion within the 
network.  The two measures of centrality – 
degree and betweenness – and the single 
measure of cohesion – geodesic distance –
require a more detailed introduction.  Degree 
centrality is simply the number of other directors 
directly tied to a given director (Freeman, 1979).  
Betweenness centrality is the average of the 
proportions in which a given director lies on the 
shortest path between all other pairs of directors 
(Freeman, 1979).  While this is a more 
complicated measure, it essentially captures how 
important a given director is in serving as a link 
between other directors.  The final measure of 
network structure we employ is that of average 
geodesic distance.  The geodesic distance is the 
shortest path between two directors.  While not a 
measure of network importance, geodesic 
distance is a measure of cohesion and as such, a 
director that has low average geodesic distance 
will be closer, on average, to the other directors 
in the network. 
 
Having defined the summary measures of 
network structure, we can now turn to Table 3 
that reports the average degree, average 
betweenness, and average geodesic distance for 
the small network of 20 directors.  Given that 
the distributions of these variables are not 
normal, Table 3 also reports the significance 
levels from the Wilcoxon Signed Ranks tests. 
 
The top half of the table shows how adding 
affiliations from university boards and social 
clubs significantly changes average degree and 
geodesic distance, but not betweenness 
centrality.  There is a significant increase in 
average degree among these 20 directors when 
adding the unique ties from university boards 
and a very significant increase in average degree 
when adding non-redundant social club ties.  In 
contrast, the results for betweenness centrality 
do not show a significant difference and in fact, 

trend in a counterintuitive way.  For example, 
when ties from universities are added the 
average betweenness centrality is noticeably 
lower than for the network based on corporate 
ties alone.  While it might be expected that as 
the number of unique ties increases the centrality 
of the directors would increase, in adding new 
ties, we actually increase the number of direct 
ties and therefore reduce the number of instances 
where a given director will lie on the shortest 
geodesic between two other directors.  Finally, 
regarding average geodesic distance, there were 
significant network changes when the ties from 
each of the three non-corporate organizations are 
added.  While there is only a 0.03 decrease in 
average geodesic distance when museum ties are 
added, this nonetheless represents a significant 
decrease.  Substantively larger decreases in 
geodesic distance are seen when university and 
social club ties are included.  Indeed, when 
social club ties alone are added, the social 
distance drops from 1.62 steps to 1.31 steps. 
 
The bottom half of Table 3 presents the results 
when one compares average degree, 
betweenness, and average geodesic distance 
based on a network of all ties, with the network 
of ties excluding the organization of interest.  
While adding university ties to corporate ties 
may generate unique ties that increase average 
degree or decrease geodesic distance, it is not 
necessarily the case that when we consider all 
sources of social ties, universities will still add 
unique ties not previously in existence from 
museum boards or social clubs.  As it turns out, 
museums do not add to the average degree of 
directors nor lower the average geodesic 
distance.  However, when we compare the 
average degree and geodesic distance based on 
all ties with these measures based on all ties 
except university ties, we do find significant 
differences in average degree centrality and 
geodesic distance.  Even more dramatic 
differences emerge when we compare the 
average degree and geodesic distance based on 
all affiliations versus these measures excluding 
the ties from social clubs.  Average degree 
centrality falls from 13.7 to 10.1 and the average 
social distance increases from 1.28 to 1.49. 
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unique contributions of a variety of social ties, it 
also suggests that only corporations and clubs 
are significant in forming the structure of the 
network.  In terms of structural redundancy, this 
is certainly true.  However, by treating all ties as 
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information on the multiplicity of social ties that 
exist among these 20 corporate directors.  
Therefore, to complement the above analyses of 
structural redundancy, the following analyses 
next consider the multiplicity of ties.  We have 

chosen to use the term multiplicity in contrast to 
multiplexity since we are not solely concerned 
with modeling networks based on multiple ties.  
The goal of our method is to capture the 
configuration of social ties, not simply their 
presence or absence or even the simple number 
of ties.  Therefore, we wish to answer the 
following types of questions.  Are directors tied 
exclusively or primarily through corporate ties?  
Do ties from other sources of social interaction 
complement or even outweigh the ties created 
through overlapping memberships on corporate 
boards? 
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Beginning with the set of visualizations in 
Figure 3, the analyses use the network of 
corporate ties as a point of departure.  Note that 
the widths of the arcs vary to represent the 
strength of the particular tie and the colors of the 
vertices are coded to represent their highest level 
of multiplicity.  For example, in the network of 
corporate ties alone, we see two pairs of 
directors that are red indicating that each has at 
least one tie that is of strength 3 – meaning that 
there are three corporate ties linking these two 
directors.  Further, the tie between the two red 
vertices is clearly thicker than the other edges in 
the network which have strengths of 1 or 2.  
Finally, all of the other vertices in the network 
are green indicating that they have at least one 
tie with a strength value of 2. 

In the subsequent networks in Figure 3, ties from 
each set of noncorporate organization are 
superimposed on the network of corporate ties.  
This is accomplished by treating corporate ties 
as arcs in one direction while the ties from say 
museums are graphed as arcs in the opposite 
direction.  Looking at the network of corporate 
ties with museum ties added, we see first, that 
there are relatively few ties added.  Furthermore, 
if we examine the yellow orange ties that are 

added from shared affiliations with museums, 
the majority of the arcs are bi-directed indicating 
that they simply reinforce an existing corporate 
tie.  In contrast, note the third graph in which the 
red ties in the lower right corner of the graph are 
clearly new ties formed through university board 
affiliations (although the tie between Rockefeller 
and Livingston is slightly obscured by other 
corporate ties).  Finally, the fourth graph with 
cyan ties dramatically underscores the number 
of ties between these 20 directors that are 
formed through shared club memberships. 

While the different configuration of each 
individual set of ties is certainly noteworthy, the 
sociographs in Figure 3 do not allow us to 
display the simultaneous set of ties from all 
organizations.  To pull all of this information 
together and to capture multiple types of ties 
between a given pair of directors, it is necessary 
to aggregate the ties so as to preserve the types 
and strengths of all of the ties.  To accomplish 
this condensing/preservation of information, we 
have assigned two values to each tie between 
directors – a strength code and a type code.  
Consider the following sample of seven ties 
between John Barr and three other directors 
(Table 4). 

 

 
Table 4.  Individual Ties with John A. Barr (01)  

Tie ID Director (vertex #) Strength Type Code  Type of Tie 

1.02 Block, Joseph L. (02) 1 100000  Corporation 

1.02 Block, Joseph L. (02)   1            1  Club 

  2 100001  Aggregated Sum 

     

1.16 Oates, James F. Jr. (16) 1 100  University 

1.16 Oates, James F. Jr. (16)   2     1  Club 

  3 101  Aggregated Sum 

      

1.08 Gale, Willis (08) 1 100000  Corporation 

1.08 Gale, Willis (08) 1 100  University 

1.08 Gale, Willis (08)   1            1  Club 

  3 100101  Aggregated Sum 

 

There are two ties (coded with an ID of 1.02) 
between John A. Barr and Joseph Block – one 
based on being on the same board of directors  
and one due to mutual membership in a social 
club.  Once we aggregate these two ties on the 
basis of the unique tie ID of 1.02 and sum the 
strength and type codes, the result is that there is 
now one tie between John Barr and Joseph 
Block that has a strength value of 2 and a 
configuration of ties code equal to 100001.  This 
code for the tie between these two directors can 

now be directly interpreted as a tie consisting of 
two affiliations, one from a corporate board and 
the other from a social club.  For the second set 
of director ties with an ID of 1.16, John Barr has 
two different types of ties with James F. Oats Jr.  
Unlike the first example however, the tie based 
on club memberships has a strength value of 2.  
When aggregated, the resulting tie between Barr 
and Oats represents three ties– one university 
based and two club based ties.  The aggregated 
code for the types of ties between Barr and Oats 

 
Figure 4.  Corporate Ties With All Other Organizational Ties Added 
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Beginning with the set of visualizations in 
Figure 3, the analyses use the network of 
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the widths of the arcs vary to represent the 
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directors that are red indicating that each has at 
least one tie that is of strength 3 – meaning that 
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are green indicating that they have at least one 
tie with a strength value of 2. 
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there are relatively few ties added.  Furthermore, 
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added from shared affiliations with museums, 
the majority of the arcs are bi-directed indicating 
that they simply reinforce an existing corporate 
tie.  In contrast, note the third graph in which the 
red ties in the lower right corner of the graph are 
clearly new ties formed through university board 
affiliations (although the tie between Rockefeller 
and Livingston is slightly obscured by other 
corporate ties).  Finally, the fourth graph with 
cyan ties dramatically underscores the number 
of ties between these 20 directors that are 
formed through shared club memberships. 

While the different configuration of each 
individual set of ties is certainly noteworthy, the 
sociographs in Figure 3 do not allow us to 
display the simultaneous set of ties from all 
organizations.  To pull all of this information 
together and to capture multiple types of ties 
between a given pair of directors, it is necessary 
to aggregate the ties so as to preserve the types 
and strengths of all of the ties.  To accomplish 
this condensing/preservation of information, we 
have assigned two values to each tie between 
directors – a strength code and a type code.  
Consider the following sample of seven ties 
between John Barr and three other directors 
(Table 4). 

 

 
Table 4.  Individual Ties with John A. Barr (01)  
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There are two ties (coded with an ID of 1.02) 
between John A. Barr and Joseph Block – one 
based on being on the same board of directors  
and one due to mutual membership in a social 
club.  Once we aggregate these two ties on the 
basis of the unique tie ID of 1.02 and sum the 
strength and type codes, the result is that there is 
now one tie between John Barr and Joseph 
Block that has a strength value of 2 and a 
configuration of ties code equal to 100001.  This 
code for the tie between these two directors can 

now be directly interpreted as a tie consisting of 
two affiliations, one from a corporate board and 
the other from a social club.  For the second set 
of director ties with an ID of 1.16, John Barr has 
two different types of ties with James F. Oats Jr.  
Unlike the first example however, the tie based 
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Figure 4.  Corporate Ties With All Other Organizational Ties Added 
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is 101 meaning that these two directors are tied 
together through both university and club based 
ties.  Finally, turning to ties with an ID of 1.08, 
we find three types of ties between John Barr 
and Willis Gale, each tie with a strength value of 
1.  When we aggregate these ties, summing the 
strength and type codes, we obtain a tie with a 
strength value of 3 and a code of 100101 
meaning that these directors are tied through 
corporate, university and club ties.  

Given the results of aggregating each of the 
individual types of ties between all of the 
directors, it also becomes necessary to 
distinguish each of the four different types of 
ties.  Therefore, corporate ties are gray, ties from 
museums are yellow orange, ties from 
universities are red and social club ties are cyan.  

However, we also need to incorporate four new 
colors – ties that consist of shared corporate and 
museums are orange; ties between directors that 
are based in both shared corporate board and 
club memberships are midnight blue; ties that 
are formed from two or more non- corporate 
organizations are black; and finally, ties that are 
based in corporate ties and at least two other 
non-corporate affiliation are olive green.  If we 
consider the ties in Table 4, the set of ties 
between John Barr and Joseph Black would 
appear as a single midnight blue edge with a 
strength value of 2; the ties between John Barr 
and James Oats would now be a black edge with 
a strength value of 3; and the three individual 
ties between John Barr and Willis Gale would 
now be represented by a single olive green edge 
with a strength value of 3.  See Figure 4. 

 
Table 5.  Descriptive Statistics on Ties Between Directors 

   N Percent 
 Distribution of Tie Strength   
  Single Tie Between Directors 53 38.69 
  Two Ties between directors 48 35.04 
  Three Ties between directors 27 19.71 
  Four Ties between directors 6 4.38 
  Five Ties between directors 3 2.19 
  Total 137 100.01 
 Number of the Different Types of Ties between Directors  
  Only One Type of Tie 74 54.01 
  Two Different Types of Ties 56 40.88 
  Three Different Types of Ties 7 5.11 
  Total 137 100.00 
 Distribution of the Types of Ties   
  Corporate Tie Only 34 24.82 
  University Tie Only 4 2.92 
  Social Club Tie Only 36 26.28 
  Subtotal 74 54.02 
  Corporate and Museum Ties 2 1.46 
  Corporate and Social Club Ties 48 35.04 
  Subtotal 50 36.50 
  Two or more Types of Non-Corporate Ties 7 5.11 
  Corporate and Two or more Non-Corporate Ties 6 4.38 
  Total 137 100.01 

     

 

On a final introductory note, our last 
visualization which represents the multiple types 
of ties between directors has new colors for the 
vertices.  When all sources of social ties are 
considered simultaneously, some directors have 
at least one tie with another director with a 
strength value of 4 – for example, John Barr, 
Paul Goodrich and Brooks McCormick all have 
4 ties between themselves.  R.S. Ingersoll and 
G.A. Freeman Jr. (the pink vertices) each have 5 
ties between themselves.  The results are 
presented in our final graph, Figure 4 above, 
which pulls everything together and shows 
corporate ties and ties from all other 
organizations.  

As with the sociographs of network structure, 
the graphs depicting the multiplicity of ties 
provide a clear overview of the constellation of 
the various ties constituting the social mosaic 
among these 20 corporate directors.  They are 
unfortunately equally ill-suited to provide clear 
measurements of the configuration of types of 
ties and the multiplicity of those ties.  However, 
by aggregating the individual types of ties 
between a given pair of directors, we can easily 
obtain three summary measures of the 137 ties 
between directors – the distribution of ties by 
strength, the distribution of the number of types 
of ties, and finally, the distribution of types of 
ties themselves. 

 
Table 6.  Configuration of Ties Involving John A. Barr 

Vertex Director Strength Type   Proportion 
       
  2 Block Joseph L. 1 Corporation   
  8 Gale Willis 1 Corporation   
  9 Goodrich Paul W. 1 Corporation   
11 Jarvis P. M. 1 Corporation 9/33= 0.2727 
12 Kennedy David M. 2 Corporation   
14 McCormick Brooks 1 Corporation   
15 McDowell Remick 1 Corporation   
20 Prince W. W. 1 Corporation   
  8 Gale Willis 1 University 2/33= 0.0606 
16 Oates James F. Jr. 1 University   
  2 Block Joseph L. 1 Club   
  4 Clark P. F. 1 Club   
  6 Eberhard H. S. 1 Club   
  7 Freeman G. A. Jr. 2 Club   
  8 Gale Willis 1 Club   
  9 Goodrich Paul W. 2 Club   
10 Ingersoll R. S. 2 Club 22/33= 0.6667 
11 Jarvis P. M. 1 Club  Predominantly 
12 Kennedy David M. 2 Club  Club Based 
13 Livingston H. J. 2 Club   
14 McCormick Brooks 2 Club   
15 McDowell Remick 1 Club   
16 Oates James F. Jr. 2 Club   
20 Ward J. Harris 2 Club   

 Total Ties 33     
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is 101 meaning that these two directors are tied 
together through both university and club based 
ties.  Finally, turning to ties with an ID of 1.08, 
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and Willis Gale, each tie with a strength value of 
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strength value of 3 and a code of 100101 
meaning that these directors are tied through 
corporate, university and club ties.  

Given the results of aggregating each of the 
individual types of ties between all of the 
directors, it also becomes necessary to 
distinguish each of the four different types of 
ties.  Therefore, corporate ties are gray, ties from 
museums are yellow orange, ties from 
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consider the ties in Table 4, the set of ties 
between John Barr and Joseph Black would 
appear as a single midnight blue edge with a 
strength value of 2; the ties between John Barr 
and James Oats would now be a black edge with 
a strength value of 3; and the three individual 
ties between John Barr and Willis Gale would 
now be represented by a single olive green edge 
with a strength value of 3.  See Figure 4. 
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visualization which represents the multiple types 
of ties between directors has new colors for the 
vertices.  When all sources of social ties are 
considered simultaneously, some directors have 
at least one tie with another director with a 
strength value of 4 – for example, John Barr, 
Paul Goodrich and Brooks McCormick all have 
4 ties between themselves.  R.S. Ingersoll and 
G.A. Freeman Jr. (the pink vertices) each have 5 
ties between themselves.  The results are 
presented in our final graph, Figure 4 above, 
which pulls everything together and shows 
corporate ties and ties from all other 
organizations.  

As with the sociographs of network structure, 
the graphs depicting the multiplicity of ties 
provide a clear overview of the constellation of 
the various ties constituting the social mosaic 
among these 20 corporate directors.  They are 
unfortunately equally ill-suited to provide clear 
measurements of the configuration of types of 
ties and the multiplicity of those ties.  However, 
by aggregating the individual types of ties 
between a given pair of directors, we can easily 
obtain three summary measures of the 137 ties 
between directors – the distribution of ties by 
strength, the distribution of the number of types 
of ties, and finally, the distribution of types of 
ties themselves. 

 
Table 6.  Configuration of Ties Involving John A. Barr 

Vertex Director Strength Type   Proportion 
       
  2 Block Joseph L. 1 Corporation   
  8 Gale Willis 1 Corporation   
  9 Goodrich Paul W. 1 Corporation   
11 Jarvis P. M. 1 Corporation 9/33= 0.2727 
12 Kennedy David M. 2 Corporation   
14 McCormick Brooks 1 Corporation   
15 McDowell Remick 1 Corporation   
20 Prince W. W. 1 Corporation   
  8 Gale Willis 1 University 2/33= 0.0606 
16 Oates James F. Jr. 1 University   
  2 Block Joseph L. 1 Club   
  4 Clark P. F. 1 Club   
  6 Eberhard H. S. 1 Club   
  7 Freeman G. A. Jr. 2 Club   
  8 Gale Willis 1 Club   
  9 Goodrich Paul W. 2 Club   
10 Ingersoll R. S. 2 Club 22/33= 0.6667 
11 Jarvis P. M. 1 Club  Predominantly 
12 Kennedy David M. 2 Club  Club Based 
13 Livingston H. J. 2 Club   
14 McCormick Brooks 2 Club   
15 McDowell Remick 1 Club   
16 Oates James F. Jr. 2 Club   
20 Ward J. Harris 2 Club   

 Total Ties 33     
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The last section of Table 5 summarizes the 
precise configurations of ties.  Recall in our 
discussion of Figure 4, there were potentially 
eight types of ties.  However, when aggregated, 
only seven distinct patterns of social affiliations 
are represented– corporate only, university only 
and social club only (note there were no ties that 
were only based on shared affiliations through 
museums since all of those ties were structurally 
redundant).  Table 5 shows that only a quarter of 
the ties were from corporate ties alone.  While 
fewer than 3 percent of the ties were formed 
solely through shared university ties, over a 
quarter (26.28 percent) of the ties were based 
exclusively on mutual social club memberships. 
 
The bottom section of Table 5 also shows that 
over a third of the ties between these 20 
directors were constituted by both corporate and 
social club ties.  Equally important from the 
perspective of emphasizing the role of non-
corporate ties in integrating our corporate 
directors, 7 ties were based on two or more 
noncorporate ties.  Finally, Table 5 indicates that 
6 of the 137 ties were from three or more 
sources, including at least one corporate tie.  In 
short, the results in Table 5 underscore the 
message from Figure 4 – non-corporate ties 
constitute a substantial portion of the social 
connections between our example directors, with 
social club ties being most abundant. 
 
Thus far, the discussion has focused on how to 
represent the multiplicity of ties between the 
directors in this example network.  However, it 
would also be useful to further aggregate these 
various configurations of ties back to the 
individual directors.  To accomplish this 
aggregation, the analyses revert to the original 
set of 207 ties.  However, rather than 
aggregating on the basis of the tie ID itself (1.02, 
1.16 or 1.08), this time we need to aggregate by 
the vertex number (making sure that both 
sending and receiving vertices are represented).  
Therefore, by shifting the level of analysis back 
to the directors themselves, each director will 
possess a set of ties that can be characterized by 
being completely or predominantly corporate.  
In contrast, a director’s set of ties can be 
primarily grounded in other organizational 
affiliations.  Consider again John A. Barr.  This 

time however, Table 6 presents all of his 33 ties 
with the 19 other directors. 
 
By sorting the ties by type, it is straightforward 
to calculate both the sum of strengths which 
reflects the 33 individual ties, and the sum of the 
strengths for each type of tie.3  Table 6 shows 
that of the 33 ties, 9 are based on shared 
corporate board memberships, 2 on mutual 
membership on university Boards of Regents or 
Trustees, and 22 on shared social club 
memberships.  This means that 27.3 percent of 
John Barr’s ties were corporate, 6 percent were 
university and 66.7 percent were social club 
based.  When this procedure is applied to the 
remaining 19 directors, we can then obtain 
summary measures of the configuration of ties 
possessed by each director.  Table 7 presents the 
summary statistics for the 20 directors in this 
example. 
 
Table 7.  Configuration of Ties for Directors 

Average Proportion of Corporate Ties 0.4990 

Average Proportion of Museum Ties 0.0215 

Average Proportion of University Ties 0.0540 

Average Proportion of Social Club Ties 0.4255 

 
 
Therefore, on average, the twenty directors are 
characterized by half of their ties being 
corporate based, and nearly another half are 
based on social club ties.  Finally, Table 7 
indicates that the average percent of ties based 
on museum ties is only 2.15 percent and the 
average percent of ties based on shared 
university ties is 5.4 percent.  In other words, 
this example of 20 directors is tied together by 
both corporate and club ties in roughly equal 
proportions.  While this conclusion is far from 
                                                           
3  Calculating the degree of each director on the basis 
of each of the four affiliation matrices would yield 
the number of different directors tied to John Barr 
and as a consequence, we would lose the multiple 
corporate ties between this director and David 
Kennedy, and the multiple club ties between John 
Barr and G.A. Freeman Jr., Paul W. Goodrich, R.S. 
Ingersoll, David Kennedy, H.J. Livingston, Brooks 
McCormick, James F. Oats Jr., and J. Harris Ward. 

 

startling given the sociographs in Figure 4, these 
aggregate measures can prove useful if one 
wishes to relate these measures of a director’s 
configuration of ties to non-network 
characteristics such as the director’s level of 
political contributions. 
 
SUMMARY & CONCLUSIONS 
 
In this paper we have expanded the literature on 
the sociology of elites by introducing a method 
which preserves the context and richness of their 
multiple relationships.  As shown, the shared 
affiliations through museums, universities, 
social clubs, and of course, shared corporate 
board memberships, play varying, but distinct, 
roles in binding together these corporate 
directors.  Using this intuitive procedure, we 
simultaneously capture the multiplicity of ties 
and assess their unique impact on corporate elite 
networks.  That is, we are able to discern which 
types of ties make the greatest contribution to 
the director’s network – a network which is 
derived from several co-memberships on 
organizational boards and social clubs. 
 
While we have applied this technique to gaining 
greater insight into the social fabric in which the 
corporate elite reside, it can certainly apply to 
other affiliation networks with multiple sets of 
ties.  Our technique is novel in that it allows 
researchers to use standard network measures 
while bypassing two shortcomings that 
accompany the analysis of affiliation networks:  
the loss of contextual information that occurs 
when networks are reduced from two modes to a 
single mode and the loss of information that 
occurs when these valued networks are 
dichotomized for ease of analysis. 
 
Although the data presented here are for an 
artificially small set of social ties, this method 
can be employed to analyze larger networks.  In 
fact, the method is highly flexible as researchers 
who adopt it may opt to investigate entire 
networks, specific network neighborhoods, or 
sets of actors depending on the theoretical and 
substantive interests. 
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The last section of Table 5 summarizes the 
precise configurations of ties.  Recall in our 
discussion of Figure 4, there were potentially 
eight types of ties.  However, when aggregated, 
only seven distinct patterns of social affiliations 
are represented– corporate only, university only 
and social club only (note there were no ties that 
were only based on shared affiliations through 
museums since all of those ties were structurally 
redundant).  Table 5 shows that only a quarter of 
the ties were from corporate ties alone.  While 
fewer than 3 percent of the ties were formed 
solely through shared university ties, over a 
quarter (26.28 percent) of the ties were based 
exclusively on mutual social club memberships. 
 
The bottom section of Table 5 also shows that 
over a third of the ties between these 20 
directors were constituted by both corporate and 
social club ties.  Equally important from the 
perspective of emphasizing the role of non-
corporate ties in integrating our corporate 
directors, 7 ties were based on two or more 
noncorporate ties.  Finally, Table 5 indicates that 
6 of the 137 ties were from three or more 
sources, including at least one corporate tie.  In 
short, the results in Table 5 underscore the 
message from Figure 4 – non-corporate ties 
constitute a substantial portion of the social 
connections between our example directors, with 
social club ties being most abundant. 
 
Thus far, the discussion has focused on how to 
represent the multiplicity of ties between the 
directors in this example network.  However, it 
would also be useful to further aggregate these 
various configurations of ties back to the 
individual directors.  To accomplish this 
aggregation, the analyses revert to the original 
set of 207 ties.  However, rather than 
aggregating on the basis of the tie ID itself (1.02, 
1.16 or 1.08), this time we need to aggregate by 
the vertex number (making sure that both 
sending and receiving vertices are represented).  
Therefore, by shifting the level of analysis back 
to the directors themselves, each director will 
possess a set of ties that can be characterized by 
being completely or predominantly corporate.  
In contrast, a director’s set of ties can be 
primarily grounded in other organizational 
affiliations.  Consider again John A. Barr.  This 

time however, Table 6 presents all of his 33 ties 
with the 19 other directors. 
 
By sorting the ties by type, it is straightforward 
to calculate both the sum of strengths which 
reflects the 33 individual ties, and the sum of the 
strengths for each type of tie.3  Table 6 shows 
that of the 33 ties, 9 are based on shared 
corporate board memberships, 2 on mutual 
membership on university Boards of Regents or 
Trustees, and 22 on shared social club 
memberships.  This means that 27.3 percent of 
John Barr’s ties were corporate, 6 percent were 
university and 66.7 percent were social club 
based.  When this procedure is applied to the 
remaining 19 directors, we can then obtain 
summary measures of the configuration of ties 
possessed by each director.  Table 7 presents the 
summary statistics for the 20 directors in this 
example. 
 
Table 7.  Configuration of Ties for Directors 

Average Proportion of Corporate Ties 0.4990 

Average Proportion of Museum Ties 0.0215 

Average Proportion of University Ties 0.0540 

Average Proportion of Social Club Ties 0.4255 

 
 
Therefore, on average, the twenty directors are 
characterized by half of their ties being 
corporate based, and nearly another half are 
based on social club ties.  Finally, Table 7 
indicates that the average percent of ties based 
on museum ties is only 2.15 percent and the 
average percent of ties based on shared 
university ties is 5.4 percent.  In other words, 
this example of 20 directors is tied together by 
both corporate and club ties in roughly equal 
proportions.  While this conclusion is far from 
                                                           
3  Calculating the degree of each director on the basis 
of each of the four affiliation matrices would yield 
the number of different directors tied to John Barr 
and as a consequence, we would lose the multiple 
corporate ties between this director and David 
Kennedy, and the multiple club ties between John 
Barr and G.A. Freeman Jr., Paul W. Goodrich, R.S. 
Ingersoll, David Kennedy, H.J. Livingston, Brooks 
McCormick, James F. Oats Jr., and J. Harris Ward. 

 

startling given the sociographs in Figure 4, these 
aggregate measures can prove useful if one 
wishes to relate these measures of a director’s 
configuration of ties to non-network 
characteristics such as the director’s level of 
political contributions. 
 
SUMMARY & CONCLUSIONS 
 
In this paper we have expanded the literature on 
the sociology of elites by introducing a method 
which preserves the context and richness of their 
multiple relationships.  As shown, the shared 
affiliations through museums, universities, 
social clubs, and of course, shared corporate 
board memberships, play varying, but distinct, 
roles in binding together these corporate 
directors.  Using this intuitive procedure, we 
simultaneously capture the multiplicity of ties 
and assess their unique impact on corporate elite 
networks.  That is, we are able to discern which 
types of ties make the greatest contribution to 
the director’s network – a network which is 
derived from several co-memberships on 
organizational boards and social clubs. 
 
While we have applied this technique to gaining 
greater insight into the social fabric in which the 
corporate elite reside, it can certainly apply to 
other affiliation networks with multiple sets of 
ties.  Our technique is novel in that it allows 
researchers to use standard network measures 
while bypassing two shortcomings that 
accompany the analysis of affiliation networks:  
the loss of contextual information that occurs 
when networks are reduced from two modes to a 
single mode and the loss of information that 
occurs when these valued networks are 
dichotomized for ease of analysis. 
 
Although the data presented here are for an 
artificially small set of social ties, this method 
can be employed to analyze larger networks.  In 
fact, the method is highly flexible as researchers 
who adopt it may opt to investigate entire 
networks, specific network neighborhoods, or 
sets of actors depending on the theoretical and 
substantive interests. 
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INTRODUCTION 
 
Folk wisdom tells us that “birds of a feather 
flock together” yet, at the same time “opposites 
attract.”  The contradiction between these 
familiar adages points to a fundamental feature 
of relationships: their multidimensionality.  The 
forces that attract and repel people operate in 
conjunction along several dimensions 
simultaneously.  This is evident in Blau’s (1977) 
notion of multiform heterogeneity, which 
implies that the desire for homophily on some 
dimensions can make heterophily on other 
dimensions inevitable.  Consequently, 
individuals within relationships are similar in 
many respects, while dissimilar in other aspects: 
Male and female birds flock together. 
 
This study moves beyond the unidimensional 
treatment of homophily that dominates previous 
research by developing a multidimensional 
conceptualization.  Homophily is characterized 
as a combination of similarity and dissimilarity 
across several dimensions, referred to as 
configurations of homophily.  These 
configurations can be analyzed to better 
understand the interrelations between 
dimensions that structure interpersonal 
associations.  Of particular interest are which 
configurations of homophily occur more often 
than expected by chance. 
 
Introducing multidimensional homophily 
proceeds through two steps.  First, I define 
relations as configurations of homophily with 
the graphical assistance of lattices.  Just as 
scatterplots are valuable for examining 
correlational data, lattices provide a useful 
representation of configurational data.  I present 
a lattice visualization technique that conveys 
both the distribution of dyads across homophily 
configurations and the logical relationship 
between configurations.  This tool helps portray 
the relationships inherent to combinatorial data 
and can assist in the evaluation of such data. 
 
Second, to understand which combinations of 
homophily are most salient across relations, I 
examine ego network data from the 1985 

General Social Survey. I use Qualitative 
Comparative Analysis (QCA) to identify the 
combinations of similarity and dissimilarity that 
underlie the configurations of homophily in 
observed dyads.  This process uncovers how 
dimensions of homophily interact to create more 
dyads than expected by chance.   
 
Homophily Research 
 
Social scientists have documented homophily as 
one of the most persistent features of human 
society (McPherson, Smith-Lovin, & Cook, 
2001).  Homophily is defined as the tendency for 
people to associate with others who are similar, 
rather than dissimilar, to themselves.  
Homophily is important because of its 
implications for the movement of ideas and 
people through society.  While communication 
between similar individuals tends to be more 
effective (Rogers & Bhowmik, 1970), 
homogeneous networks also tend to constrain 
attitudes to be more “closed-minded” (Laumann, 
1963) or conservative (Bienenstock, Bonacich, 
& Oliver, 1990).  Beyond attitudes, the presence 
of homophily necessitates that any “cultural, 
behavioral, genetic, or material information that 
flows through networks will tend to be 
localized” (McPherson et al., 2001, p. 416).  
Homophily also has consequences for social 
mobility to the extent that positions of power 
and authority are correlated with ascribed 
characteristics of their occupants.  For instance, 
because women are less likely to occupy 
powerful positions within organizations, such 
individuals must form strategic, heterophilous 
ties that are less efficient in order to gain access 
to valuable information and resources (Ibarra 
1992).  Thus, it is important to understand 
homophily as a means of ascertaining the types 
of social distance that are least often bridged. 
 
Research has documented the persistence of 
homophily in groups and interpersonal 
relationships across a wide range of dimensions 
(for an overview see McPherson et al., 2001).  
Race and ethnic homophily is perhaps the 
strongest dimension in the United States and is 
observed across most forms of relations.  

 

Spouses (Kalmijn, 1998), coworkers (Ibarra, 
1995), and neighbors (Marsden, 1990) all tend to 
be of similar race/ethnicity.  Relations also tend 
to exhibit strong age homophily (Feld, 1982; 
Marsden, 1990) with the main exception of 
parent/child relations (Fischer, 1982).  Sex is an 
unusual dimension in that for many people 
spouses are an important relation yet spouses are 
traditionally opposite sex.  Excluding spouses, 
relations tend to be homophilous on sex, though 
not as much as on race/ethnicity (Marsden, 
1987; Mayhew, McPherson, Rotolo, & Smith-
Lovin, 1995).  Homophily along the religion 
dimension is fairly strong, almost as strong as 
race/ethnic homophily (Marsden, 1981, 1988).  
Education homophily has also been 
demonstrated (Louch, 2000) though the presence 
of kin in networks reduces its strength (Kalmijn, 
1998).  Finally, homophily of values, status, and 
appearance are all important criteria in selecting 
long-term partners (Buston & Emlen, 2003). 
 
Baseline Homophily 
 
When measuring homophily it is essential to 
ascertain how much perceived similarity is 
simply due to chance.  McPherson and 
colleagues (2001) distinguished between two 
sources of homophily: baseline and inbreeding.  
Baseline homophily is the level that would be 
expected by chance if people chose their 
associates randomly.  Baseline homophily is 
purely a function of the population distribution: 
intergroup contact is more frequent when the 
population is more heterogeneous (Blau & 
Schwartz, 1984; Blum, 1985; Skvoretz, 1990).  
As the homogeneity of a population increases, 
relations within the population are expected to 
be more homophilous.   
 
Inbreeding Homophily 
 
When homophily on any dimension exceeds the 
baseline rate then that dimension is defined as 
salient; the number of relations that are ingroup 
on that dimension exceeds that expected by 
chance (Blau, 1977).  Rates of homophily 
exceeding the baseline level are products of one 
or more inbreeding sources.  Three primary 

mechanisms contribute to inbreeding 
homophily: consolidation, substructures, and 
preference (McPherson et al., 2001).  
Consolidation emerges because individuals 
occupy social positions that can be measured 
along multiple dimensions (referred to as 
parameters by Blau).  Two dimensions are 
consolidated when they have a positive 
correlation across members of a population 
(Blau, 1977). Consolidation creates homophily 
when the mechanism(s) producing homophily on 
one dimension lead to homophily on the second 
dimension only because of the correlation 
between the two dimensions.  Thus, individuals 
associate with others who are similar on a 
characteristic only because that characteristic is 
correlated with another, more salient 
characteristic.  For example, as consolidation 
increases, rates of intermarriage decrease for 
dimensions such as race, birth region, 
occupation, socio-economic status, and 
employment industry (Blau, Beeker, & 
Fitzpatrick, 1984; Skvoretz, 1990).  With a 
highly consolidated set of parameters, an 
ingroup tendency on one dimension leads to 
ingroup relations on all other parameters in the 
set.   
 
Inbreeding homophily is also produced through 
organizations and institutions that draw similar 
types of individuals together.  Such 
substructures, or foci (Feld, 1981, 1982), attract 
people who share similarities on many 
dimensions.  Common foci include workplaces, 
voluntary associations, and neighborhoods 
(Feld, 1982; Fischer, 1982; Marsden, 1990; 
McPherson & Smith-Lovin, 1986, 1987).  
Relations drawn from such foci tend to be more 
homophilous than those not drawn from foci 
(Kalmijn & Flap, 2001) and more homophilous 
than expected by chance (McPherson & Smith-
Lovin, 1987).  Families are another common 
focus, though their effect on homophily differs.  
For instance, over half of the ties in the GSS 
discussion network data were kin-based 
(Marsden, 1987).  While families are often 
similar on race, ethnicity, and religion, they are 
more heterogeneous on age and sex strictly due 
to demography.   
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INTRODUCTION 
 
Folk wisdom tells us that “birds of a feather 
flock together” yet, at the same time “opposites 
attract.”  The contradiction between these 
familiar adages points to a fundamental feature 
of relationships: their multidimensionality.  The 
forces that attract and repel people operate in 
conjunction along several dimensions 
simultaneously.  This is evident in Blau’s (1977) 
notion of multiform heterogeneity, which 
implies that the desire for homophily on some 
dimensions can make heterophily on other 
dimensions inevitable.  Consequently, 
individuals within relationships are similar in 
many respects, while dissimilar in other aspects: 
Male and female birds flock together. 
 
This study moves beyond the unidimensional 
treatment of homophily that dominates previous 
research by developing a multidimensional 
conceptualization.  Homophily is characterized 
as a combination of similarity and dissimilarity 
across several dimensions, referred to as 
configurations of homophily.  These 
configurations can be analyzed to better 
understand the interrelations between 
dimensions that structure interpersonal 
associations.  Of particular interest are which 
configurations of homophily occur more often 
than expected by chance. 
 
Introducing multidimensional homophily 
proceeds through two steps.  First, I define 
relations as configurations of homophily with 
the graphical assistance of lattices.  Just as 
scatterplots are valuable for examining 
correlational data, lattices provide a useful 
representation of configurational data.  I present 
a lattice visualization technique that conveys 
both the distribution of dyads across homophily 
configurations and the logical relationship 
between configurations.  This tool helps portray 
the relationships inherent to combinatorial data 
and can assist in the evaluation of such data. 
 
Second, to understand which combinations of 
homophily are most salient across relations, I 
examine ego network data from the 1985 

General Social Survey. I use Qualitative 
Comparative Analysis (QCA) to identify the 
combinations of similarity and dissimilarity that 
underlie the configurations of homophily in 
observed dyads.  This process uncovers how 
dimensions of homophily interact to create more 
dyads than expected by chance.   
 
Homophily Research 
 
Social scientists have documented homophily as 
one of the most persistent features of human 
society (McPherson, Smith-Lovin, & Cook, 
2001).  Homophily is defined as the tendency for 
people to associate with others who are similar, 
rather than dissimilar, to themselves.  
Homophily is important because of its 
implications for the movement of ideas and 
people through society.  While communication 
between similar individuals tends to be more 
effective (Rogers & Bhowmik, 1970), 
homogeneous networks also tend to constrain 
attitudes to be more “closed-minded” (Laumann, 
1963) or conservative (Bienenstock, Bonacich, 
& Oliver, 1990).  Beyond attitudes, the presence 
of homophily necessitates that any “cultural, 
behavioral, genetic, or material information that 
flows through networks will tend to be 
localized” (McPherson et al., 2001, p. 416).  
Homophily also has consequences for social 
mobility to the extent that positions of power 
and authority are correlated with ascribed 
characteristics of their occupants.  For instance, 
because women are less likely to occupy 
powerful positions within organizations, such 
individuals must form strategic, heterophilous 
ties that are less efficient in order to gain access 
to valuable information and resources (Ibarra 
1992).  Thus, it is important to understand 
homophily as a means of ascertaining the types 
of social distance that are least often bridged. 
 
Research has documented the persistence of 
homophily in groups and interpersonal 
relationships across a wide range of dimensions 
(for an overview see McPherson et al., 2001).  
Race and ethnic homophily is perhaps the 
strongest dimension in the United States and is 
observed across most forms of relations.  

 

Spouses (Kalmijn, 1998), coworkers (Ibarra, 
1995), and neighbors (Marsden, 1990) all tend to 
be of similar race/ethnicity.  Relations also tend 
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Marsden, 1990) with the main exception of 
parent/child relations (Fischer, 1982).  Sex is an 
unusual dimension in that for many people 
spouses are an important relation yet spouses are 
traditionally opposite sex.  Excluding spouses, 
relations tend to be homophilous on sex, though 
not as much as on race/ethnicity (Marsden, 
1987; Mayhew, McPherson, Rotolo, & Smith-
Lovin, 1995).  Homophily along the religion 
dimension is fairly strong, almost as strong as 
race/ethnic homophily (Marsden, 1981, 1988).  
Education homophily has also been 
demonstrated (Louch, 2000) though the presence 
of kin in networks reduces its strength (Kalmijn, 
1998).  Finally, homophily of values, status, and 
appearance are all important criteria in selecting 
long-term partners (Buston & Emlen, 2003). 
 
Baseline Homophily 
 
When measuring homophily it is essential to 
ascertain how much perceived similarity is 
simply due to chance.  McPherson and 
colleagues (2001) distinguished between two 
sources of homophily: baseline and inbreeding.  
Baseline homophily is the level that would be 
expected by chance if people chose their 
associates randomly.  Baseline homophily is 
purely a function of the population distribution: 
intergroup contact is more frequent when the 
population is more heterogeneous (Blau & 
Schwartz, 1984; Blum, 1985; Skvoretz, 1990).  
As the homogeneity of a population increases, 
relations within the population are expected to 
be more homophilous.   
 
Inbreeding Homophily 
 
When homophily on any dimension exceeds the 
baseline rate then that dimension is defined as 
salient; the number of relations that are ingroup 
on that dimension exceeds that expected by 
chance (Blau, 1977).  Rates of homophily 
exceeding the baseline level are products of one 
or more inbreeding sources.  Three primary 

mechanisms contribute to inbreeding 
homophily: consolidation, substructures, and 
preference (McPherson et al., 2001).  
Consolidation emerges because individuals 
occupy social positions that can be measured 
along multiple dimensions (referred to as 
parameters by Blau).  Two dimensions are 
consolidated when they have a positive 
correlation across members of a population 
(Blau, 1977). Consolidation creates homophily 
when the mechanism(s) producing homophily on 
one dimension lead to homophily on the second 
dimension only because of the correlation 
between the two dimensions.  Thus, individuals 
associate with others who are similar on a 
characteristic only because that characteristic is 
correlated with another, more salient 
characteristic.  For example, as consolidation 
increases, rates of intermarriage decrease for 
dimensions such as race, birth region, 
occupation, socio-economic status, and 
employment industry (Blau, Beeker, & 
Fitzpatrick, 1984; Skvoretz, 1990).  With a 
highly consolidated set of parameters, an 
ingroup tendency on one dimension leads to 
ingroup relations on all other parameters in the 
set.   
 
Inbreeding homophily is also produced through 
organizations and institutions that draw similar 
types of individuals together.  Such 
substructures, or foci (Feld, 1981, 1982), attract 
people who share similarities on many 
dimensions.  Common foci include workplaces, 
voluntary associations, and neighborhoods 
(Feld, 1982; Fischer, 1982; Marsden, 1990; 
McPherson & Smith-Lovin, 1986, 1987).  
Relations drawn from such foci tend to be more 
homophilous than those not drawn from foci 
(Kalmijn & Flap, 2001) and more homophilous 
than expected by chance (McPherson & Smith-
Lovin, 1987).  Families are another common 
focus, though their effect on homophily differs.  
For instance, over half of the ties in the GSS 
discussion network data were kin-based 
(Marsden, 1987).  While families are often 
similar on race, ethnicity, and religion, they are 
more heterogeneous on age and sex strictly due 
to demography.   
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Finally, inbreeding homophily can emerge 
because individuals prefer to associate with 
similar others (Skvoretz, 1983).  Possible 
sources for this preference include 
communication facilitation (Rogers & 
Bhowmik, 1970), impressions of cognitive 
compatibility (Huston & Levinger, 1978), and 
energy efficiency (Mayhew et al., 1995).  
Preference homophily can be conceptualized as 
the residual homophily that exists beyond that 
explained by baseline levels, consolidation, and 
substructural foci.   
 
The present research focuses on homophily 
produced through substructures and individual 
preference.  Baseline homophily and inbreeding 
homophily due to consolidation at the 
population level are controlled. 
 
Multidimensionality 
 
Several researchers have recognized the 
multidimensional nature of homophily in 
relations, i.e., that individuals are simultaneously 
drawn together or repelled from one another 
based upon a range of characteristics (Blau, 
1977; Burt, 1990; Huckfeldt, 1983; Laumann, 
1973; Popielarz & McPherson, 1995; Rogers & 
Bhowmik, 1970; Skvoretz, 1983).  Early 
research on homophily primarily examined a 
single dimension (Feld, 1982; Hallinan & 
Williams, 1989; Robins, Elliott & Pattison, 
2001) or multiple dimensions in sequence (Blau 
et al., 1984; Burt, 1990; McPherson & Smith-
Lovin, 1987; Marsden, 1987; Skvoretz, 1990).  
Such research detailed the gradations of 
homophily, the relationship between social 
position and homophily, and how, independent 
of one another, some dimensions are more 
salient and exert a stronger influence on 
association than others (Marsden, 1987, 1988).   
 
Recently, statistical models have emerged as a 
means to examine homophily on multiple 
dimensions simultaneously.  Two examples are 
the stochastic actor-oriented model (Snijders, 
Steglich, & van de Bunt, 2010) and exponential 
random graph models (Robins, et al., 2007; 
Wasserman & Pattison. 1996).  Using such 

approaches, researchers have continued to find 
evidence for homophily on individual attributes, 
including race/ethnicity, sex, and age 
(Goodreau, Kitts, & Morris, 2009; Mouw & 
Entwisle, 2006; Schaefer, Light, Fabes, Hanish, 
& Martin, 2010).  While such research considers 
multiple dimensions simultaneously, thereby 
controlling for consolidation, models typically 
do not include interactions between dimensions.  
This implicitly assumes that interactions 
between homophily dimensions are independent 
or unimportant.  The current research relaxes the 
assumption of independent dimensions and 
explores how dimensions operate in conjunction 
to influence the likelihood of association.  
 
The current research aims to identify which 
combinations of homophily occur more often 
than expected by chance.  I present a set-
theoretic approach to the patterning of 
homophily across several dimensions.  I eschew 
measurement complexity in order to gain an 
understanding of the broader patterns of 
homophily across multiple dimensions.  Given 
the limited research that has considered 
homophily multidimenionally, this approach 
serves as a useful starting point. 
 
Configurations of Homophily 
 
This research defines homophily as a “crisp set” 
(individuals are either similar or dissimilar) and 
relations are either in the set of “homophilous 
relations” or outside the set.  To measure 
homophily for any pair of individuals, I measure 
their individual scores on a dimension and then 
classify their similarity.  For a condition x, 
relations in the “x homophily” set are similar on 
dimension x, while those outside the set are 
different on x.  For example, relations between 
individuals who are the same age are members 
of the set “age homophily” and those between 
individuals of different ages are outside of the 
set “age homophily.” 
 
The multidimensionality of homophily is 
measured by classifying relations as 
configurations of homophily.  A configuration of 
homophily is the pattern of similarity across a 

 

specified set of dimensions.  For instance, 
spouses often share similar age and race but are 
opposite sex.  Such relationships belong to the 
set “Age and Race Homophily.”  This can be 
contrasted with same-sex friends, who most 
often fall into the set “Age, Race, and Sex 
Homophily.”  Given a finite set of dimensions, 
any relation will fall into only one configuration, 
though some configurations will be more 
common than others.  One would expect 
configurations to be more common as the 
number of dimensions exhibiting similarity 
increases. 
 
Formally, a set of n dimensions along which 
homophily can be measured is defined as X = 
{x1, x2, …,xn}.  The power set of X, P(X), 
contains all possible combinations of the 
elements of X, including the null set, in 
which no homophily is present.  With n 
conditions there will be 2n elements in P(X).  For 
example, with the conditions Age and Race, 
there will be four combinations in P(X): “No 
Homophily,” “Age Homophily,” “Race 
Homophily,” and “Age and Race Homophily.”  
The 2n elements of P(X) are all of the 
combinations of similarity across those 
dimensions and are defined as configurations of 
homophily.   
 
In the remainder of this paper, I develop two 
means to examine configurations of homophily.  
First, lattice visualization is introduced as a 
means to understand the nested nature of 
configurations and how a set of dyads is 
distributed across configurations.  Second, 
Qualitative Comparative Analysis is used to 
uncover the interactions between homophily 
dimensions that make some configurations more 
prevalent than others. 
 
DATA 
 
Data come from the 1985 General Social 
Survey, which included a network module with 
questions about respondents’ discussion 
partners.  Respondents were asked to identify 
others with whom they discussed important 
matters, to which they listed an average of 3.01 

discussion partners (Marsden, 1987).  The first 
five respondents named were included in follow-
up questions about sociodemographic 
dimensions and their relation to the respondent.  
Sociodemographic information obtained from 
respondents and for each partner includes age, 
sex, race, education, and religion.   
 
The unit of analysis for this research is pairs of 
individuals (dyads) consisting of respondent 
(ego) and discussion partner (alter).  The 1,534 
survey respondents provided information about 
4,498 discussion partners.  Drawing on only 
those cases with complete sociodemographic 
information for both ego and alter resulted in 
3,999 dyads.   
 
Configurations 
 
Similarity between ego and alter was measured 
along five dimensions: age, sex, race, education, 
and religion.  Homophily along the graduated 
(continuous) dimensions age and education was 
determined by whether or not the difference in 
values between ego and alter fell within a 
specified range.   For the age dimension, pairs 
with differences of five years or less were coded 
as being similar.  Education is not as 
straightforward because respondents only 
reported alters’ education in pre-specified ranges 
(1-6 years, 7-9 years, 10-12 years, high-school 
graduate, some college, A.A. degree, B.A. 
degree, or professional degree).  To code 
education homophily these categories were rank 
ordered for both ego and alter and only those 
individuals who differed by less than two steps 
were considered similar. 
 
Religion for both ego and alter was reported as 
Protestant, Catholic, Jewish, other, or none.  If 
the religion, or non-religion, for both ego and 
alter were the same then that dyad was coded as 
having religious homophily; otherwise the dyad 
was coded as heterophilous.  Homophily along 
the other nominal dimensions, sex and race, was 
coded in a similar manner. For each dimension, 
dissimilarity was coded as 0 and similarity as 1. 
Table 1 presents the distribution of dyads across 
all possible configurations of homophily (all 
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Finally, inbreeding homophily can emerge 
because individuals prefer to associate with 
similar others (Skvoretz, 1983).  Possible 
sources for this preference include 
communication facilitation (Rogers & 
Bhowmik, 1970), impressions of cognitive 
compatibility (Huston & Levinger, 1978), and 
energy efficiency (Mayhew et al., 1995).  
Preference homophily can be conceptualized as 
the residual homophily that exists beyond that 
explained by baseline levels, consolidation, and 
substructural foci.   
 
The present research focuses on homophily 
produced through substructures and individual 
preference.  Baseline homophily and inbreeding 
homophily due to consolidation at the 
population level are controlled. 
 
Multidimensionality 
 
Several researchers have recognized the 
multidimensional nature of homophily in 
relations, i.e., that individuals are simultaneously 
drawn together or repelled from one another 
based upon a range of characteristics (Blau, 
1977; Burt, 1990; Huckfeldt, 1983; Laumann, 
1973; Popielarz & McPherson, 1995; Rogers & 
Bhowmik, 1970; Skvoretz, 1983).  Early 
research on homophily primarily examined a 
single dimension (Feld, 1982; Hallinan & 
Williams, 1989; Robins, Elliott & Pattison, 
2001) or multiple dimensions in sequence (Blau 
et al., 1984; Burt, 1990; McPherson & Smith-
Lovin, 1987; Marsden, 1987; Skvoretz, 1990).  
Such research detailed the gradations of 
homophily, the relationship between social 
position and homophily, and how, independent 
of one another, some dimensions are more 
salient and exert a stronger influence on 
association than others (Marsden, 1987, 1988).   
 
Recently, statistical models have emerged as a 
means to examine homophily on multiple 
dimensions simultaneously.  Two examples are 
the stochastic actor-oriented model (Snijders, 
Steglich, & van de Bunt, 2010) and exponential 
random graph models (Robins, et al., 2007; 
Wasserman & Pattison. 1996).  Using such 

approaches, researchers have continued to find 
evidence for homophily on individual attributes, 
including race/ethnicity, sex, and age 
(Goodreau, Kitts, & Morris, 2009; Mouw & 
Entwisle, 2006; Schaefer, Light, Fabes, Hanish, 
& Martin, 2010).  While such research considers 
multiple dimensions simultaneously, thereby 
controlling for consolidation, models typically 
do not include interactions between dimensions.  
This implicitly assumes that interactions 
between homophily dimensions are independent 
or unimportant.  The current research relaxes the 
assumption of independent dimensions and 
explores how dimensions operate in conjunction 
to influence the likelihood of association.  
 
The current research aims to identify which 
combinations of homophily occur more often 
than expected by chance.  I present a set-
theoretic approach to the patterning of 
homophily across several dimensions.  I eschew 
measurement complexity in order to gain an 
understanding of the broader patterns of 
homophily across multiple dimensions.  Given 
the limited research that has considered 
homophily multidimenionally, this approach 
serves as a useful starting point. 
 
Configurations of Homophily 
 
This research defines homophily as a “crisp set” 
(individuals are either similar or dissimilar) and 
relations are either in the set of “homophilous 
relations” or outside the set.  To measure 
homophily for any pair of individuals, I measure 
their individual scores on a dimension and then 
classify their similarity.  For a condition x, 
relations in the “x homophily” set are similar on 
dimension x, while those outside the set are 
different on x.  For example, relations between 
individuals who are the same age are members 
of the set “age homophily” and those between 
individuals of different ages are outside of the 
set “age homophily.” 
 
The multidimensionality of homophily is 
measured by classifying relations as 
configurations of homophily.  A configuration of 
homophily is the pattern of similarity across a 

 

specified set of dimensions.  For instance, 
spouses often share similar age and race but are 
opposite sex.  Such relationships belong to the 
set “Age and Race Homophily.”  This can be 
contrasted with same-sex friends, who most 
often fall into the set “Age, Race, and Sex 
Homophily.”  Given a finite set of dimensions, 
any relation will fall into only one configuration, 
though some configurations will be more 
common than others.  One would expect 
configurations to be more common as the 
number of dimensions exhibiting similarity 
increases. 
 
Formally, a set of n dimensions along which 
homophily can be measured is defined as X = 
{x1, x2, …,xn}.  The power set of X, P(X), 
contains all possible combinations of the 
elements of X, including the null set, in 
which no homophily is present.  With n 
conditions there will be 2n elements in P(X).  For 
example, with the conditions Age and Race, 
there will be four combinations in P(X): “No 
Homophily,” “Age Homophily,” “Race 
Homophily,” and “Age and Race Homophily.”  
The 2n elements of P(X) are all of the 
combinations of similarity across those 
dimensions and are defined as configurations of 
homophily.   
 
In the remainder of this paper, I develop two 
means to examine configurations of homophily.  
First, lattice visualization is introduced as a 
means to understand the nested nature of 
configurations and how a set of dyads is 
distributed across configurations.  Second, 
Qualitative Comparative Analysis is used to 
uncover the interactions between homophily 
dimensions that make some configurations more 
prevalent than others. 
 
DATA 
 
Data come from the 1985 General Social 
Survey, which included a network module with 
questions about respondents’ discussion 
partners.  Respondents were asked to identify 
others with whom they discussed important 
matters, to which they listed an average of 3.01 

discussion partners (Marsden, 1987).  The first 
five respondents named were included in follow-
up questions about sociodemographic 
dimensions and their relation to the respondent.  
Sociodemographic information obtained from 
respondents and for each partner includes age, 
sex, race, education, and religion.   
 
The unit of analysis for this research is pairs of 
individuals (dyads) consisting of respondent 
(ego) and discussion partner (alter).  The 1,534 
survey respondents provided information about 
4,498 discussion partners.  Drawing on only 
those cases with complete sociodemographic 
information for both ego and alter resulted in 
3,999 dyads.   
 
Configurations 
 
Similarity between ego and alter was measured 
along five dimensions: age, sex, race, education, 
and religion.  Homophily along the graduated 
(continuous) dimensions age and education was 
determined by whether or not the difference in 
values between ego and alter fell within a 
specified range.   For the age dimension, pairs 
with differences of five years or less were coded 
as being similar.  Education is not as 
straightforward because respondents only 
reported alters’ education in pre-specified ranges 
(1-6 years, 7-9 years, 10-12 years, high-school 
graduate, some college, A.A. degree, B.A. 
degree, or professional degree).  To code 
education homophily these categories were rank 
ordered for both ego and alter and only those 
individuals who differed by less than two steps 
were considered similar. 
 
Religion for both ego and alter was reported as 
Protestant, Catholic, Jewish, other, or none.  If 
the religion, or non-religion, for both ego and 
alter were the same then that dyad was coded as 
having religious homophily; otherwise the dyad 
was coded as heterophilous.  Homophily along 
the other nominal dimensions, sex and race, was 
coded in a similar manner. For each dimension, 
dissimilarity was coded as 0 and similarity as 1. 
Table 1 presents the distribution of dyads across 
all possible configurations of homophily (all 
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elements of the power set).  With five 
sociodemographic dimensions there are 32 
possible configurations.  Given a large number 
of individuals who are heterogeneous along 
several dimensions, it is not surprising that all 
configurations of homophily are represented.  
The first row is the null set, absence of 
homophily on all five dimensions.  The most 
common configuration is number 16, which 
includes similarity on four of the five 
dimensions (Sex, Race, Education, and 
Religion).  This configuration contains 27% 
more relationships than the second most 
frequent configuration (number 32), which is the 
complete homophily configuration. 
 
Configuration Frequency 
 
To determine which configurations occur more 
often than expected by chance it is necessary to 
compare the observed number of relations in 
each configuration to a baseline level that 
represents random association.  The theoretical 
baseline population in this research comprises 
all possible relations in the United States in 
1985.  Like many surveys of the general 
population, the GSS underrepresents males 
(Davis & Smith, 1996) and the marginal 
distributions of other demographic dimensions 
do not match U.S. population estimates.  To 
create a representative baseline, the data were 
weighted to reflect the general population using 
U.S. census estimates from 1985 to weight by 
age, sex, and race and from 1990 to weight by 
education (U.S. Census Bureau, 1990, 2000).  
Respondents were not weighted by religion as 
the GSS comprises the best available national 
estimate of religious identification.  Using the 
GSS as the basis for computing the baseline, 
rather than census estimates that don’t include 
religion, has the advantage of preserving the 
consolidation of parameters.  Maintaining the 
correlation of dimensions within individuals is 
vital when examining how multiple dimensions 
simultaneously draw people together.  An 
expected proportion was computed for every 
configuration of homophily and can be seen in 
the Baseline column of Table 1 (computation of 
the baseline is presented in the Appendix). 

Examination of Table 1 reveals that the 
distribution of dyads across configurations 
varies from that expected by chance.  For 
instance, the top row represents relations that are 
different on all five dimensions.  Examining the 
“All” column we see that the 0.1% of dyads 
observed in this configuration is well below the 
3.1% expected by chance.  Conversely, the 
12.8% of dyads in the bottom row, homophily 
on all dimensions, is well above the 1.6% 
expected by chance.  To evaluable how 
dimensions interact to affect the frequency of 
observed dyads, each configuration was coded 
as exceeding the baseline frequency or not.  This 
was determined using a z-test for proportions 
with an alpha of .05.  Those configurations 
whose proportion was significantly higher than 
the baseline proportion were coded as 1; 
otherwise they were coded as 0.  Ten 
configurations occurred more often than 
expected by chance while twenty-two did not. 
 
Role relations correspond to common foci that 
bring people together and provide the 
opportunity for relationships to develop 
(Marsden, 1990).  Examining role relations 
independently can provide insight to the 
multidimensional nature of homophily induced 
through substructures.  The GSS allowed 
respondents to select multiple ways in which 
they were connected to each alter.  This research 
utilizes the following relations: kin, coworkers, 
friends, and group members.  Since kin relations 
evolve through a different process than most 
other relations a distinction was made between 
kin and nonkin.  Relations with parents, siblings, 
children, and other family members were 
collapsed into the kin relation.  To help ascertain 
the homophily induced by substructural foci and 
not pre-existing kin relations, only nonkin 
friends, coworkers, and group members were 
considered.  Table 1 reports the distribution of 
dyads across homophily configurations by type 
of role relation.  The proportion of dyads of each 
relation type in each configuration was 
compared to the baseline, with those exceeding
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elements of the power set).  With five 
sociodemographic dimensions there are 32 
possible configurations.  Given a large number 
of individuals who are heterogeneous along 
several dimensions, it is not surprising that all 
configurations of homophily are represented.  
The first row is the null set, absence of 
homophily on all five dimensions.  The most 
common configuration is number 16, which 
includes similarity on four of the five 
dimensions (Sex, Race, Education, and 
Religion).  This configuration contains 27% 
more relationships than the second most 
frequent configuration (number 32), which is the 
complete homophily configuration. 
 
Configuration Frequency 
 
To determine which configurations occur more 
often than expected by chance it is necessary to 
compare the observed number of relations in 
each configuration to a baseline level that 
represents random association.  The theoretical 
baseline population in this research comprises 
all possible relations in the United States in 
1985.  Like many surveys of the general 
population, the GSS underrepresents males 
(Davis & Smith, 1996) and the marginal 
distributions of other demographic dimensions 
do not match U.S. population estimates.  To 
create a representative baseline, the data were 
weighted to reflect the general population using 
U.S. census estimates from 1985 to weight by 
age, sex, and race and from 1990 to weight by 
education (U.S. Census Bureau, 1990, 2000).  
Respondents were not weighted by religion as 
the GSS comprises the best available national 
estimate of religious identification.  Using the 
GSS as the basis for computing the baseline, 
rather than census estimates that don’t include 
religion, has the advantage of preserving the 
consolidation of parameters.  Maintaining the 
correlation of dimensions within individuals is 
vital when examining how multiple dimensions 
simultaneously draw people together.  An 
expected proportion was computed for every 
configuration of homophily and can be seen in 
the Baseline column of Table 1 (computation of 
the baseline is presented in the Appendix). 

Examination of Table 1 reveals that the 
distribution of dyads across configurations 
varies from that expected by chance.  For 
instance, the top row represents relations that are 
different on all five dimensions.  Examining the 
“All” column we see that the 0.1% of dyads 
observed in this configuration is well below the 
3.1% expected by chance.  Conversely, the 
12.8% of dyads in the bottom row, homophily 
on all dimensions, is well above the 1.6% 
expected by chance.  To evaluable how 
dimensions interact to affect the frequency of 
observed dyads, each configuration was coded 
as exceeding the baseline frequency or not.  This 
was determined using a z-test for proportions 
with an alpha of .05.  Those configurations 
whose proportion was significantly higher than 
the baseline proportion were coded as 1; 
otherwise they were coded as 0.  Ten 
configurations occurred more often than 
expected by chance while twenty-two did not. 
 
Role relations correspond to common foci that 
bring people together and provide the 
opportunity for relationships to develop 
(Marsden, 1990).  Examining role relations 
independently can provide insight to the 
multidimensional nature of homophily induced 
through substructures.  The GSS allowed 
respondents to select multiple ways in which 
they were connected to each alter.  This research 
utilizes the following relations: kin, coworkers, 
friends, and group members.  Since kin relations 
evolve through a different process than most 
other relations a distinction was made between 
kin and nonkin.  Relations with parents, siblings, 
children, and other family members were 
collapsed into the kin relation.  To help ascertain 
the homophily induced by substructural foci and 
not pre-existing kin relations, only nonkin 
friends, coworkers, and group members were 
considered.  Table 1 reports the distribution of 
dyads across homophily configurations by type 
of role relation.  The proportion of dyads of each 
relation type in each configuration was 
compared to the baseline, with those exceeding
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the baseline coded as having the outcome 
(occurring more often than expected by chance). 
 
Lattice Visualization 
 
Lattices help convey the distribution of dyads 
across configurations as well as the nested 
relationship between configurations.  If X is the 
set of characteristics for which similarity is 
measured then a partial order can be defined on 
P(X) using the binary relation “<” that is 
reflexive, antisymmetric, and transitive.  
Following Wasserman and Faust (1994) if c is an 
element of P(X) then, the “<” relation can be 
formally stated as: 

ci < cj 
ci < cj and cj < ci if and only if ci = cj 
ci < cj and cj < ck implies ci < ck 

Two configurations, ci and cj have a lower bound 
ck when ck < ci and ck < cj.  The element ck is the 
greatest lower bound, if cl < ck for all lower 

bounds cl of ci and cj.  Two configurations ci and 
cj have an upper bound ck when ci < ck and cj < ck.  
The element ck is the least upper bound if ck < cl 
for all upper bounds cl of ci and cj.  A lattice is 
defined as a partially ordered set of elements in 
which any two elements have both a least upper 
bound and greatest lower bound (Birkhoff, 1940).  
A lattice can be displayed in a diagram with nodes 
representing sets of elements (configurations) and 
lines representing the “<” relation (see Figure 1).   
 
This lattice represents the set of five dimensions 
along which homophily was measured and 
directly orresponds to the N column in Table 1.  
The nodes refer to each possible configuration of 
homophily.  Letters refer to the dimensions of 
similarity that comprise the configuration (for 
ease of presentation, the logical “and” that lies 
between each element of the configurations is not 
displayed).  The uppermost node (ASREG) 
represents complete homophily, presence of 
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Figure 1.  Distribution of Dyads Across Configurations (N=3,999)  

A: Age, S: Sex, R: Race,  
E: Education, G: Religion 

 

 

education & religion).  The lowermost node is the 
null set, representing complete heterophily, 
absence of similarity on all dimensions.  
Intermediate nodes represent varying degrees of 
homophily, increasing as one moves up the lattice.  
For example, the five nodes immediately below 
the top node represent the five configurations that 
differ from complete homophily on a single 
dimension (i.e., similarity on four conditions).  
The ten nodes on the level below all contain 
configurations with similarity on exactly three 
dimensions.   
 
In this lattice, nodes are sized to indicate the 
frequency of a configuration within the data.  The 
largest nodes are in the top half of the lattice, 
indicating that most of the dyads in the GSS 
sample exhibit homophily on three or more 
dimensions.  The largest nodes are GASRE and 
GSRE, which combined represent over one-
quarter of the observed dyads. 
 
The placement of nodes and lines connecting 
them represent the nested structure of 
configurations in which some configurations are 
subsets of others.  A configuration is a subset of 
another if all of its elements are contained within 
the other configuration.  Two configurations are 
connected in the lattice if they differ on only a 
single element.  For example, the ASREG and 
SREG nodes are connected because the latter is a 
subset of the former, differing only on the absence 
of age similarity.  Each node contains one fewer 
element of similarity than the upwards node(s) to 
which they are connected.  Nodes with multiple 
lines emerging from the top are subsets of 
multiple other configurations.  Likewise, nodes 
with multiple lines emerging from below are 
supersets of multiple other configurations.   
 
The shading in Figure 1 reflects which 
configurations exceed chance occurrence.  Black 
nodes represent configurations that are more 
prevalent than the baseline probability and white 
nodes represent configurations at or below the 
baseline level.  Note that the black nodes are 
concentrated at the top of the lattice, indicating 
that homophily on 3-5 dimensions is necessary for 
associations to exceed baseline rates.  To better 
convey the set-theoretic relationship between 

configurations, dark lines are used to connect 
configurations that exceed chance.  The complete 
homophily configuration and the five 
configurations below it all occurred more often 
than expected by chance.  Looking further down 
the lattice, only four additional configurations 
exceeded the baseline.  Interestingly, none of the 
configurations that are subsets of ASEG 
(similarity on all dimensions except Race) exceed 
the baseline.  That is, dissimilar race dyads only 
exceeded chance expectations when homophily 
was present on all four of the other dimensions.  
This conveys the importance of race in structuring 
relationships.  Figures 2-5 apply the same 
procedure to dyads drawn from different 
substructural foci. 
 
Qualitative Comparative Analysis 
 
The patterns of homophily represented in lattices 
can be summarized using Qualitative Comparative 
Analysis (QCA).  QCA is a set-theoretic approach 
that uses the logic of Boolean algebra to identify 
the combinations of causal conditions that are 
subsets of an outcome (Ragin, 1987, 2000).  The 
QCA procedure applies Boolean logic to reduce 
the truth table to a set of statements that describe 
the configurations associated with the outcome.  
QCA identifies when either the presence or the 
absence of a condition is associated with an 
outcome.  Two features in particular assist with 
identifying how multiple dimensions of 
homophily operate in conjunction.  First, QCA 
facilitates the search for substitutable conditions, 
where the presence of either from a pair of 
independent variables is sufficient to produce the 
outcome.  For example, a combinatorial model 
has the power to reveal that either race homophily 
or religion homophily is necessary in relations, 
but not both.  Second, the QCA procedure is able 
to identify situations where the importance of one 
condition is contingent upon other characteristics.  
Similarity on a dimension may be associated with 
the outcome with some combinations of other 
dimensions, while dissimilarity may be associated 
with the outcome in other combinations.   
 
In order to analyze configuration with QCA, it is 
necessary to specify whether the outcome 
occurred for each configuration, which is defined 
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the baseline coded as having the outcome 
(occurring more often than expected by chance). 
 
Lattice Visualization 
 
Lattices help convey the distribution of dyads 
across configurations as well as the nested 
relationship between configurations.  If X is the 
set of characteristics for which similarity is 
measured then a partial order can be defined on 
P(X) using the binary relation “<” that is 
reflexive, antisymmetric, and transitive.  
Following Wasserman and Faust (1994) if c is an 
element of P(X) then, the “<” relation can be 
formally stated as: 

ci < cj 
ci < cj and cj < ci if and only if ci = cj 
ci < cj and cj < ck implies ci < ck 

Two configurations, ci and cj have a lower bound 
ck when ck < ci and ck < cj.  The element ck is the 
greatest lower bound, if cl < ck for all lower 

bounds cl of ci and cj.  Two configurations ci and 
cj have an upper bound ck when ci < ck and cj < ck.  
The element ck is the least upper bound if ck < cl 
for all upper bounds cl of ci and cj.  A lattice is 
defined as a partially ordered set of elements in 
which any two elements have both a least upper 
bound and greatest lower bound (Birkhoff, 1940).  
A lattice can be displayed in a diagram with nodes 
representing sets of elements (configurations) and 
lines representing the “<” relation (see Figure 1).   
 
This lattice represents the set of five dimensions 
along which homophily was measured and 
directly orresponds to the N column in Table 1.  
The nodes refer to each possible configuration of 
homophily.  Letters refer to the dimensions of 
similarity that comprise the configuration (for 
ease of presentation, the logical “and” that lies 
between each element of the configurations is not 
displayed).  The uppermost node (ASREG) 
represents complete homophily, presence of 
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Figure 1.  Distribution of Dyads Across Configurations (N=3,999)  

A: Age, S: Sex, R: Race,  
E: Education, G: Religion 

 

 

education & religion).  The lowermost node is the 
null set, representing complete heterophily, 
absence of similarity on all dimensions.  
Intermediate nodes represent varying degrees of 
homophily, increasing as one moves up the lattice.  
For example, the five nodes immediately below 
the top node represent the five configurations that 
differ from complete homophily on a single 
dimension (i.e., similarity on four conditions).  
The ten nodes on the level below all contain 
configurations with similarity on exactly three 
dimensions.   
 
In this lattice, nodes are sized to indicate the 
frequency of a configuration within the data.  The 
largest nodes are in the top half of the lattice, 
indicating that most of the dyads in the GSS 
sample exhibit homophily on three or more 
dimensions.  The largest nodes are GASRE and 
GSRE, which combined represent over one-
quarter of the observed dyads. 
 
The placement of nodes and lines connecting 
them represent the nested structure of 
configurations in which some configurations are 
subsets of others.  A configuration is a subset of 
another if all of its elements are contained within 
the other configuration.  Two configurations are 
connected in the lattice if they differ on only a 
single element.  For example, the ASREG and 
SREG nodes are connected because the latter is a 
subset of the former, differing only on the absence 
of age similarity.  Each node contains one fewer 
element of similarity than the upwards node(s) to 
which they are connected.  Nodes with multiple 
lines emerging from the top are subsets of 
multiple other configurations.  Likewise, nodes 
with multiple lines emerging from below are 
supersets of multiple other configurations.   
 
The shading in Figure 1 reflects which 
configurations exceed chance occurrence.  Black 
nodes represent configurations that are more 
prevalent than the baseline probability and white 
nodes represent configurations at or below the 
baseline level.  Note that the black nodes are 
concentrated at the top of the lattice, indicating 
that homophily on 3-5 dimensions is necessary for 
associations to exceed baseline rates.  To better 
convey the set-theoretic relationship between 

configurations, dark lines are used to connect 
configurations that exceed chance.  The complete 
homophily configuration and the five 
configurations below it all occurred more often 
than expected by chance.  Looking further down 
the lattice, only four additional configurations 
exceeded the baseline.  Interestingly, none of the 
configurations that are subsets of ASEG 
(similarity on all dimensions except Race) exceed 
the baseline.  That is, dissimilar race dyads only 
exceeded chance expectations when homophily 
was present on all four of the other dimensions.  
This conveys the importance of race in structuring 
relationships.  Figures 2-5 apply the same 
procedure to dyads drawn from different 
substructural foci. 
 
Qualitative Comparative Analysis 
 
The patterns of homophily represented in lattices 
can be summarized using Qualitative Comparative 
Analysis (QCA).  QCA is a set-theoretic approach 
that uses the logic of Boolean algebra to identify 
the combinations of causal conditions that are 
subsets of an outcome (Ragin, 1987, 2000).  The 
QCA procedure applies Boolean logic to reduce 
the truth table to a set of statements that describe 
the configurations associated with the outcome.  
QCA identifies when either the presence or the 
absence of a condition is associated with an 
outcome.  Two features in particular assist with 
identifying how multiple dimensions of 
homophily operate in conjunction.  First, QCA 
facilitates the search for substitutable conditions, 
where the presence of either from a pair of 
independent variables is sufficient to produce the 
outcome.  For example, a combinatorial model 
has the power to reveal that either race homophily 
or religion homophily is necessary in relations, 
but not both.  Second, the QCA procedure is able 
to identify situations where the importance of one 
condition is contingent upon other characteristics.  
Similarity on a dimension may be associated with 
the outcome with some combinations of other 
dimensions, while dissimilarity may be associated 
with the outcome in other combinations.   
 
In order to analyze configuration with QCA, it is 
necessary to specify whether the outcome 
occurred for each configuration, which is defined 
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as the configuration having membership in the 
outcome set (Y).  In the present study, the 
outcome is whether or not the configuration of 
homophily occurred more often than expected by 
chance.  Configurations whose frequency exceeds 
chance are in the outcome set; those that equal or 
fall below chance rates are outside of the outcome 
set.  Only those elements of P(X) that have 
membership in the outcome set are members of Y.  
The outcome is recorded for each configuration, 
resulting in a truth table that serves as the basis of 
analysis (i.e., Table 1). 
 
Arriving at a QCA solution takes place through a 
systematic comparison of configurations that 
exhibit the outcome.  If two configurations with 
the outcome differ on only one condition then that 
condition is considered irrelevant and can be 
dropped to produce a simpler expression.  For 
example, given two configurations “Age and Race 
Homophily” and “Age Homophily” that both 
exhibit the outcome (i.e., occur more often than 
expected by chance), similarity on race is 
irrelevant to the outcome.  Dyads existed more 
often than by chance if they were similar on age, 
regardless of their similarity on race.  Thus, the 
simpler expression “Age Homophily” is an 
implicant of “Age and Race Homophily” and 
“Age Homophily” because both configurations 
are contained within the set “Age Homophily.”  
Comparisons between implicants can also be 
made and conditions that are irrelevant can be 
dropped.  An implicant that cannot be simplified 
through comparison with another implicant is a 
prime implicant.  The set of prime implicants for 
the configurations with the outcome will contain 
as a subset only those configurations that exhibit 
the outcome.  Thus, the set of prime implicants for 
Y provides a simplified account of the 
combinations of conditions where the outcome 
exists.  A QCA solution contains the combinations 
of conditions that are associated with the outcome.  
The Quine-McCluskey algorithm provides a 
systematic means of comparing configurations 
and implicants to reduce a truth table and is 
incorporated within the fs/QCA software used for 
this research (Ragin, Drass, & Davey, 2003).   
 
The following analysis uses QCA procedures to 
simplify the configurations of homophily that 

exceed the baseline and produce a solution that 
identifies the basis of inbreeding tendencies.  
Using fs/QCA software (Ragin et al., 2003), a 
crisp set analysis was performed to determine the 
types of configurations with more dyads than 
expected by chance.  In the QCA models that 
follow, the outcome is present when the frequency 
of dyads in a given configuration exceeds the 
baseline.  To simplify presentation, solutions are 
described as leading to the outcome or not, with 
solutions leading to the outcome indicating more 
dyads than expected by chance.   
 
RESULTS 
 
The results for models predicting relations of any 
type are presented in Table 2.  The QCA solution 
can be interpreted as follows.  The first column 
includes the set of solution terms from which all 
solutions are drawn.  In each term, characteristics 
are connected by logical “and” (represented by *).  
Characteristics in uppercase letters refer to 
similarity on a dimension while lowercase letters 
refer to dissimilarity.  The columns to the right 
indicate which terms are contained in the solution 
for each type of relationship (designated with a 
“•”).  The terms for each solution are connected 
by logical “or.”  Thus, the first solution (column 
2) indicates that more dyads than expected by 
chance existed when ego and alter had similar:      

sex and race and religion, or 
age and race and religion, or 
race and education and religion, or 
age and race and education, or 
age and sex and education and religion 
 

The strong effect of race homophily is evident in 
the solution.  All terms in the solution term, 
include similarity on race except for the final 
which includes similarity on every dimension 
except for race.  Religion is also quite strong in 
that four of the terms include similarity on 
religion.  However, the number of dyads with just 
similarity on race and religion did not exceed 
chance.  It was necessary to combine similarity on 
race and religion with at least one other dimension 
in order to produce inbreeding homophily. 
 
This solution can be better understood by 
examining the lattice in Figure 1.  Because all 

 

configurations whose frequency exceeded the 
baseline (i.e., the black nodes) are no more than 
two levels down from the top node, all 
configurations with the outcome contain similarity 
on at least three dimensions.  The lowermost 
terms that contain the outcome correspond to the 
components of the QCA solution.  For example, 
the solution term (AGE*RACE*EDUC) indicates 
that configurations that were similar on these 
three dimensions contained more dyads than 
expected by chance. This solution term 
corresponds to the node labeled “ARE” and all 
supersets of this node.  That is, solution terms 
may imply, or explain, the outcome in multiple 
configurations.  Configurations that are supersets 
of the solution term can be identified by tracing 

the lines upward.  When solution terms only 
contain presence on conditions then all nodes 
configuration is a subset of two configurations 
with greater similarity (“ASRE” and “GARE”), 
which are subsets of the complete homophily 
configuration.  Thus, the solution term 
“AGE*RACE*EDUC” implies the four 
configurations from “ARE” upward.  
 
Now consider the solution term 
(AGE*SEX*EDUC*RELG), which contains four 
dimensions of similarity.  This term corresponds 
to the node labeled “ASEG.”  This solution term 
cannot be simplified because all nodes below 
represent configurations whose frequency did not 
exceed the baseline threshold.  The four terms 

 

 
Table 2.  QCA Solutions by Relationship Type† 
  
          

Nonkin 
Only   

               Solution Terms All Dyads Kin Nonkin Friend Coworker 
Group 

Member 
              

SEX * RACE * RELIG •           

AGE * RACE * RELIG   •         

AGE * RACE * RELIG •   • • • • 
RACE * EDUC * RELIG • •         

SEX * RACE * EDUC * RELIG     • • • • 
AGE * SEX * RACE     • • •   

AGE * RACE * EDUC •   • •     

AGE * SEX * EDUC * RELIG •   • • •   

AGE * SEX * RACE * EDUC           • 
      
 

† Uppercase refers to similarity, lowercase to dissimilarity, * to the logical operation "and" 
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as the configuration having membership in the 
outcome set (Y).  In the present study, the 
outcome is whether or not the configuration of 
homophily occurred more often than expected by 
chance.  Configurations whose frequency exceeds 
chance are in the outcome set; those that equal or 
fall below chance rates are outside of the outcome 
set.  Only those elements of P(X) that have 
membership in the outcome set are members of Y.  
The outcome is recorded for each configuration, 
resulting in a truth table that serves as the basis of 
analysis (i.e., Table 1). 
 
Arriving at a QCA solution takes place through a 
systematic comparison of configurations that 
exhibit the outcome.  If two configurations with 
the outcome differ on only one condition then that 
condition is considered irrelevant and can be 
dropped to produce a simpler expression.  For 
example, given two configurations “Age and Race 
Homophily” and “Age Homophily” that both 
exhibit the outcome (i.e., occur more often than 
expected by chance), similarity on race is 
irrelevant to the outcome.  Dyads existed more 
often than by chance if they were similar on age, 
regardless of their similarity on race.  Thus, the 
simpler expression “Age Homophily” is an 
implicant of “Age and Race Homophily” and 
“Age Homophily” because both configurations 
are contained within the set “Age Homophily.”  
Comparisons between implicants can also be 
made and conditions that are irrelevant can be 
dropped.  An implicant that cannot be simplified 
through comparison with another implicant is a 
prime implicant.  The set of prime implicants for 
the configurations with the outcome will contain 
as a subset only those configurations that exhibit 
the outcome.  Thus, the set of prime implicants for 
Y provides a simplified account of the 
combinations of conditions where the outcome 
exists.  A QCA solution contains the combinations 
of conditions that are associated with the outcome.  
The Quine-McCluskey algorithm provides a 
systematic means of comparing configurations 
and implicants to reduce a truth table and is 
incorporated within the fs/QCA software used for 
this research (Ragin, Drass, & Davey, 2003).   
 
The following analysis uses QCA procedures to 
simplify the configurations of homophily that 

exceed the baseline and produce a solution that 
identifies the basis of inbreeding tendencies.  
Using fs/QCA software (Ragin et al., 2003), a 
crisp set analysis was performed to determine the 
types of configurations with more dyads than 
expected by chance.  In the QCA models that 
follow, the outcome is present when the frequency 
of dyads in a given configuration exceeds the 
baseline.  To simplify presentation, solutions are 
described as leading to the outcome or not, with 
solutions leading to the outcome indicating more 
dyads than expected by chance.   
 
RESULTS 
 
The results for models predicting relations of any 
type are presented in Table 2.  The QCA solution 
can be interpreted as follows.  The first column 
includes the set of solution terms from which all 
solutions are drawn.  In each term, characteristics 
are connected by logical “and” (represented by *).  
Characteristics in uppercase letters refer to 
similarity on a dimension while lowercase letters 
refer to dissimilarity.  The columns to the right 
indicate which terms are contained in the solution 
for each type of relationship (designated with a 
“•”).  The terms for each solution are connected 
by logical “or.”  Thus, the first solution (column 
2) indicates that more dyads than expected by 
chance existed when ego and alter had similar:      

sex and race and religion, or 
age and race and religion, or 
race and education and religion, or 
age and race and education, or 
age and sex and education and religion 
 

The strong effect of race homophily is evident in 
the solution.  All terms in the solution term, 
include similarity on race except for the final 
which includes similarity on every dimension 
except for race.  Religion is also quite strong in 
that four of the terms include similarity on 
religion.  However, the number of dyads with just 
similarity on race and religion did not exceed 
chance.  It was necessary to combine similarity on 
race and religion with at least one other dimension 
in order to produce inbreeding homophily. 
 
This solution can be better understood by 
examining the lattice in Figure 1.  Because all 

 

configurations whose frequency exceeded the 
baseline (i.e., the black nodes) are no more than 
two levels down from the top node, all 
configurations with the outcome contain similarity 
on at least three dimensions.  The lowermost 
terms that contain the outcome correspond to the 
components of the QCA solution.  For example, 
the solution term (AGE*RACE*EDUC) indicates 
that configurations that were similar on these 
three dimensions contained more dyads than 
expected by chance. This solution term 
corresponds to the node labeled “ARE” and all 
supersets of this node.  That is, solution terms 
may imply, or explain, the outcome in multiple 
configurations.  Configurations that are supersets 
of the solution term can be identified by tracing 

the lines upward.  When solution terms only 
contain presence on conditions then all nodes 
configuration is a subset of two configurations 
with greater similarity (“ASRE” and “GARE”), 
which are subsets of the complete homophily 
configuration.  Thus, the solution term 
“AGE*RACE*EDUC” implies the four 
configurations from “ARE” upward.  
 
Now consider the solution term 
(AGE*SEX*EDUC*RELG), which contains four 
dimensions of similarity.  This term corresponds 
to the node labeled “ASEG.”  This solution term 
cannot be simplified because all nodes below 
represent configurations whose frequency did not 
exceed the baseline threshold.  The four terms 

 

 
Table 2.  QCA Solutions by Relationship Type† 
  
          

Nonkin 
Only   

               Solution Terms All Dyads Kin Nonkin Friend Coworker 
Group 

Member 
              

SEX * RACE * RELIG •           

AGE * RACE * RELIG   •         

AGE * RACE * RELIG •   • • • • 
RACE * EDUC * RELIG • •         

SEX * RACE * EDUC * RELIG     • • • • 
AGE * SEX * RACE     • • •   

AGE * RACE * EDUC •   • •     

AGE * SEX * EDUC * RELIG •   • • •   

AGE * SEX * RACE * EDUC           • 
      
 

† Uppercase refers to similarity, lowercase to dissimilarity, * to the logical operation "and" 
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below represent configurations that are dissimilar 
on only two dimensions, race and one other 
dimension, yet none of those configurations 
exceeded the baseline frequency.  This result 
emphasizes that dissimilarity on race inhibits 
relationships unless individuals are similar along 
the four other dimensions. 
 
The configurations and outcomes for kin and 
nonkin are presented in Figures 2 and 3 
respectively.  The corresponding results of the 
QCA analysis performed on each subset are 
presented in columns 3 and 4 of Table 2.   
 
The QCA solution for kin consists of two 
components, both of which contain similarity on 
race and religion.  Two solution terms are 
required because two of the configurations that 
contain similarity on race and religion did not 
exhibit the outcome (“ARG” and “ASRG”).  In 
order to exclude these configurations from the 
QCA solution it was necessary to include 
dissimilarity on age in one of the solution terms, 
which can be seen in the first solution term.  The 
first solution component contains 
intergenerational relationships, likely between 
parents and children, aunts/uncles and 
nieces/nephews, or grandparents/grandchildren.  
 
The types of homophily in nonkin relations are 
quite different from kin relations.  This contrast is 
most evident when comparing Figure 2 with 
Figure 3.  Of the nine nonkin configurations with 
the outcome, only three were also associated with 
more kin than expected by chance.  This 
difference is also evident in the QCA solution.  
Three of the nonkin QCA solution components 
contain age and race similarity combined with 
similarity on one other dimension, indicating that 
similarity on age and race was important, but 
required similarity in one more aspect for 
inbreeding homophily to occur.  This is shown in 
Figure 3 by the three black nodes on the right side 
of the lattice (“ARG,” “ARE,” and “ASR,”).  
Each of these nodes requires its own solution term 
because they do not share a common lower bound 
that exhibits the outcome.  Each of these 

configurations is a superset of the “AR” 
configuration, which includes dyads with age and 
race similarity only.  But, the frequency of this 
configuration does not exceed the baseline, 
demonstrating that similarity on age and race is 
not sufficient to produce more relations than 
expected by chance.  Similarity on one more 
dimension must exist.   
 
The other two nonkin solution components 
(“ASEG” and “SREG”) include similarity on four 
of the five dimensions.  Both solution components 
contain similarity on sex, education, and religion 
with additional similarity on either age or race 
required.  Combined with the first three solution 
components, this highlights the importance of race 
and age in nonkin relations.  Dyads that differed 
on race or age only exceeded chance rates when 
homophily existed on all four other dimensions. 
 
The same analysis was conducted separately for 
nonkin friends, coworkers, and group members. 
The first relation analyzed was friend, which can 
include friends as well as romantically involved 
partners who are not married.  The results for the 
QCA solution are presented in the fifth column of 
Table 2 and are identical to the solution obtained 
for all nonkin relations.  This common finding is 
not surprising given that friends are the largest 
category of nonkin relations (82% of nonkin alters 
were identified as friends).  As noted above, this 
solution highlights the importance of age and race 
homophily.  Three of the solution components 
combine homophily on age and race with one  
other dimension.  The other two solution terms 
contain dissimilarity on age and race respectively, 
but similarity on the other four dimensions.  Note 
that two of the three terms include dissimilarity on 
education combined with similarity on age and 
race.  Since the close friends identified in the GSS 
often have long-standing relationships (Burt, 
1990) it is possible that these were childhood 
friendships that persisted despite individuals 
completing their education at different points.   
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Figure 2.  Distribution of Outcome Across Configurations, Kin Relations Only (N=1,647) 
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Figure 3. Distribution of Outcome Across Configurations, Nonkin Relations Only (N=2,352) 
 Same Distribution as Friend Relations (N=1,934) 
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below represent configurations that are dissimilar 
on only two dimensions, race and one other 
dimension, yet none of those configurations 
exceeded the baseline frequency.  This result 
emphasizes that dissimilarity on race inhibits 
relationships unless individuals are similar along 
the four other dimensions. 
 
The configurations and outcomes for kin and 
nonkin are presented in Figures 2 and 3 
respectively.  The corresponding results of the 
QCA analysis performed on each subset are 
presented in columns 3 and 4 of Table 2.   
 
The QCA solution for kin consists of two 
components, both of which contain similarity on 
race and religion.  Two solution terms are 
required because two of the configurations that 
contain similarity on race and religion did not 
exhibit the outcome (“ARG” and “ASRG”).  In 
order to exclude these configurations from the 
QCA solution it was necessary to include 
dissimilarity on age in one of the solution terms, 
which can be seen in the first solution term.  The 
first solution component contains 
intergenerational relationships, likely between 
parents and children, aunts/uncles and 
nieces/nephews, or grandparents/grandchildren.  
 
The types of homophily in nonkin relations are 
quite different from kin relations.  This contrast is 
most evident when comparing Figure 2 with 
Figure 3.  Of the nine nonkin configurations with 
the outcome, only three were also associated with 
more kin than expected by chance.  This 
difference is also evident in the QCA solution.  
Three of the nonkin QCA solution components 
contain age and race similarity combined with 
similarity on one other dimension, indicating that 
similarity on age and race was important, but 
required similarity in one more aspect for 
inbreeding homophily to occur.  This is shown in 
Figure 3 by the three black nodes on the right side 
of the lattice (“ARG,” “ARE,” and “ASR,”).  
Each of these nodes requires its own solution term 
because they do not share a common lower bound 
that exhibits the outcome.  Each of these 

configurations is a superset of the “AR” 
configuration, which includes dyads with age and 
race similarity only.  But, the frequency of this 
configuration does not exceed the baseline, 
demonstrating that similarity on age and race is 
not sufficient to produce more relations than 
expected by chance.  Similarity on one more 
dimension must exist.   
 
The other two nonkin solution components 
(“ASEG” and “SREG”) include similarity on four 
of the five dimensions.  Both solution components 
contain similarity on sex, education, and religion 
with additional similarity on either age or race 
required.  Combined with the first three solution 
components, this highlights the importance of race 
and age in nonkin relations.  Dyads that differed 
on race or age only exceeded chance rates when 
homophily existed on all four other dimensions. 
 
The same analysis was conducted separately for 
nonkin friends, coworkers, and group members. 
The first relation analyzed was friend, which can 
include friends as well as romantically involved 
partners who are not married.  The results for the 
QCA solution are presented in the fifth column of 
Table 2 and are identical to the solution obtained 
for all nonkin relations.  This common finding is 
not surprising given that friends are the largest 
category of nonkin relations (82% of nonkin alters 
were identified as friends).  As noted above, this 
solution highlights the importance of age and race 
homophily.  Three of the solution components 
combine homophily on age and race with one  
other dimension.  The other two solution terms 
contain dissimilarity on age and race respectively, 
but similarity on the other four dimensions.  Note 
that two of the three terms include dissimilarity on 
education combined with similarity on age and 
race.  Since the close friends identified in the GSS 
often have long-standing relationships (Burt, 
1990) it is possible that these were childhood 
friendships that persisted despite individuals 
completing their education at different points.   
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Figure 2.  Distribution of Outcome Across Configurations, Kin Relations Only (N=1,647) 
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Figure 3. Distribution of Outcome Across Configurations, Nonkin Relations Only (N=2,352) 
 Same Distribution as Friend Relations (N=1,934) 
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Figure 4.  Distribution of Outcome across Configurations, Coworker Relations (N=603) 
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Figure 5.  Distribution of Outcome across Configurations, Group Member Relations (N=530) 
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Homophily among relations with coworkers was 
examined next.  The distribution of dyads across 
configurations was similar to that of friends with 
one exception.  Unlike friendship relations, 
relations with coworkers differing only on religion 
and sex did not exceed the baseline level.  This 
can be seen easily in the lattice in Figure 4 where 
the “ARE” node is now white, indicating the 
outcome is absent.  The QCA solution component 
that explained this configuration in the friendship 
relation (AGE*RACE*EDUC) was dropped 
because it was not necessary to explain this 
configuration or any configurations above that 
node.  Homophily on age and race was again 
key in relations between coworkers.  Dyads 
that differed on one of these two dimensions 
only exceeded baseline levels when all other 
dimensions were similar.  Coworkers also 
tended to be highly homophilous, with 
dissimilarity on education the most noticeable 
departure.  The effect of education may be due to 
greater education diversity in the workplace.  
Because individuals tend to have friends at work, 
higher rates of education heterogeneity in the 
workplace should decrease education homophily 
in relations (Blau 1977).   
 
The pattern of homophily among group members 
is displayed in Figure 5.  Consistent with prior 
research on voluntary associations (McPherson 
and Smith-Lovin 1987), relations between group 
members tended to be homophilous.  The 
frequency of these dyads exceeded the baseline in 
fewer configurations than with friendships or 
coworkers – six configurations rather than eight.  
This can be seen in Figure 5 where the “ASR” and 
“ASEG” configurations no longer exceed baseline 
levels.  This is also reflected in the simpler, three-
component QCA solution shown in Table 2. 
 
Among group members, age, sex and race were 
the primary inbreeding dimensions.  Similarity on 
race is present in all configurations that exceed the 
baseline, while age and sex similarity exists in all 
configurations but one, in each case where 
similarity on all other dimensions exists.  This is 
to be expected as voluntary associations offer 
more choice in membership than the workplace.  
Only one configuration differed on more than a 

single dimension (“ARG”), and one configuration 
that is similar on four dimensions (“ASEG”) still 
did not exceed the baseline level due to the 
significance of race.     
 
DISCUSSION 
 
Homophily is one of the primary forces operating 
in social networks; however, all too often it has 
been treated as a unidimensional construct.  This 
research investigated how dimensions of 
homophily might operate in conjunction to affect 
relationship frequency.  I adopted a 
configurational approach in order to gain initial 
insight to the association between five dimensions 
of homophily.  First, lattices were introduced as a 
means of visualizing the set-theoretic nature of 
homophily.  Lattices are a valuable means to 
represent the associations between cases with 
configurational data and facilitate the comparison 
of cases along different outcomes (in this case, 
relation types).  Second, QCA was applied to 
configurations to understand the combinations of 
homophily necessary for dyads to exceed baseline 
levels.  Together, these tools offered new insights 
to the nature of homophily. 
 
The analysis revealed several broad patterns. To 
begin, a considerable degree of homophily was 
necessary for dyad frequency to exceed baseline 
levels.  While 87% of relations differed on at least 
one of the five dimensions, in only one case was 
this due to anything beyond baseline expectations 
(age heterophily for family members).  In general, 
a configuration must have included similarity on 
at least three of the five dimensions to exceed 
chance expectations.  The sole exception was kin 
relations, which exceeded baseline levels with 
similarity on race and religion only because age 
dissimilarity was more common.  At the same 
time, complete homophily was not necessary.  
Several configurations displaying dissimilarity on 
one or two dimensions exceeded baseline levels.  
This suggests that similarity on some 
combinations of dimensions may overcome 
dissimilarity on other dimensions.  That is, 
homophily on the right set of dimensions may be 
enough to draw people together beyond chance 
rates. 
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Figure 4.  Distribution of Outcome across Configurations, Coworker Relations (N=603) 
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Figure 5.  Distribution of Outcome across Configurations, Group Member Relations (N=530) 
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Homophily among relations with coworkers was 
examined next.  The distribution of dyads across 
configurations was similar to that of friends with 
one exception.  Unlike friendship relations, 
relations with coworkers differing only on religion 
and sex did not exceed the baseline level.  This 
can be seen easily in the lattice in Figure 4 where 
the “ARE” node is now white, indicating the 
outcome is absent.  The QCA solution component 
that explained this configuration in the friendship 
relation (AGE*RACE*EDUC) was dropped 
because it was not necessary to explain this 
configuration or any configurations above that 
node.  Homophily on age and race was again 
key in relations between coworkers.  Dyads 
that differed on one of these two dimensions 
only exceeded baseline levels when all other 
dimensions were similar.  Coworkers also 
tended to be highly homophilous, with 
dissimilarity on education the most noticeable 
departure.  The effect of education may be due to 
greater education diversity in the workplace.  
Because individuals tend to have friends at work, 
higher rates of education heterogeneity in the 
workplace should decrease education homophily 
in relations (Blau 1977).   
 
The pattern of homophily among group members 
is displayed in Figure 5.  Consistent with prior 
research on voluntary associations (McPherson 
and Smith-Lovin 1987), relations between group 
members tended to be homophilous.  The 
frequency of these dyads exceeded the baseline in 
fewer configurations than with friendships or 
coworkers – six configurations rather than eight.  
This can be seen in Figure 5 where the “ASR” and 
“ASEG” configurations no longer exceed baseline 
levels.  This is also reflected in the simpler, three-
component QCA solution shown in Table 2. 
 
Among group members, age, sex and race were 
the primary inbreeding dimensions.  Similarity on 
race is present in all configurations that exceed the 
baseline, while age and sex similarity exists in all 
configurations but one, in each case where 
similarity on all other dimensions exists.  This is 
to be expected as voluntary associations offer 
more choice in membership than the workplace.  
Only one configuration differed on more than a 

single dimension (“ARG”), and one configuration 
that is similar on four dimensions (“ASEG”) still 
did not exceed the baseline level due to the 
significance of race.     
 
DISCUSSION 
 
Homophily is one of the primary forces operating 
in social networks; however, all too often it has 
been treated as a unidimensional construct.  This 
research investigated how dimensions of 
homophily might operate in conjunction to affect 
relationship frequency.  I adopted a 
configurational approach in order to gain initial 
insight to the association between five dimensions 
of homophily.  First, lattices were introduced as a 
means of visualizing the set-theoretic nature of 
homophily.  Lattices are a valuable means to 
represent the associations between cases with 
configurational data and facilitate the comparison 
of cases along different outcomes (in this case, 
relation types).  Second, QCA was applied to 
configurations to understand the combinations of 
homophily necessary for dyads to exceed baseline 
levels.  Together, these tools offered new insights 
to the nature of homophily. 
 
The analysis revealed several broad patterns. To 
begin, a considerable degree of homophily was 
necessary for dyad frequency to exceed baseline 
levels.  While 87% of relations differed on at least 
one of the five dimensions, in only one case was 
this due to anything beyond baseline expectations 
(age heterophily for family members).  In general, 
a configuration must have included similarity on 
at least three of the five dimensions to exceed 
chance expectations.  The sole exception was kin 
relations, which exceeded baseline levels with 
similarity on race and religion only because age 
dissimilarity was more common.  At the same 
time, complete homophily was not necessary.  
Several configurations displaying dissimilarity on 
one or two dimensions exceeded baseline levels.  
This suggests that similarity on some 
combinations of dimensions may overcome 
dissimilarity on other dimensions.  That is, 
homophily on the right set of dimensions may be 
enough to draw people together beyond chance 
rates. 
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These results offer support to prior findings on the 
relative importance of dimensions.  Relations that 
were homophilous on only four dimensions 
typically exceeded baseline levels, however race 
was a consistent exception.  For kin and group 
member relations notably, configurations did not 
exceed baseline levels unless they contained 
similarity on race.  It was necessary to combine 
similarity on race with other dimensions for dyad 
frequency to exceed chance levels, pointing to the 
influential role of race in structuring relations.  
Friends and coworkers were the exception to this 
tendency as race dissimilar relations exceeded 
baseline rates, but only when similarity on all 
other dimensions was present. 
 
Interesting patterns were found across the 
different types of role relations.  All kin relations 
that exceeded the baseline level included 
similarity on both race and religion.  However, 
greater age dissimilarity was seen in kin versus 
nonkin relations, with half of the kin 
configurations exceeding baseline levels 
exhibiting age dissimilarity.  This is a function of 
the substructure of families, where most members 
are similar on race and religion, though with 
greater variability in age, sex, and education.  By 
contrast, in nonkin relations, religion was less 
important, and race was just as important though 
in a different way.  Most nonkin relations that 
exceeded the baseline level included similarity on 
both age and race, combined with homophily on a 
third dimension.  That third dimension varied by 
role; with group members, religion accompanied 
age and race as homophilous dimensions; with 
friends and coworkers greater variety existed.  
Note that for no type of nonkin relation did a 
configuration with dissimilarity on race and 
another dimension or age and another dimension 
exceed the baseline level.  Relations with race or 
age dissimilarity combined with another 
dimension were too different to exceed the 
baseline level. 
 
Across all relation types, ten of the thirty-two 
configurations exceeded baseline levels.  
Examining results by substructural foci reveals 
their effect on the development of intergroup 
relations.  The greatest diversity in homophily 
configurations was seen in coworker relations, 

where eight different configurations exceeded 
baseline levels.  In contrast, only six 
configurations of homophily exceeding baseline 
levels for group relations.  This is an indicator of 
higher levels of homogeneity in voluntary 
association relations.  In addition, though the 
pattern of homophily differs for kin relations, they 
were just as homogeneous as groups, with only 
six configurations exceeding the baseline level.  
These results are consistent with Marsden’s study 
of network diversity (1990). 
 
One limitation of this research was the treatment 
of homophily and configurations as present or 
absent.  The current approach introduced a 
technique to visualize the pattern of 
configurations using lattices, though at the 
expense of measurement precision.  One could 
extend this research by using fuzzy set 
measurement techniques (where homophily could 
be measured continuously from 0 to 1).  Such an 
approach could capture gradations in homophily, 
whereby two individuals are not identical, but not 
completely dissimilar.  Subsequently, 
configuration frequency could also be measured 
using fuzzy set techniques, which could 
incorporate measures of relationship closeness 
including strength, duration, time spent together, 
and multiplexity.  Measuring the outcome as a 
fuzzy set may provide insight to those instances 
where configuration frequency exceeds baseline 
levels even though dissimilarity on multiple 
dimensions exists.  Perhaps those relationships are 
not as close as those with greater levels of 
homophily.  Either approach would build on the 
insights gleaned from this research. 
  
In addition, this research treated relations as the 
unit of analysis without regard for the social 
positions of the individuals.  Prior research has 
demonstrated how network characteristics vary 
according to social position (Fischer, 1982; Ibarra, 
1995; Marsden, 1987; Moore, 1990).  Further 
research on the multidimensionality of homophily 
should consider variation across social positions.  
If network heterogeneity is associated with social 
mobility as suggested by Blau (1977) and social 
capital as Lin suggests (2001) then examining the 
coincidence of homophily across multiple 
dimensions by social position can provide clearer 

 

insight to the structures that preserve 
stratification. 
 
This research used ego network data to find that 
dimensions of homophily interact in patterned 
ways to structure network relations.  Tools 
allowing the simultaneous measurement of 
homophily on multiple dimensions are becoming 

increasingly available for complete network data 
(Snijders et al., 2010).  Thus, it is now common 
for statistical models to test for homophily on 
several dimensions when modeling network 
structures.  Such models could easily be used to 
extend this research by testing which dimensions 
operate conjointly in relations drawn from 
different substructures.  
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Appendix: Baseline Computation 
 
To compute baseline homophily, the population distribution must be measured across a set of parameters.  One can then 
compute how often random pairs of individuals drawn from the population would be homophilous.  For example, if a 
population is 70% male and 30% female, then the expected proportion of male-male relations would be .49 (.7 x .7), 
female-female relations would be .09 (.3 x .3), male-female and female-male relations would be .21 each (.7 x .3).  
Thus, 58% of relations are expected to be homophilous and 42% of relations heterophilous.  For a single nominal 
dimension with i categories the expected proportion of homophilous relations M is: 

 
[1]  Mn =  pi

2  
                  i 

This formula can also be used to compute the expected proportion of homophilous ties for graduated, or interval level, 
parameters if homophily is conceptualized strictly as absolute similarity.  Often however, homophily is defined using a 
range, such that individuals whose values on a dimension are within a specified distance are considered similar.  For 
example, age homophily can be defined as two individuals with the exact same age or as two individuals with ages that 
fall within five years of one another.  The following formula can be used to measure homophily for a single graduated 
parameter using the broader definition: 

 
[2]  Mg =  pi pk(i) 
                  i 

where pk(i) is defined as the proportion of cases falling within a specified range around i that is defined as homophilous.  
Using the example of age and a width of + five years, if i is 37 then k is ages 32-42.    
 
For multiple parameters, possible consolidation requires that the computation of baseline homophily incorporate the 
joint distribution of individuals across dimensions.  The marginal distributions across dimensions become irrelevant and 
the joint distribution is utilized in calculating the baseline.  For two nominal dimensions with i and j categories 
respectively, baseline homophily is computed as: 

 
[3]  Mn2 =  pij

2 
                    i   j 

 
For two graduated parameters baseline computation must incorporate the range around values of each dimension, which 
are often distinct.  The equation then becomes: 

 
[4]  Mg2 =  (pij) pk(i) pl(j)

 

                   i   j 
 
Here, l refers to the range around the value j of the second graduated parameter that is considered homophilous with j.  
 
Finally, equations 1 and 2 can be extended to compute baseline homophily for one nominal and one graduated 
dimension together as follows: 

 
[5]  Mng =  pij pk(i) pj 
                    i   j 

Through a similar extension process, baseline homophily can be computed for multiple dimensions simultaneously.  
This research utilized the following equation for three nominal dimensions (sex, race, religion) and two graduated 
dimensions (age, education). 

 
[6]  Mn3g2 =  psrg

2 (pae) pi(a) pj(e)
 

                     s  r   g  a  e   

 
The formulas presented above have a slight bias in small populations due to the fact that one cannot form a relationship 
with oneself.  This bias approaches zero as population size increases and is negligible when considering a population the 
size of the U.S. 
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Appendix: Baseline Computation 
 
To compute baseline homophily, the population distribution must be measured across a set of parameters.  One can then 
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female-female relations would be .09 (.3 x .3), male-female and female-male relations would be .21 each (.7 x .3).  
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are often distinct.  The equation then becomes: 

 
[4]  Mg2 =  (pij) pk(i) pl(j)

 

                   i   j 
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with oneself.  This bias approaches zero as population size increases and is negligible when considering a population the 
size of the U.S. 
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INTRODUCTION 
 
Social network analysis (SNA) can document, 
illustrate, and identify how individuals’ 
networks function and how members of a 
network interact with one another (Wasserman 
& Faust, 1994). Egocentric networks are formed 
when independently sampled individuals are 
asked to describe their immediate social network 
(Marsden, 1990). However, these data can pose 
difficulties for social network researchers 
because respondents are typically unassociated, 
so complete social networks cannot be 
constructed. This manuscript describes a new 
way of using egocentric data collected from 
dyads using Multilevel Modeling (MLM). 
Challenges of using egocentric data gathered 
from relational dyads, the utility of 
differentiating shared and unique alters, and the 
use of MLM to analyze data using the one-with-
many design are explored (Kenny, Kashy, & 
Cook, 2006). As a case study, the social support 
networks of twenty pairs of parents of children 
with cancer (N = 40) will be analyzed to 
illustrate how this technique can be used to test 
theoretically-informed research questions. 
 
Egocentric Data 
 
Egocentric methods have a long history in SNA 
(Mardsen, 1987, 1990). For over 25 years, the 
General Social Survey has used egocentric 
network methods to ask respondents with whom 
they have discussed important matters (Mardsen, 
1987). These data describe the number, the 
heterogeneity (i.e., age, education, sex), and the 
composition of network alters (i.e., kin vs. non-
kin) (Burt, 1984; Marsden, 1987), and usefully 
describe social trends in the nature and 
composition of Americans’ social networks 
(Marsden, 1987). Egocentric network methods 
have also been employed widely in received 
social support research (Wellman & Hiscott, 
1985).  
 
The difference between received and perceived 
social support is both a theoretical and 
methodological question. Perceived social 
support is defined as the perceived availability 

of support if it were needed (Cutrona, 1996). 
Received social support is defined as tangible, 
measurable, and enumerable sources of various 
types of social support (i.e., instrumental, 
material, informational) (Cutrona, 1996). 
Received social support is often measured using 
egocentric network methods (Marsden, 1990; 
Wills & Shinar, 2000). Many received social 
support instruments, such as the UCLA Social 
Support Interview (Wills & Shinar, 2000), ask 
respondents to identify up to five sources of 
social support. In comparison to perceived social 
support, SNA offers unique advantages in 
identifying the source of support, the type of 
support, and the quality of support from each 
source (Brissette, Cohen, & Seeman, 2000; 
Wills & Shinar, 2000), allowing researchers to 
identify what types and sources of social support 
are most effective (Wellman & Hiscott, 1985). 
However, researchers often reduce the amount 
of variance available when using egocentric 
networks by combining all sources of social 
support into a single measure of received 
support (see Bissette et al., 2000). MLM offers 
researchers the opportunity to analyze egocentric 
data while preserving the unique variance of 
each network alter. 
 
One-With-Many Design 
 
Analysis of egocentric SNA data can be greatly 
improved by utilizing MLM. Although 
combining data from alters can produce useful 
information regarding network composition, 
including heterogeneity and size (see Burt, 1984; 
Marsden, 1987), it is not always appropriate to 
calculate a mean score for all alters in a social 
support network. A respondent with moderate or 
weak support across all members will have the 
same mean support as a respondent with a few 
very good quality and a few very poor quality 
sources of support. Every member of a support 
network is not equally valuable or equally 
supportive (Thoits, 1995), and for researchers, 
knowing the particular characteristics that make 
a source valuable is desirable. For example, to 
test hypotheses regarding how the quality or 
type of support is related to alters’ 

characteristics, the relative value of each alter 
must be tested individually rather than summed.  
Kenny, Kashy, and Cook (2006) identify the 
one-perceiver many-targets design as the most 
common one-with-many design. This research 
design asks respondents to evaluate other 
members of a social network, often using 
egocentric methods. This poses unique analysis 
challenges because the data are non-independent 
in that they share a common fate -- the 
relationship with the ego (Kenny et al., 2006). 
This design is best served by MLM in that the 
shared variance of the ego is modeled by 
treating each ego as a Level 2 predictor and 
network members as Level 1 observations 
(Kenny et al., 2006). This controls for non-
independence of egocentric networks. 
Additionally, the unique qualities of each alter 
can be tested in relation to outcomes associated 
with the relationship with the ego. For example, 
this method allows for the qualities of alters 
(e.g., kin v. non-kin, demographic 
characteristics) to be estimated in relation to the 
outcomes of each tie (e.g., overall quality of 
support). 
 
Dyadic Egocentric Data 
 
The use of dyadic data-- that is data collected 
from a non-independent pair of individuals --has 
grown substantially in social science research 
(Kenny et al., 2006). In fact, some research 
traditions are fundamentally concerned with 
relationships between individuals. For example, 
family communication emphasizes a systems 
theory approach, which asserts that all family 
members influence one another (Segrin & Flora, 
2005; Street, 2003). The theoretical emphasis 
and growing interest in exploring how 
individuals within a couple influence one 
another has only increased interest in collecting 
dyadic data. Although research has begun to 
illustrate the highly interconnected nature of 
social support for couples (e.g., Widmer, 2006), 
there are still many questions about how and for 
whom support is provided (Cutrona, 1996). 
Identifying characteristics about the source of 
support helps to overcome a gap in research on 
received support and can help researchers to 

better understand how support can be marshaled 
and utilized (Thoits, 1995). Although dyadic 
data poses particular analytic challenges, when 
collecting dyadic data using egocentric network 
methods, there are also valuable opportunities.  
 
When a SNA is performed on a bounded group 
and the identities of all network members are 
known, identifying shared versus unique alters is 
easy and is an important part of describing 
network characteristics (Scott, 1991). However, 
when collecting egocentric data from a dyad, the 
identity of unique versus shared sources of 
support can be particularly valuable both 
theoretically and empirically. When respondents 
complete an egocentric instrument, they are 
often asked to both provide identifying 
information about each network alter (e.g., 
name, initials) as well as information about each 
alter, such as sex, their relationship to the ego 
(e.g., step-mother), and sometimes other 
characteristics as well (Burt, 1984). When this 
information is gathered from both individuals in 
a dyad, their responses can be linked, and alters 
can be identified as shared or unique. The utility 
of exploring egocentric network characteristics 
and shared and unique sources of social support 
is discussed in the following case study. 
 
Case Study: Parents’ Social Support 
Networks 
 
Clinical research on parents of children with 
cancer has revealed that social support is an 
important predictor of parents’ health. However, 
Hoekstra-Weebers and colleagues consistently 
demonstrate that there are different social 
support predictors of long-term health for fathers 
and mothers (Hoekstra-Weebers, Jaspers, 
Kamps, & Klip, 1998; Hoekstra-Weebers, 
Jaspers, Kamps, & Klip, 2001). The differences 
between fathers and mothers are partly 
explainable by the differences in social support 
they receive. Fathers often lack a means to 
obtain the desired amount of social support, both 
in quality and in quantity (Hoekstra-Weebers, 
Jaspers, Kamps, & Klip, 1999; Hoekstra-
Weebers, Jaspers, & Kamps, 2000; Sloper, 
2000). There are several explanations regarding 
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INTRODUCTION 
 
Social network analysis (SNA) can document, 
illustrate, and identify how individuals’ 
networks function and how members of a 
network interact with one another (Wasserman 
& Faust, 1994). Egocentric networks are formed 
when independently sampled individuals are 
asked to describe their immediate social network 
(Marsden, 1990). However, these data can pose 
difficulties for social network researchers 
because respondents are typically unassociated, 
so complete social networks cannot be 
constructed. This manuscript describes a new 
way of using egocentric data collected from 
dyads using Multilevel Modeling (MLM). 
Challenges of using egocentric data gathered 
from relational dyads, the utility of 
differentiating shared and unique alters, and the 
use of MLM to analyze data using the one-with-
many design are explored (Kenny, Kashy, & 
Cook, 2006). As a case study, the social support 
networks of twenty pairs of parents of children 
with cancer (N = 40) will be analyzed to 
illustrate how this technique can be used to test 
theoretically-informed research questions. 
 
Egocentric Data 
 
Egocentric methods have a long history in SNA 
(Mardsen, 1987, 1990). For over 25 years, the 
General Social Survey has used egocentric 
network methods to ask respondents with whom 
they have discussed important matters (Mardsen, 
1987). These data describe the number, the 
heterogeneity (i.e., age, education, sex), and the 
composition of network alters (i.e., kin vs. non-
kin) (Burt, 1984; Marsden, 1987), and usefully 
describe social trends in the nature and 
composition of Americans’ social networks 
(Marsden, 1987). Egocentric network methods 
have also been employed widely in received 
social support research (Wellman & Hiscott, 
1985).  
 
The difference between received and perceived 
social support is both a theoretical and 
methodological question. Perceived social 
support is defined as the perceived availability 

of support if it were needed (Cutrona, 1996). 
Received social support is defined as tangible, 
measurable, and enumerable sources of various 
types of social support (i.e., instrumental, 
material, informational) (Cutrona, 1996). 
Received social support is often measured using 
egocentric network methods (Marsden, 1990; 
Wills & Shinar, 2000). Many received social 
support instruments, such as the UCLA Social 
Support Interview (Wills & Shinar, 2000), ask 
respondents to identify up to five sources of 
social support. In comparison to perceived social 
support, SNA offers unique advantages in 
identifying the source of support, the type of 
support, and the quality of support from each 
source (Brissette, Cohen, & Seeman, 2000; 
Wills & Shinar, 2000), allowing researchers to 
identify what types and sources of social support 
are most effective (Wellman & Hiscott, 1985). 
However, researchers often reduce the amount 
of variance available when using egocentric 
networks by combining all sources of social 
support into a single measure of received 
support (see Bissette et al., 2000). MLM offers 
researchers the opportunity to analyze egocentric 
data while preserving the unique variance of 
each network alter. 
 
One-With-Many Design 
 
Analysis of egocentric SNA data can be greatly 
improved by utilizing MLM. Although 
combining data from alters can produce useful 
information regarding network composition, 
including heterogeneity and size (see Burt, 1984; 
Marsden, 1987), it is not always appropriate to 
calculate a mean score for all alters in a social 
support network. A respondent with moderate or 
weak support across all members will have the 
same mean support as a respondent with a few 
very good quality and a few very poor quality 
sources of support. Every member of a support 
network is not equally valuable or equally 
supportive (Thoits, 1995), and for researchers, 
knowing the particular characteristics that make 
a source valuable is desirable. For example, to 
test hypotheses regarding how the quality or 
type of support is related to alters’ 

characteristics, the relative value of each alter 
must be tested individually rather than summed.  
Kenny, Kashy, and Cook (2006) identify the 
one-perceiver many-targets design as the most 
common one-with-many design. This research 
design asks respondents to evaluate other 
members of a social network, often using 
egocentric methods. This poses unique analysis 
challenges because the data are non-independent 
in that they share a common fate -- the 
relationship with the ego (Kenny et al., 2006). 
This design is best served by MLM in that the 
shared variance of the ego is modeled by 
treating each ego as a Level 2 predictor and 
network members as Level 1 observations 
(Kenny et al., 2006). This controls for non-
independence of egocentric networks. 
Additionally, the unique qualities of each alter 
can be tested in relation to outcomes associated 
with the relationship with the ego. For example, 
this method allows for the qualities of alters 
(e.g., kin v. non-kin, demographic 
characteristics) to be estimated in relation to the 
outcomes of each tie (e.g., overall quality of 
support). 
 
Dyadic Egocentric Data 
 
The use of dyadic data-- that is data collected 
from a non-independent pair of individuals --has 
grown substantially in social science research 
(Kenny et al., 2006). In fact, some research 
traditions are fundamentally concerned with 
relationships between individuals. For example, 
family communication emphasizes a systems 
theory approach, which asserts that all family 
members influence one another (Segrin & Flora, 
2005; Street, 2003). The theoretical emphasis 
and growing interest in exploring how 
individuals within a couple influence one 
another has only increased interest in collecting 
dyadic data. Although research has begun to 
illustrate the highly interconnected nature of 
social support for couples (e.g., Widmer, 2006), 
there are still many questions about how and for 
whom support is provided (Cutrona, 1996). 
Identifying characteristics about the source of 
support helps to overcome a gap in research on 
received support and can help researchers to 

better understand how support can be marshaled 
and utilized (Thoits, 1995). Although dyadic 
data poses particular analytic challenges, when 
collecting dyadic data using egocentric network 
methods, there are also valuable opportunities.  
 
When a SNA is performed on a bounded group 
and the identities of all network members are 
known, identifying shared versus unique alters is 
easy and is an important part of describing 
network characteristics (Scott, 1991). However, 
when collecting egocentric data from a dyad, the 
identity of unique versus shared sources of 
support can be particularly valuable both 
theoretically and empirically. When respondents 
complete an egocentric instrument, they are 
often asked to both provide identifying 
information about each network alter (e.g., 
name, initials) as well as information about each 
alter, such as sex, their relationship to the ego 
(e.g., step-mother), and sometimes other 
characteristics as well (Burt, 1984). When this 
information is gathered from both individuals in 
a dyad, their responses can be linked, and alters 
can be identified as shared or unique. The utility 
of exploring egocentric network characteristics 
and shared and unique sources of social support 
is discussed in the following case study. 
 
Case Study: Parents’ Social Support 
Networks 
 
Clinical research on parents of children with 
cancer has revealed that social support is an 
important predictor of parents’ health. However, 
Hoekstra-Weebers and colleagues consistently 
demonstrate that there are different social 
support predictors of long-term health for fathers 
and mothers (Hoekstra-Weebers, Jaspers, 
Kamps, & Klip, 1998; Hoekstra-Weebers, 
Jaspers, Kamps, & Klip, 2001). The differences 
between fathers and mothers are partly 
explainable by the differences in social support 
they receive. Fathers often lack a means to 
obtain the desired amount of social support, both 
in quality and in quantity (Hoekstra-Weebers, 
Jaspers, Kamps, & Klip, 1999; Hoekstra-
Weebers, Jaspers, & Kamps, 2000; Sloper, 
2000). There are several explanations regarding 
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men’s lack of ability to obtain the desired, high 
quality support.  
 
Differences in support network composition 
offer one explanation for the lack of quality and 
quantity of men’s received support. In 
comparison to men, women have more sources 
of social support from friends and kin (Stevens 
& Westerhof, 2006). In the context of pediatric 
cancer, even when fathers have broad social 
support networks, they are often dissatisfied 
with the quality of received support (Hoekstra-
Weebers et al., 2000; Hoekstra-Weebers et al., 
2001). Men have fewer sources of social support 
and the sources they do have are not of sufficient 
quality. Additionally, the sex composition of 
parents’ support networks may explain these 
differences. Burleson and Kunkel (2006) suggest 
that women are more likely than men to provide 
quality emotional support, and women are often 
more active support network members (Widmer, 
2006). Clinical research has suggested that if a 
man has a male-dominated social support 
system, he may be able to draw only limited 
support (Hoeskstra-Weebers et al., 2001). A 
second explanation for men’s lack of quality 
support suggests that family members provide 
different types of support to mothers and fathers. 
During a child’s treatment for cancer, mothers 
often serve as the primary caretaker, and as such 
is the focal person for family-initiated support 
(Sloper, 2000). Other research in non-clinical 
environments demonstrates that mothers often 
receive more support from family members than 
fathers (Stevens & Westerhof, 2006). In light of 
these research findings, there are three possible 
explanations for fathers’ lack of support. It is 
possible that shared sources of support are 
adequately supporting mothers but fail to 
support fathers. On the other hand, family 
members may provide high quality support to 
both parents, but mothers have additional 
sources of support that fathers do not share. 
Additionally, it is possible that fathers and 
mothers are receiving different types of support 
that differ in relation to overall support quality. 
All three research questions will be answered by 
differentiating shared v. unique network alters 
for parents and by using MLM. 

METHODS 
 
Recruitment Procedure 
 
In coordination with Childrens Hospital in a 
major metropolitan area in the Western US, 
surveys were administered in both Spanish (N = 
11) and English (N = 29) during an annual 
survivorship festival. Participants were parents 
of a child who had undergone or was currently 
undergoing cancer treatment and were either 
married or living together at the time of their 
child’s treatment. Parents who met the criteria 
were consented and completed the survey 
instrument separately. Twenty father-mother 
pairs participated (N = 40). 
 
Participants 
 
Fathers were 41 years old on average (SD = 
7.86, range 31-56), and 95% were employed full 
time. Nineteen percent of fathers had some high 
school education, 14% had a high school 
diploma or equivalent, 33% had some college, 
and 23% had a 4-year college degree or more. 
Fathers were 55% Latino, 31% White, 9% 
Black, and 5% other. Thirty-two percent were 
foreign born. Mothers were 39 years old on 
average (SD = 7.24, range 26-54), and 50% were 
not employed, 15% were part-time employed, 
and 35% full time employed. Thirty-six percent 
of mothers had some high school education, 
20% had a high school diploma or equivalent, 
20% had some college, and 23% had a 4-year 
college degree or more. Mothers were 65% 
Latina, 22% White, 6% Black, and 6% other, 
and 53% were foreign born. The ethnic and 
racial composition of the sample was reflective 
of the patient population at this Childrens 
Hospital as well as the surrounding urban area. 
 
Measures 
 
Received Social Support 
 
Received social support was measured using the 
UCLA Social Support Interview (Wills & 
Shinar, 2000). Parents individually identified 
“the first names of the five most helpful people 

during [their] son or daughter’s treatment.” 
Respondents could identify as few as zero 
helpful individuals or as many as five and could 
indicate anyone as a possible source of support 
(i.e., parents were not limited to choosing from a 
pre-existing list of possible sources of support). 
One-hundred and forty-nine social support 
sources were identified for 40 parents. 
 
Respondents were only asked for the first name 
or initials of each alter, but most identified the 
source of support by full name and relationship 
(e.g., my mother, my aunt). To be conservative 
in identifying a shared source of support, when 
both names and relationships matched, the 
source was considered shared (e.g., mother’s 
mother Maria and father’s mother-in-law 
Maria). Non-matching members of parents’ 
received support networks were considered 
unique. This technique may have underestimated 
the number of shared sources of support. 
 
Type of Social Support Received 
 
For each source of support identified, 
respondents were asked to identify the type and 
quality of support received. Using Wills and 
Shinar’s (2000) definitions of instrumental, 
emotional, and informational support, 
descriptions of each type of support 
accompanied each item. Respondents were 
asked to identify the amount of instrumental 
support received with a single item, “How often 
did this person provide help by taking care of 
other children, offer transportation or money?” 
the amount of emotional support received with a 
single item, “How often did this person listen to 
your concerns or talk about how you were 
feeling?” and received information support with 
single item, “How often did this person provide 
information about health care or health 
insurance or types of cancer treatment?” All 
three items were measured on a five-point scale 
(0 = None, 4 = A lot). For each person 
identified, respondents were also asked to 
evaluate the overall quality of the support 
received from that person on a single semantic-
differential scale (1 = Not Good, 7 = Very 
Good) (see Table 1). 

Using MLM, each of the social support sources 
were treated as Level 1 observations, and 
parents were treated as Level 2 predictors. This 
method controls for the dependence of the alters 
on the ego by treating alters as a consequence of 
the ego (for more MLM details see Kenny et al., 
2006). The data were analyzed using LISREL 
8.8 (Jöreskog, & Sörbom, 1996). 
 
RESULTS 
 
Analysis of support sources revealed that on 
average parents identified three people from 
whom they received social support (M = 3.40, 
SD = 1.69, mdn = 4, mode = 5, range 1 to 5). 
Most of this support came from family (63%), 
primarily participants’ parents (i.e., the child’s 
grandparents). Most sources of social support 
were women (69%), indicating that women were 
more often providers of social support. Less than 
half of social support members (1.60 of 3.40) 
were shared by both parents, and shared support 
sources were often family members. See Figure 
1 for “average” family sociogram. Comparisons 
of fathers’ and mothers’ social support showed 
that parents received support from a similar 
number of sources (Mfather = 3.77, SD = 1.45, 
Mmother = 3.13, SD = 1.81), t(38) = 1.40, p = ns. 
 
To explore which characteristics of network 
alters predicts the overall quality of social 
support, the overall quality of the support was 
treated as a Level 1 dependent variable and the 
three types of social support (i.e., instrumental, 
emotional, informational), the sex of the source, 
the sex of the parent, whether the support was 
from a family member, and whether the support 
source was shared with the spouse were treated 
as Level 1 fixed effects. Multilevel modeling is 
concerned with model fit as well as the 
parameter estimates (Roberts, 2004). The best 
fitting model only included instrumental and 
emotional support amounts and family 
membership as fixed effects. The results 
indicated that amount of instrumental support (ß 
= .21, SE = .06, WALD = 3.76, p < .001), 
emotional support (ß = .45, SE = .08, WALD = 
5.50, p < .001), and being a family member (ß = 
.20, SE = .11, WALD = 1.89, p < .05) were
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men’s lack of ability to obtain the desired, high 
quality support.  
 
Differences in support network composition 
offer one explanation for the lack of quality and 
quantity of men’s received support. In 
comparison to men, women have more sources 
of social support from friends and kin (Stevens 
& Westerhof, 2006). In the context of pediatric 
cancer, even when fathers have broad social 
support networks, they are often dissatisfied 
with the quality of received support (Hoekstra-
Weebers et al., 2000; Hoekstra-Weebers et al., 
2001). Men have fewer sources of social support 
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parents’ support networks may explain these 
differences. Burleson and Kunkel (2006) suggest 
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environments demonstrates that mothers often 
receive more support from family members than 
fathers (Stevens & Westerhof, 2006). In light of 
these research findings, there are three possible 
explanations for fathers’ lack of support. It is 
possible that shared sources of support are 
adequately supporting mothers but fail to 
support fathers. On the other hand, family 
members may provide high quality support to 
both parents, but mothers have additional 
sources of support that fathers do not share. 
Additionally, it is possible that fathers and 
mothers are receiving different types of support 
that differ in relation to overall support quality. 
All three research questions will be answered by 
differentiating shared v. unique network alters 
for parents and by using MLM. 

METHODS 
 
Recruitment Procedure 
 
In coordination with Childrens Hospital in a 
major metropolitan area in the Western US, 
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11) and English (N = 29) during an annual 
survivorship festival. Participants were parents 
of a child who had undergone or was currently 
undergoing cancer treatment and were either 
married or living together at the time of their 
child’s treatment. Parents who met the criteria 
were consented and completed the survey 
instrument separately. Twenty father-mother 
pairs participated (N = 40). 
 
Participants 
 
Fathers were 41 years old on average (SD = 
7.86, range 31-56), and 95% were employed full 
time. Nineteen percent of fathers had some high 
school education, 14% had a high school 
diploma or equivalent, 33% had some college, 
and 23% had a 4-year college degree or more. 
Fathers were 55% Latino, 31% White, 9% 
Black, and 5% other. Thirty-two percent were 
foreign born. Mothers were 39 years old on 
average (SD = 7.24, range 26-54), and 50% were 
not employed, 15% were part-time employed, 
and 35% full time employed. Thirty-six percent 
of mothers had some high school education, 
20% had a high school diploma or equivalent, 
20% had some college, and 23% had a 4-year 
college degree or more. Mothers were 65% 
Latina, 22% White, 6% Black, and 6% other, 
and 53% were foreign born. The ethnic and 
racial composition of the sample was reflective 
of the patient population at this Childrens 
Hospital as well as the surrounding urban area. 
 
Measures 
 
Received Social Support 
 
Received social support was measured using the 
UCLA Social Support Interview (Wills & 
Shinar, 2000). Parents individually identified 
“the first names of the five most helpful people 

during [their] son or daughter’s treatment.” 
Respondents could identify as few as zero 
helpful individuals or as many as five and could 
indicate anyone as a possible source of support 
(i.e., parents were not limited to choosing from a 
pre-existing list of possible sources of support). 
One-hundred and forty-nine social support 
sources were identified for 40 parents. 
 
Respondents were only asked for the first name 
or initials of each alter, but most identified the 
source of support by full name and relationship 
(e.g., my mother, my aunt). To be conservative 
in identifying a shared source of support, when 
both names and relationships matched, the 
source was considered shared (e.g., mother’s 
mother Maria and father’s mother-in-law 
Maria). Non-matching members of parents’ 
received support networks were considered 
unique. This technique may have underestimated 
the number of shared sources of support. 
 
Type of Social Support Received 
 
For each source of support identified, 
respondents were asked to identify the type and 
quality of support received. Using Wills and 
Shinar’s (2000) definitions of instrumental, 
emotional, and informational support, 
descriptions of each type of support 
accompanied each item. Respondents were 
asked to identify the amount of instrumental 
support received with a single item, “How often 
did this person provide help by taking care of 
other children, offer transportation or money?” 
the amount of emotional support received with a 
single item, “How often did this person listen to 
your concerns or talk about how you were 
feeling?” and received information support with 
single item, “How often did this person provide 
information about health care or health 
insurance or types of cancer treatment?” All 
three items were measured on a five-point scale 
(0 = None, 4 = A lot). For each person 
identified, respondents were also asked to 
evaluate the overall quality of the support 
received from that person on a single semantic-
differential scale (1 = Not Good, 7 = Very 
Good) (see Table 1). 

Using MLM, each of the social support sources 
were treated as Level 1 observations, and 
parents were treated as Level 2 predictors. This 
method controls for the dependence of the alters 
on the ego by treating alters as a consequence of 
the ego (for more MLM details see Kenny et al., 
2006). The data were analyzed using LISREL 
8.8 (Jöreskog, & Sörbom, 1996). 
 
RESULTS 
 
Analysis of support sources revealed that on 
average parents identified three people from 
whom they received social support (M = 3.40, 
SD = 1.69, mdn = 4, mode = 5, range 1 to 5). 
Most of this support came from family (63%), 
primarily participants’ parents (i.e., the child’s 
grandparents). Most sources of social support 
were women (69%), indicating that women were 
more often providers of social support. Less than 
half of social support members (1.60 of 3.40) 
were shared by both parents, and shared support 
sources were often family members. See Figure 
1 for “average” family sociogram. Comparisons 
of fathers’ and mothers’ social support showed 
that parents received support from a similar 
number of sources (Mfather = 3.77, SD = 1.45, 
Mmother = 3.13, SD = 1.81), t(38) = 1.40, p = ns. 
 
To explore which characteristics of network 
alters predicts the overall quality of social 
support, the overall quality of the support was 
treated as a Level 1 dependent variable and the 
three types of social support (i.e., instrumental, 
emotional, informational), the sex of the source, 
the sex of the parent, whether the support was 
from a family member, and whether the support 
source was shared with the spouse were treated 
as Level 1 fixed effects. Multilevel modeling is 
concerned with model fit as well as the 
parameter estimates (Roberts, 2004). The best 
fitting model only included instrumental and 
emotional support amounts and family 
membership as fixed effects. The results 
indicated that amount of instrumental support (ß 
= .21, SE = .06, WALD = 3.76, p < .001), 
emotional support (ß = .45, SE = .08, WALD = 
5.50, p < .001), and being a family member (ß = 
.20, SE = .11, WALD = 1.89, p < .05) were
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Figure 1. “Typical” Family Sociogram 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

related to overall support quality. To explore 
whether the overall quality of the source of 
social support was moderated by parent sex, 
several interaction terms were created: (1) being 
a shared source of support and sex of parent and 
(2) type of support (instrumental, emotional, 
health information) and sex of parent. None of 
the interaction terms were significant. For both 
mothers and fathers, more emotional and 
instrumental support received from family 
members increased overall support quality, and 
this relationship was not moderated by parent 
sex. 
 

To answer questions regarding fathers’ inability 
to receive support, the differences between 
mothers and fathers in unique social support 
were explored using four paired samples t tests. 
Therefore, only parents’ unique sources of social 
support were included in this analysis (N = 68). 
In comparison to fathers (M = 2.08, SD = 1.07), 
mothers received more instrumental support 
from unique sources of social support (M = 2.57, 
SD = .93), t(66) = 2.00, p < .05, d = .49. From 
their unique sources of social support, the 
overall quality of social support for fathers (M 
=6.40, SD = .90) was significantly less than the 
support mothers received (M = 6.80, SD = .37), 
t(66) = 2.17, p < .05, d = .58. 

 

Table 1. All Means And Standard Deviations By Sex Of Respondent 

           Standard   
                           Mean                    Deviation      Sample Size  
                   Men     Women  Men     Women  Men     Women 
 
No. Sources of Support 3.77 3.13 1.45 1.81 20 20 
Emotional Support 2.13 2.09 .85 1.08 20 20 
Instrumental Support 2.36 2.39 .92 .97 20 20 
Health Care Support 1.07 1.20 .97 1.14 20 20 
Overall Social Support 6.23 6.11 1.17 1.80 20 20 
% Sources Female   64  73   80 69 
% Sources Family 63 63   80 69 
_____________________________________________________________________________________________ 

Unique Social 
Support 

(M = 1.1) 

Shared Social 
Support 
(M =1.6) 

 

Father Mother 

Unique Social 
Support 
(M = .6) 

Grandparents 

DISCUSSION 
 
Most researchers using egocentric network 
methods aggregate scores from multiple sources 
of support and do not explore the identities or 
unique qualities of these sources (Bissette et al., 
2000). This case study demonstrated the value of 
treating each support source uniquely. By 
linking parents’ received support networks into a 
common network for the couple all sources 
could be identified then as either shared-- 
identified by both parents -- or unique-- 
identified by only one parent. Linking the 
identities of network members to create a 
sociogram is a common technique in SNA 
(Wasserman & Faust, 1994) and past research 
has demonstrated the interdependence of spousal 
support networks (Widmer, 2006), but this case 
study demonstrates that linking couples’ support 
networks increases the utility of egocentric data. 
 
Sex Differences in Social Support 
 
To answer the research questions in the case 
study, results suggest that sex differences in 
social support depend upon whether the network 
alter is shared or unique. Past research has 
documented fathers’ lack of social support, both 
in quality and in quantity (Hoekstra-Weebers et 
al., 1999; Hoekstra-Weebers et al., 2000; 
Hoekstra-Weebers et al., 2001; Sloper, 2000). 
However, in this case study men and women 
received equivalent support in both quantity and 
quality. The results also failed to demonstrate 
the value of support provided by a female alter, 
but demonstrated the value of support provided 
by family members. In the context of childhood 
cancer, the familial relationship rather than the 
sex of the support source is associated with 
higher quality support. In addition, the 
interaction analyses demonstrated that it is not 
the case that shared sources of support are 
providing more support for mothers in 
comparison to fathers. Instead, emotional and 
instrumental support provided by family 
members is equally predictive of support quality 
for both parents. The differences between 
parents emerged only when separating unique 
from shared support sources. When considering 

unique sources, mothers received more 
instrumental support of higher quality. The 
medium effect sizes suggest that the differences 
in support shown in past research may have 
resulted from unique, not shared sources of 
support. This offers support to Hoeskstra-
Weebers and colleagues’ suggestion (2001) that 
men’s lack of support may be a result of a less 
capable support network. The results of this 
study further refines this explanation by 
demonstrating that the lack of capability resides 
in the unique sources of support. Shared sources 
of support appear to be providing quality support 
to both mothers and fathers. 
 
Directions, Applications, and Extensions 
 
In addition to exploring social support, there are 
many applications of shared versus unique 
network alters. Egocentric data could be 
collected from many types of couples (e.g., 
friends, business colleagues, advisor-advisee). In 
addition to retaining the unique variance of each 
network alter, the methods described here can 
demonstrate how dyadic relationships affect 
network alters. For example, sharing a friend 
with a spouse may directly impact the friendship 
itself. Alters may be treated differently precisely 
because of their unique v. shared status in terms 
of the type, depth, and breadth of information 
shared. The consequences of making a unique 
source into a shared source (e.g., gaining in-
laws) or developing a unique relationship with a 
previously shared source (e.g., during divorce) 
could provide some useful micro-level analyses 
of network level changes in connectedness. 
Other concepts, such as network density, may 
also be modeled as a Level 2 predictor. 
Although this study did not explore the 
interconnections between the sources of social 
support, past research has advocated asking 
whether and how network alters are associated 
to one another (Burt, 1984). In the case of social 
support for families, if shared sources of support 
are tightly connected, they may diffuse 
responsibility and support the family more 
effectively (Street, 2003). If sources of support 
are disconnected, supporters might not be able to 
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Figure 1. “Typical” Family Sociogram 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

related to overall support quality. To explore 
whether the overall quality of the source of 
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a shared source of support and sex of parent and 
(2) type of support (instrumental, emotional, 
health information) and sex of parent. None of 
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this relationship was not moderated by parent 
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to receive support, the differences between 
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were explored using four paired samples t tests. 
Therefore, only parents’ unique sources of social 
support were included in this analysis (N = 68). 
In comparison to fathers (M = 2.08, SD = 1.07), 
mothers received more instrumental support 
from unique sources of social support (M = 2.57, 
SD = .93), t(66) = 2.00, p < .05, d = .49. From 
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overall quality of social support for fathers (M 
=6.40, SD = .90) was significantly less than the 
support mothers received (M = 6.80, SD = .37), 
t(66) = 2.17, p < .05, d = .58. 
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DISCUSSION 
 
Most researchers using egocentric network 
methods aggregate scores from multiple sources 
of support and do not explore the identities or 
unique qualities of these sources (Bissette et al., 
2000). This case study demonstrated the value of 
treating each support source uniquely. By 
linking parents’ received support networks into a 
common network for the couple all sources 
could be identified then as either shared-- 
identified by both parents -- or unique-- 
identified by only one parent. Linking the 
identities of network members to create a 
sociogram is a common technique in SNA 
(Wasserman & Faust, 1994) and past research 
has demonstrated the interdependence of spousal 
support networks (Widmer, 2006), but this case 
study demonstrates that linking couples’ support 
networks increases the utility of egocentric data. 
 
Sex Differences in Social Support 
 
To answer the research questions in the case 
study, results suggest that sex differences in 
social support depend upon whether the network 
alter is shared or unique. Past research has 
documented fathers’ lack of social support, both 
in quality and in quantity (Hoekstra-Weebers et 
al., 1999; Hoekstra-Weebers et al., 2000; 
Hoekstra-Weebers et al., 2001; Sloper, 2000). 
However, in this case study men and women 
received equivalent support in both quantity and 
quality. The results also failed to demonstrate 
the value of support provided by a female alter, 
but demonstrated the value of support provided 
by family members. In the context of childhood 
cancer, the familial relationship rather than the 
sex of the support source is associated with 
higher quality support. In addition, the 
interaction analyses demonstrated that it is not 
the case that shared sources of support are 
providing more support for mothers in 
comparison to fathers. Instead, emotional and 
instrumental support provided by family 
members is equally predictive of support quality 
for both parents. The differences between 
parents emerged only when separating unique 
from shared support sources. When considering 

unique sources, mothers received more 
instrumental support of higher quality. The 
medium effect sizes suggest that the differences 
in support shown in past research may have 
resulted from unique, not shared sources of 
support. This offers support to Hoeskstra-
Weebers and colleagues’ suggestion (2001) that 
men’s lack of support may be a result of a less 
capable support network. The results of this 
study further refines this explanation by 
demonstrating that the lack of capability resides 
in the unique sources of support. Shared sources 
of support appear to be providing quality support 
to both mothers and fathers. 
 
Directions, Applications, and Extensions 
 
In addition to exploring social support, there are 
many applications of shared versus unique 
network alters. Egocentric data could be 
collected from many types of couples (e.g., 
friends, business colleagues, advisor-advisee). In 
addition to retaining the unique variance of each 
network alter, the methods described here can 
demonstrate how dyadic relationships affect 
network alters. For example, sharing a friend 
with a spouse may directly impact the friendship 
itself. Alters may be treated differently precisely 
because of their unique v. shared status in terms 
of the type, depth, and breadth of information 
shared. The consequences of making a unique 
source into a shared source (e.g., gaining in-
laws) or developing a unique relationship with a 
previously shared source (e.g., during divorce) 
could provide some useful micro-level analyses 
of network level changes in connectedness. 
Other concepts, such as network density, may 
also be modeled as a Level 2 predictor. 
Although this study did not explore the 
interconnections between the sources of social 
support, past research has advocated asking 
whether and how network alters are associated 
to one another (Burt, 1984). In the case of social 
support for families, if shared sources of support 
are tightly connected, they may diffuse 
responsibility and support the family more 
effectively (Street, 2003). If sources of support 
are disconnected, supporters might not be able to 
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accurately assess what support is needed or 
provide targeted support.  
 
Researchers using traditional SNA, but working 
with a large amount of missing data, may also 
find value in MLM. This would likely be most 
attractive for researchers who have collected 
information beyond network ties, such as 
attributes about the ego and evaluations of the 
alters or ties by the ego. If overlap existed 
among ego-networks, shared and unique ties 
might also be identified.   
 
The methods used in this case study can be 
improved in future investigations. Although 
asking dyad members to complete surveys in 
isolation from each other helps to reduce dyad 
members’ influence on one another during data 
collection, once surveys are complete, 
researchers may want to ask dyads to identify 
their network alters as shared or unique. 
Researcher-matched alters, such as those in this 
case study, may be subject to errors of 
identification, especially if few or no details are 
offered about an alter (e.g., only initials, missing 
data). Furthermore, future work should increase 
the sample size to increase the possibility of 
exploring interaction effects and improve the 
ability to detect small effect sizes.  
 
Hopefully, the methods and procedures 
described here will provide some useful 
guidance and be a source of fruitful application 
for researchers using egocentric data from 
couples. As interest in dyadic data grows, social 
network researchers can provide key insights 
into the ways couples behave within their social 
environments. 
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accurately assess what support is needed or 
provide targeted support.  
 
Researchers using traditional SNA, but working 
with a large amount of missing data, may also 
find value in MLM. This would likely be most 
attractive for researchers who have collected 
information beyond network ties, such as 
attributes about the ego and evaluations of the 
alters or ties by the ego. If overlap existed 
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Abstract 
In order to understand the transmission of a disease across a population we will have to understand not only the 
dynamics of contact infection but the transfer of health-care beliefs and resulting health-care behaviors across that 
population.  This paper is a first step in that direction, focusing on the contrasting role of linkage or isolation 
between sub-networks in (a) contact infection and (b) belief transfer.  Using both analytical tools and agent-based 
simulations we show that it is the structure of a network that is primary for predicting contact infection—whether 
the networks or sub-networks at issue are distributed ring networks or total networks (hubs, wheels, small world, 
random, or scale-free for example).  Measured in terms of time to total infection, degree of linkage between sub-
networks plays a minor role.  The case of belief is importantly different.  Using a simplified model of belief 
reinforcement, and measuring belief transfer in terms of time to community consensus, we show that degree of 
linkage between sub-networks plays a major role in social communication of beliefs.  Here, in contrast to the case of 
contract infection, network type turns out to be of relatively minor importance.  What you believe travels differently.  
In a final section we show that the pattern of belief transfer exhibits a classic power law regardless of the type of 
network involved.   
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INTRODUCTION 
 
Public health has been a primary target for 
agent-based and network modeling.  A 
significant amount of work has been done on the 
role of network structure in the spread of disease 
(Meyers, Pourbohloul, Newman, Skowronski & 
Brunham 2005; Keeling 2005; Ferrari, Bansal, 
Meyers & Bjørnstad  2006 ; Miller & Hyman 
2007; Eubank, Guclu, Kumar, Marathe, 
Srinivasan, Toroczkai & Wang 2004).  But it is 
clear that health-care behaviors are as crucial in 
the pattern of any pandemic as are the biological 
characteristics of the pathogens involved 
(Epstein, Parker, Cummings & Hammond 2008; 
Auld 2003; Del Valle, Hethcote, Hyman, & 
Castillo-Chavez 2005; Barrett, Bisset, Leidig, 
Marathe, & Marathe 2009; Funk, Gilad, 
Watkins, & Jansen 2009; Hallett, Gregson, 
Lewis, Lopman, & Garnett 2007). Those health-
care behaviors are contingent on beliefs.  On 
standard models, these include at least beliefs 
regarding severity, susceptibility, effectiveness 
and the cost of preventive measures (Harrison, 
Mullen, & Green 1992; Janz & Becker, 1984; 
Mullen, Hersey, & Iverson 1987; Strecher & 
Rosenstock 1997).   
 
In order to understand the spread of disease we 
will have to better understand the spread of 
beliefs and behaviors.  Moreover, as public 
health interventions are often targeted to beliefs 
and behaviors we will have to better understand 
the spread of beliefs and behaviors in order to 
intervene effectively.  For a better picture 
ofdisease dynamics and to better the prospects 
for effective intervention we need a better 
understanding of the dynamics of belief 
transmission across social networks.  Although 
important empirical work has been done on 
social networks and the diffusion of beliefs and 
behaviors (Valente 1995, 2010; Morris, 
Podhisita, Wawer & Handcock 1996; Morris 
1997; Valente & Davis, 1999; Kincaid 2000; 
Hamilton, Handcock & Morris 2008), 
significantly less has been done with the tools of 
agent-based modeling toward understanding the 
abstract dynamics of belief (see however 

Centola & Macy 2007 and Golub & Jackson, 
forthcoming).1 
 
In what follows we take some steps in that 
direction, with an emphasis on the pervasive 
social phenomenon of sub-network groups or 
clusters.  Our social networks do not form a 
uniform and homogenous web.  Social 
communities are composed of sub-
communities, with varying degrees of contact 
and isolation between them; both in terms of 
the physical contact necessary for disease 
transmission and the informational contact 
crucial to the transmission of belief.  Racial, 
ethnic, socio-economic, demographic, and 
geographical sub-communities offer a clear 
example.  Racial and economic sub-
communities may be more or less isolated or 
integrated with other sub-communities, with 
varying strengths of information transfer, 
communication, and trust.  In the case of a 
pandemic, degree of isolation or integration will 
be crucial in predicting the course of contact 
and therefore the dynamics of disease 
transmission.  But in such a case degree of 
informational isolation or integration will also 
be crucial in tracking changes in health care 
beliefs and behaviors, with both immediate and 
long-range effects on the course of the disease. 
 
What we offer is an abstract model of this very 
real phenomenon.  We track the role of degree 
of linkage between sub-networks in the transfer 
of disease and the transfer of information, with 
contrasting results in the two cases.  Linkages 
between sub-networks have also been termed 
'bridges,' analogous to a concept of bridges in 
computer networking and identified in Trotter, 
                                                 
1  Centola and May consider 'complex contagions', in 
which more than one neighbor is required for 
infection.  This is not strictly speaking a 
reinforcement effect, but does show dynamics similar 
to that studied for belief reinforcement here—and a 
similar contrast with simple infection.  Golub and 
Jackson outline analytic results on 'homophily' in 
random networks, with a similar emphasis on the 
contrast between diffusion and belief averaging.  Our 
work here, part analytic and part from agent-based 
simulations, extends that work and shows that the 
central contrast holds across networks of various 
types. 
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INTRODUCTION 
 
Public health has been a primary target for 
agent-based and network modeling.  A 
significant amount of work has been done on the 
role of network structure in the spread of disease 
(Meyers, Pourbohloul, Newman, Skowronski & 
Brunham 2005; Keeling 2005; Ferrari, Bansal, 
Meyers & Bjørnstad  2006 ; Miller & Hyman 
2007; Eubank, Guclu, Kumar, Marathe, 
Srinivasan, Toroczkai & Wang 2004).  But it is 
clear that health-care behaviors are as crucial in 
the pattern of any pandemic as are the biological 
characteristics of the pathogens involved 
(Epstein, Parker, Cummings & Hammond 2008; 
Auld 2003; Del Valle, Hethcote, Hyman, & 
Castillo-Chavez 2005; Barrett, Bisset, Leidig, 
Marathe, & Marathe 2009; Funk, Gilad, 
Watkins, & Jansen 2009; Hallett, Gregson, 
Lewis, Lopman, & Garnett 2007). Those health-
care behaviors are contingent on beliefs.  On 
standard models, these include at least beliefs 
regarding severity, susceptibility, effectiveness 
and the cost of preventive measures (Harrison, 
Mullen, & Green 1992; Janz & Becker, 1984; 
Mullen, Hersey, & Iverson 1987; Strecher & 
Rosenstock 1997).   
 
In order to understand the spread of disease we 
will have to better understand the spread of 
beliefs and behaviors.  Moreover, as public 
health interventions are often targeted to beliefs 
and behaviors we will have to better understand 
the spread of beliefs and behaviors in order to 
intervene effectively.  For a better picture 
ofdisease dynamics and to better the prospects 
for effective intervention we need a better 
understanding of the dynamics of belief 
transmission across social networks.  Although 
important empirical work has been done on 
social networks and the diffusion of beliefs and 
behaviors (Valente 1995, 2010; Morris, 
Podhisita, Wawer & Handcock 1996; Morris 
1997; Valente & Davis, 1999; Kincaid 2000; 
Hamilton, Handcock & Morris 2008), 
significantly less has been done with the tools of 
agent-based modeling toward understanding the 
abstract dynamics of belief (see however 

Centola & Macy 2007 and Golub & Jackson, 
forthcoming).1 
 
In what follows we take some steps in that 
direction, with an emphasis on the pervasive 
social phenomenon of sub-network groups or 
clusters.  Our social networks do not form a 
uniform and homogenous web.  Social 
communities are composed of sub-
communities, with varying degrees of contact 
and isolation between them; both in terms of 
the physical contact necessary for disease 
transmission and the informational contact 
crucial to the transmission of belief.  Racial, 
ethnic, socio-economic, demographic, and 
geographical sub-communities offer a clear 
example.  Racial and economic sub-
communities may be more or less isolated or 
integrated with other sub-communities, with 
varying strengths of information transfer, 
communication, and trust.  In the case of a 
pandemic, degree of isolation or integration will 
be crucial in predicting the course of contact 
and therefore the dynamics of disease 
transmission.  But in such a case degree of 
informational isolation or integration will also 
be crucial in tracking changes in health care 
beliefs and behaviors, with both immediate and 
long-range effects on the course of the disease. 
 
What we offer is an abstract model of this very 
real phenomenon.  We track the role of degree 
of linkage between sub-networks in the transfer 
of disease and the transfer of information, with 
contrasting results in the two cases.  Linkages 
between sub-networks have also been termed 
'bridges,' analogous to a concept of bridges in 
computer networking and identified in Trotter, 
                                                 
1  Centola and May consider 'complex contagions', in 
which more than one neighbor is required for 
infection.  This is not strictly speaking a 
reinforcement effect, but does show dynamics similar 
to that studied for belief reinforcement here—and a 
similar contrast with simple infection.  Golub and 
Jackson outline analytic results on 'homophily' in 
random networks, with a similar emphasis on the 
contrast between diffusion and belief averaging.  Our 
work here, part analytic and part from agent-based 
simulations, extends that work and shows that the 
central contrast holds across networks of various 
types. 
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Rothenberg and Coyle (1995) as a key area for 
future work in network studies and health care. 
L. C. Freeman (1977) speaks of degree of 
linkage in terms of segregation and integration 
between sub-networks.  Ours is a formal study 
of networks, however, and such a terminology 
may carry distracting connotations.  
Homophilous networks, in which nodes link 
preferentially with others with similar 
characteristics, often take the form of clustered 
sub-networks with limited degrees of linkage; 
precisely the type we study here.  Our focus is 
on the implications of a network structure, 
however, not how a network may have acquired 
that structure.   
 
We focus on the structure of contact and 
informational networks and the impact of that 
structure on the dynamics of infection and 
information.  In the first section we outline 
simple analytic results and a wider spread of 
agent-based simulation results regarding the 
impact of degree of linkage between sub-
networks on the spread of infection across a 
community.  Those results regarding simple 
diffusion serve as a base of comparison for the 
very different results regarding the effects of 
degree of linkage on the transmission of beliefs. 
 
The dynamics of belief turns out to be very 
different from the dynamics of contact 
infection.   For infection, measured in terms of 
average time to total infection across a network, 
it is the structure of the network or its sub-
networks that is of primary importance—
whether the basic network or networks at issue 
form rings, total networks, hubs, wheels, small 
worlds, scale-free or random networks.  The 
degree of linkage between sub-networks of 
such a type is of relatively minor importance 
for infection.  For belief transmission on the 
model we construct, in contrast, measured in 
terms of average time to total consensus, 
network structure is of minor significance.  
Where the dynamics of belief is at issue, it is 
the degree of linkage between sub-networks 
that is of primary importance.  The effect of 
degree of linkage on belief change, we show, 
regardless of network type, shows the pattern of 
a classic power law. 

Our effort here is to emphasize a basic point 
regarding the different dynamics of belief and 
infection across networks.  More complete 
details of both analytic results and results from 
simulation are available in an on-line appendix 
at www.pgrim.org/connections.  
 
Infection Dynamics Across Linked Sub-
Networks 
 
Ring and Total Network: A First Example 
 
Figure 1 shows a series of four network 
structures, clearly related in terms of structure. 
The network on the left is a single total 
network, also known as a complete network or 
maximal graph. The three pairs on the right 
form paired sub-networks with increasing 
numbers of connecting links.  We will use 
degree of linkage in a relative sense to refer to 
increased connecting links or bridges of this 
sort.  A quantitative measure is possible in 
terms of the number of actual linkages between 
nodes of distinct groups or sub-networks over 
the total possible. 2  
 
We focus on varying degrees of connection 
between sub-networks of varying structure.  For 
simplicity we use just two sub-networks of 
equal size, concentrating on ring sub-networks, 
total or connected networks, small worlds, 
random and scale-free sub-networks.  How does 
the degree of connection between two sub-
networks affect the dynamics of diffusion or 
infection across the network as a whole?  How 
do results on degree of connection between sub- 
networks of a specific structure compare with 
results on a single network of the same 
structure to which the same number of links are 
added?  Here theoretical fundamentals trace to 
Granovetter 1973; and an early example of  

                                                 
2  Full linkage between total sub-networks, such that 
every node in one sub-network will connect to every 
node in the other sub-network, will result in the 
single total network on the left.  But of course it will 
not hold in general that full linkage between sub-
networks of type x will result in a single network of 
type x: full linkage between ring networks will not 
result in a single ring.   

            

 
 

 
Figure 1.  A Single Total Network and Increased Degrees of Linkage Between Total Sub-networks 
 
 
 
network analysis regarding infection appears in 
Klovdahl 1985. 
 
Some results are simple and analytic, but also 
indicate the variety that can be expected.  
Consider, at one extreme, a network composed 
of two totally connected sub-networks with a 
single link between them, as in the second 
network in Figure 1.  How many steps will be 
required to total infection, starting from a single 
random infected node?  Assuming a 100% 
infection rate, where n is the total number of 
nodes, the average number of steps to total 
infection is: 
  

 
 
where n is the total number of nodes.  From any 
node other than those on the ends of our 
connecting link, there are three steps to total 
infection: (1) to all nodes of the immediate 
connected networks, (2) across the one 
connecting link, and (3) from there to all nodes 
of the opposite connected network.  If the 
initially infected node is one of those on the 
ends of our connecting link, there are merely 
two steps to total infection, giving us the 
formula above. 
 
Adding further links has no dramatic effect in 
such a case.  Because our sub-networks are 
totally connected, a first step in every case 

infects all nodes in a sub-network; from there 
any number of links between sub-networks 
merely transfer the infection to the second sub-
network.  For a network with two sub-networks 
of equal size, therefore, again assuming an 
infection rate of 100% rate and incorporating n 
nodes and m discrete links between sub-
networks (links sharing no nodes),3 the average 
time to total infection will be simply: 
  

 
 
As n increases relative to m ≠ 0, time to 
infection approaches a limit of 3.  As m 
increases relative to n, with a limit of m = .5 n, 
time to infection approaches a limit of 2.  For a 
single total network, like that on the left in 
Figure 1, any 'added' linkages would simply be 
redundant, with no effect at all: infection will in 
all cases be in a single step.   
 
Where sub-networks are total, variance in 
infection time is necessarily just between 2 and 
3 steps.  At the other extreme is the case of a 
network with rings as sub-components.  Here 
variance in infection time is much greater.  The 
maximal number of steps to full infection from 
a single node across a ring sub-network is s/2 

                                                 
3  In order to keep the outline of basic relationships as 
simple as possible we ignore the complication that 
links can share a single node at one end.   
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model we construct, in contrast, measured in 
terms of average time to total consensus, 
network structure is of minor significance.  
Where the dynamics of belief is at issue, it is 
the degree of linkage between sub-networks 
that is of primary importance.  The effect of 
degree of linkage on belief change, we show, 
regardless of network type, shows the pattern of 
a classic power law. 

Our effort here is to emphasize a basic point 
regarding the different dynamics of belief and 
infection across networks.  More complete 
details of both analytic results and results from 
simulation are available in an on-line appendix 
at www.pgrim.org/connections.  
 
Infection Dynamics Across Linked Sub-
Networks 
 
Ring and Total Network: A First Example 
 
Figure 1 shows a series of four network 
structures, clearly related in terms of structure. 
The network on the left is a single total 
network, also known as a complete network or 
maximal graph. The three pairs on the right 
form paired sub-networks with increasing 
numbers of connecting links.  We will use 
degree of linkage in a relative sense to refer to 
increased connecting links or bridges of this 
sort.  A quantitative measure is possible in 
terms of the number of actual linkages between 
nodes of distinct groups or sub-networks over 
the total possible. 2  
 
We focus on varying degrees of connection 
between sub-networks of varying structure.  For 
simplicity we use just two sub-networks of 
equal size, concentrating on ring sub-networks, 
total or connected networks, small worlds, 
random and scale-free sub-networks.  How does 
the degree of connection between two sub-
networks affect the dynamics of diffusion or 
infection across the network as a whole?  How 
do results on degree of connection between sub- 
networks of a specific structure compare with 
results on a single network of the same 
structure to which the same number of links are 
added?  Here theoretical fundamentals trace to 
Granovetter 1973; and an early example of  

                                                 
2  Full linkage between total sub-networks, such that 
every node in one sub-network will connect to every 
node in the other sub-network, will result in the 
single total network on the left.  But of course it will 
not hold in general that full linkage between sub-
networks of type x will result in a single network of 
type x: full linkage between ring networks will not 
result in a single ring.   

            

 
 

 
Figure 1.  A Single Total Network and Increased Degrees of Linkage Between Total Sub-networks 
 
 
 
network analysis regarding infection appears in 
Klovdahl 1985. 
 
Some results are simple and analytic, but also 
indicate the variety that can be expected.  
Consider, at one extreme, a network composed 
of two totally connected sub-networks with a 
single link between them, as in the second 
network in Figure 1.  How many steps will be 
required to total infection, starting from a single 
random infected node?  Assuming a 100% 
infection rate, where n is the total number of 
nodes, the average number of steps to total 
infection is: 
  

 
 
where n is the total number of nodes.  From any 
node other than those on the ends of our 
connecting link, there are three steps to total 
infection: (1) to all nodes of the immediate 
connected networks, (2) across the one 
connecting link, and (3) from there to all nodes 
of the opposite connected network.  If the 
initially infected node is one of those on the 
ends of our connecting link, there are merely 
two steps to total infection, giving us the 
formula above. 
 
Adding further links has no dramatic effect in 
such a case.  Because our sub-networks are 
totally connected, a first step in every case 

infects all nodes in a sub-network; from there 
any number of links between sub-networks 
merely transfer the infection to the second sub-
network.  For a network with two sub-networks 
of equal size, therefore, again assuming an 
infection rate of 100% rate and incorporating n 
nodes and m discrete links between sub-
networks (links sharing no nodes),3 the average 
time to total infection will be simply: 
  

 
 
As n increases relative to m ≠ 0, time to 
infection approaches a limit of 3.  As m 
increases relative to n, with a limit of m = .5 n, 
time to infection approaches a limit of 2.  For a 
single total network, like that on the left in 
Figure 1, any 'added' linkages would simply be 
redundant, with no effect at all: infection will in 
all cases be in a single step.   
 
Where sub-networks are total, variance in 
infection time is necessarily just between 2 and 
3 steps.  At the other extreme is the case of a 
network with rings as sub-components.  Here 
variance in infection time is much greater.  The 
maximal number of steps to full infection from 
a single node across a ring sub-network is s/2 

                                                 
3  In order to keep the outline of basic relationships as 
simple as possible we ignore the complication that 
links can share a single node at one end.   
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with s as the  number of  nodes for that sub-
network where s is even, or (s – 1)/2 in the case 
of odd numbers of nodes.  The longest time for 
diffusion across a network of two equal-sized 
rings each with an even number of nodes n/2 is 
therefore: 
  

 
 
Where the number of nodes n/2 in each sub-
network is odd the maximal number of steps is: 
 

 
 
If the source of infection is one of the nodes on 
the end of a bridge between sub-networks, time 
to infection will be minimal: where n/2 is even 
the minimal time to infection will be 

where n/2 is odd, time to infection will be 
 

 
Variance between maximum and minimum 
times to total infection is therefore extremely 
sensitive to the structure of sub-networks.  In 
the case of total sub-networks, that variance is 
simply 1 regardless of the number of nodes.  In 
the case of ring sub-networks, the variance is 
close to n/4.  The consequences for prediction 
are clear: to the extent that a social network 
approaches a total network, point predictions of 
infection times can be made with a high degree 
of confidence.  To the extent that a social 
network approaches a ring, on the other hand, 
point predictions will not be possible without 
wide qualification.   
 
The structure of sub-networks is crucial for 
other factors as well.  We have noted that 
increasing links between sub-networks has a 
minimal effect where those sub-networks are 
total.  Where sub-networks are rings of 50 
nodes, in contrast, the effect is dramatic.  The 

top line in Figure 2 shows results from a 
computer-instantiated agent-based model in 
which we progressively increase the number of 
links between random nodes of those sub-
networks from 1 to 50.  For each number 
between 1 and 50 we create 1000 networks with 
random links of that number between sub-
networks, taking the average over the 1000 
runs.  For ring sub-networks the time to full 
infection decreases from an average of 38.1 
steps for cases in which there is a single link 
between ring sub-networks to 7.6 for cases in 
which there are 50 links.     
 
Similar simulation results for added links 
between total sub-networks, in contrast, show a 
relatively flat result with decline in average 
time to infection from only 2.98 to 2.35.  
Difference in network structure clearly makes a 
major difference in time to total infection.  That 
difference is not due to degree of linkage 
between sub-networks, however.  A graph of 
results in which links are added across a single 
ring and not between ring sub-networks  shows 
a result almost identical to that in Figure 2.   
 
The lesson from ring and total networks is that 
it is not the degree of linkage between sub-
networks that affects time to total infection but 
overall network structure itself, whether 
characterizing a single network or linked sub-
networks.  Changes in infection rates with 
additional random links (1) across a single 
network and (2) between two smaller networks 
with the same structure show very much the 
same pattern.  Degrees of linkage between sub-
networks interact with the structure of those 
sub-networks in order to generate patterns of 
infection, but it is the structure of the networks 
rather than the degree of linkage that plays the 
primary role.  Analytical and simulation results 
for hub and wheel networks, very much in line 
with conclusions above, are available in an 
online appendix (www.pgrim.org/connections). 

 
 

 
 
Figure 2.  Average Time to Total Infection with Increasing Links Between Sub-Networks 
 
 
 
Infection Across Small World, Random, and 
Scale-Free Networks     
 
For patterns of infection, the importance of 
general structure type over degree of linkage 
between sub-networks holds for small world, 
scale free, and random networks as well.   
Results for small world networks are shown in 
the second line from the top in Figure 2 with 
roughly a 9% probability of rewiring for each 
node in an initial single ring (see Watts & 
Strogatz 1998).4  Increasing linkages between 
sub-networks from 1 to 50 results in a decrease 
in steps to total infection from 22.5 steps to 
7.45.  Increasing links within a single small 

                                                 
4  Our probability is 'roughly' 9% because in each 
case we add minimal links so as to assure a 
connected network.  Without that assurance, of 
course, infection is not guaranteed to percolate 
through the network as a whole.   

world follows virtually the same pattern, with a 
decrease from 19.8 to 7.2. 
 
Similar results for random and scale-free 
networks appear in the third and fourth graphed 
lines of Figure 4.  For random networks, roughly 
4.5 percent of possible connections are 
instantiated within each sub-network, with 
minimal links needed to guarantee connected 
networks.  Our scale-free networks are 
constructed by the preferential attachment 
algorithm of Barabási and Albert (1999).   
 
Here as before there is little difference where 
additional links are added within a single 
network, whether small-world or scale-free.  In 
each case the number of initial steps is slightly 
smaller, but only in the first 10 steps or so is 
there any significant difference and convergence 
is to the same point.  In the case of random 
networks, time decreases from 9.79 to 6.45.  In 
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with s as the  number of  nodes for that sub-
network where s is even, or (s – 1)/2 in the case 
of odd numbers of nodes.  The longest time for 
diffusion across a network of two equal-sized 
rings each with an even number of nodes n/2 is 
therefore: 
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runs.  For ring sub-networks the time to full 
infection decreases from an average of 38.1 
steps for cases in which there is a single link 
between ring sub-networks to 7.6 for cases in 
which there are 50 links.     
 
Similar simulation results for added links 
between total sub-networks, in contrast, show a 
relatively flat result with decline in average 
time to infection from only 2.98 to 2.35.  
Difference in network structure clearly makes a 
major difference in time to total infection.  That 
difference is not due to degree of linkage 
between sub-networks, however.  A graph of 
results in which links are added across a single 
ring and not between ring sub-networks  shows 
a result almost identical to that in Figure 2.   
 
The lesson from ring and total networks is that 
it is not the degree of linkage between sub-
networks that affects time to total infection but 
overall network structure itself, whether 
characterizing a single network or linked sub-
networks.  Changes in infection rates with 
additional random links (1) across a single 
network and (2) between two smaller networks 
with the same structure show very much the 
same pattern.  Degrees of linkage between sub-
networks interact with the structure of those 
sub-networks in order to generate patterns of 
infection, but it is the structure of the networks 
rather than the degree of linkage that plays the 
primary role.  Analytical and simulation results 
for hub and wheel networks, very much in line 
with conclusions above, are available in an 
online appendix (www.pgrim.org/connections). 
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For patterns of infection, the importance of 
general structure type over degree of linkage 
between sub-networks holds for small world, 
scale free, and random networks as well.   
Results for small world networks are shown in 
the second line from the top in Figure 2 with 
roughly a 9% probability of rewiring for each 
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4  Our probability is 'roughly' 9% because in each 
case we add minimal links so as to assure a 
connected network.  Without that assurance, of 
course, infection is not guaranteed to percolate 
through the network as a whole.   

world follows virtually the same pattern, with a 
decrease from 19.8 to 7.2. 
 
Similar results for random and scale-free 
networks appear in the third and fourth graphed 
lines of Figure 4.  For random networks, roughly 
4.5 percent of possible connections are 
instantiated within each sub-network, with 
minimal links needed to guarantee connected 
networks.  Our scale-free networks are 
constructed by the preferential attachment 
algorithm of Barabási and Albert (1999).   
 
Here as before there is little difference where 
additional links are added within a single 
network, whether small-world or scale-free.  In 
each case the number of initial steps is slightly 
smaller, but only in the first 10 steps or so is 
there any significant difference and convergence 
is to the same point.  In the case of random 
networks, time decreases from 9.79 to 6.45.  In 
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the case of scale-free networks, time decreases 
from 7.9 to 6.08.  
 
In all the cases considered, it is not degree of 
linkage between sub-networks but the network 
structure involved in both single and linked 
sub-networks that produces network-specific 
signatures for infection. This largely accords 
with analytic results by Golub and Jackson 
(forthcoming) on diffusion dynamics across 
linked random networks.5  Golub and Jackson 
find that in the limit degree of linkage between 
random networks has no effect on time to total 
infection.  What our results indicate is that such 
a result is by no means restricted to random 
networks, holding across network types quite 
generally.  Where infection is concerned, a 
prediction of time to total infection demands a 
knowledge of the general structure of the 
contact network at issue—ring or total, for 
example, scale-free or random, but does not 
demand that we know whether it is a single 
network or a linked set of smaller networks of 
that same structure that is at issue.   
 
Infection on Networks: Qualifications and 
Provisos 
 
Results to this point have been calculated with 
an assumption of 100% infection—a disease 
guaranteed to be transmitted at every time-point 
of contact between individuals.  More realistic 
assumptions regarding rate of infection affect 
the rates calculated above, more pointedly 
emphasizing the importance of structure.  Here 
we again use ring and total networks as an 
example.   
 
Where sub-networks are total, probability of 
infection from single contact really makes a 
difference only at the link between sub-
networks: as long as the probability of infection 
exceeds 2/n, a quick infection of all individuals 

                                                 
5  Golub and Jackson characterize their results using 
the term 'homophily', defined in terms of the relative 
probability of node connection within as opposed to 
outside of a group or sub-network.  For random 
networks, though not for other network structures, 
this corresponds to the degree of linkage between 
sub-networks that is our focus here.   

in the total sub-networks is virtually 
guaranteed.  Simulation results indicate that 
with a single link between total sub-networks 
the average time to full infection shifts only 
from an average of 3.8 steps to an average of 
2.98 with a change of infection rate from 100% 
to 50%.  For ring sub-networks, on the other 
hand, the same change in infection rate roughly 
doubles the time to full infection across all 
numbers of linkages.  
 
For more realistic infection rates, therefore, it is 
more important rather than less to know the 
structure of social networks.  If those sub-
networks approximate total networks, neither 
infection rate nor additional links between sub-
networks make much difference.  If sub-
networks approximate ring networks, both 
number of links and infection rate will make a 
dramatic difference in the course of an 
infection.   
 
Where average time to infection is our measure, 
degree of linkage between sub-networks as 
opposed to additional links within a single 
network of that structure is not of particular 
significance.   But here we need to add an 
important proviso: this does not mean that the 
course of an epidemic across a single network 
and across sub-networks with various degrees 
of linkage is not significantly different.  That 
dynamic is often very different—in ways that 
might be important for intervention, for 
example—even where average time to total 
infection is the same.  The typical graphs in 
Figure 3 show the rate of new infections over 
time for (a) a single network and (b) linked sub-
networks of that type.  Single networks show a 
smooth normal curve of increasing and 
declining rates of new infection.  Linked sub-
networks show a saddle of slower infection 
between two more rapid peaks.   
 
Despite uniformity of predicted time to total 
infection, therefore, sparsely linked sub-
networks will always be 'fragile' at those links, 
with temporal saddle points in the course of an 
epidemic to match.  Those weak linkages and 
saddle points offer crucial opportunities for 
targeted vaccination in advance of an epidemic, 
or intervention in the course of it. 

 

  

 
 
Figure 3.  Contrasting Dynamics of Infection in Single and Linked Sub-Networks 
 
 
 
Information Dynamics Across Linked Sub-
Networks 
 
What you believe travels differently.  In what 
follows we use a simple model of belief 
updating to show the crucial importance of 
degree of sub-network linkage in belief or 
information transmission across a network.  
Some earlier results have noted similarities in 
infection dynamics and the spread of ideas 
(Newman 2001, Redner 1998, Börner et. al. 
2003).  Our purpose is to emphasize crucial 
differences between them.  
 

In this first model our agents' beliefs are 
represented as a single number between 0 and 
1.  These are beliefs in the severity of a disease, 
perhaps, the probability of contracting the 
disease, or the effectiveness of vaccination. 
(Harrison, Mullen, & Green 1992; Janz & 
Becker, 1984; Mullen, Hersey, and Iverson, 
1987; Strecher & Rosenstock, 1997).  Agents 
are influenced by the beliefs of those around 
them, updating their belief representation in 
terms of the beliefs of those with whom they 
have information linkages.     
 
To this extent we can argue that the model is 
relatively realistic: some beliefs can be 
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the case of scale-free networks, time decreases 
from 7.9 to 6.08.  
 
In all the cases considered, it is not degree of 
linkage between sub-networks but the network 
structure involved in both single and linked 
sub-networks that produces network-specific 
signatures for infection. This largely accords 
with analytic results by Golub and Jackson 
(forthcoming) on diffusion dynamics across 
linked random networks.5  Golub and Jackson 
find that in the limit degree of linkage between 
random networks has no effect on time to total 
infection.  What our results indicate is that such 
a result is by no means restricted to random 
networks, holding across network types quite 
generally.  Where infection is concerned, a 
prediction of time to total infection demands a 
knowledge of the general structure of the 
contact network at issue—ring or total, for 
example, scale-free or random, but does not 
demand that we know whether it is a single 
network or a linked set of smaller networks of 
that same structure that is at issue.   
 
Infection on Networks: Qualifications and 
Provisos 
 
Results to this point have been calculated with 
an assumption of 100% infection—a disease 
guaranteed to be transmitted at every time-point 
of contact between individuals.  More realistic 
assumptions regarding rate of infection affect 
the rates calculated above, more pointedly 
emphasizing the importance of structure.  Here 
we again use ring and total networks as an 
example.   
 
Where sub-networks are total, probability of 
infection from single contact really makes a 
difference only at the link between sub-
networks: as long as the probability of infection 
exceeds 2/n, a quick infection of all individuals 

                                                 
5  Golub and Jackson characterize their results using 
the term 'homophily', defined in terms of the relative 
probability of node connection within as opposed to 
outside of a group or sub-network.  For random 
networks, though not for other network structures, 
this corresponds to the degree of linkage between 
sub-networks that is our focus here.   

in the total sub-networks is virtually 
guaranteed.  Simulation results indicate that 
with a single link between total sub-networks 
the average time to full infection shifts only 
from an average of 3.8 steps to an average of 
2.98 with a change of infection rate from 100% 
to 50%.  For ring sub-networks, on the other 
hand, the same change in infection rate roughly 
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For more realistic infection rates, therefore, it is 
more important rather than less to know the 
structure of social networks.  If those sub-
networks approximate total networks, neither 
infection rate nor additional links between sub-
networks make much difference.  If sub-
networks approximate ring networks, both 
number of links and infection rate will make a 
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time for (a) a single network and (b) linked sub-
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smooth normal curve of increasing and 
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networks show a saddle of slower infection 
between two more rapid peaks.   
 
Despite uniformity of predicted time to total 
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networks will always be 'fragile' at those links, 
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epidemic to match.  Those weak linkages and 
saddle points offer crucial opportunities for 
targeted vaccination in advance of an epidemic, 
or intervention in the course of it. 
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represented on such a scale, and people are 
influenced to change those beliefs by, among 
other things, the expressed beliefs of those with 
whom they have contact.  What is admittedly 
unrealistic is the simple form of belief updating 
we use in the model: an averaging of current 
beliefs with those with whom one has network 
contact.  No-one thinks that averaging of beliefs 
in an informational neighborhood captures the 
real dynamics of belief change.  Such a 
mechanism does, however, instantiate a pattern 
of reinforcement: the more one's beliefs are like 
those of one's network neighbors, and the more 
they are like more of one's network neighbors, 
the less inclination there will be to change those 
beliefs.  The more one's beliefs are out of sync 
with one's neighbors, the greater the pressure 
there will be to change one's beliefs.   
 
That beliefs will change in accord with some 
pattern of reinforcement along those lines is 
very plausible, backed by a range of social 
psychological data, and is therefore an aspect of 
realism in the model.  What is unrealistic is the 
particular form of reinforcement instantiated 
here—the particularly simple pattern of belief 
averaging, applied homogeneously across all 
agents.  In order to be informative regarding an 
exterior reality, a model, like any theory, must 
capture relevant aspects of that reality.  In order 
to offer both tractability and understanding, a 
model, like any theory, must simplify. This first 
model of belief transmission is intended to 
capture a reality of belief reinforcement; the 
admittedly artificial assumption of belief 
averaging is our simplification.6   
 
Our attempt, then, is not to reproduce any 
particular pattern of realistic belief change but 
to emphasize the impact of certain predictable 
characteristics of belief change—with 
reinforcement a primary component—on the 
dynamics of belief.  In particular, we want to 
emphasize the major differences between the 
dynamics of belief change across information 

                                                 
6  For background on both the importance and limit of 
realism in different forms of models, see Grim, 
Rosenberg, Rosenfeld, Anderson, & Eason 2010 and 
Rosenberg, Grim, Rosenfeld, Anderson & Eason 
2010.   

networks and the dynamics of infection 
diffusion across contact networks, outlined 
above.  What you believe travels differently.   
 
Given belief averaging, and regardless of initial 
assignment of belief representations, all agents 
in this model eventually approach the same 
belief value.  We can therefore measure the 
effect of network structure on belief 
convergence by measuring the number of steps 
required on average until all agents in the 
network are within, say, a range of .1 above or 
below the mean belief across the network as a 
whole.  In what follows we use this range of 
variance from the mean as our measure of 
convergence, averaging over 100 runs in each 
case.   
 
We begin with polarized agents.  Half of our 
agents are drawn from a pool with belief 
measures that form a normal distribution 
around .25, with a deviation of .06.  The other 
half are drawn from a pool with belief measures 
in similar normal distribution around .75.  In 
studying linked sub-networks our agents in one 
sub-network are drawn from the .25 pool; those 
in the other are drawn from the .75 pool.  In the 
case of single networks agents are drawn 
randomly from each pool.  We found belief 
polarization of this form to be necessary in 
order to study the effects of sub-network 
linkage in particular; were beliefs of all our 
agents merely randomized, convergence to an 
approximate mean could be expected to occur 
in each sub-network independently, and time to 
consensus would not then be an adequate 
measure of the effect of sub-network linkage. 
 
Belief Diffusion across Ring and Total 
Networks  
 
In outlining the dynamics of infection we 
contrasted linked sub-networks of particular 
structures—ring, small world, random, total, 
and scale-free—with single networks of the 
same structure.  In exploring the dynamics of 
belief we will again study these types side by 
side.  As we add additional links between sub-
networks, how do the dynamics of belief 
diffusion change, measured in terms of time to 
consensus across the community.   

We progressively add random links (1) between 
belief-polarized ring sub-networks, and (2) 
within a single ring network of belief-polarized 
agents.  Average times to consensus are shown 
in Figure 4.   
 
Increasing linkages between polarized ring sub-
networks makes a dramatic difference.  
Average time to consensus for a single linkage 
in such a case is 692.44. The average time to 
consensus for 50 linkages is 11.59, with a 
distinct and characteristic curve between them.  
For infection, we noted, there is virtually no 
difference between added links within a single 
ring network and added links between ring sub-
networks.  In the case of belief, in contrast, 
there is a dramatic difference between the two 
graphs. 
 
Within a single total network, all agents will 
achieve a mean belief in a single step; 
additional linkages in such a case are merely 
redundant.  Results in total sub-networks, in 
contrast, parallel those for rings above.  
Average steps to belief convergence with a 
single link approximate 700 steps in both cases; 
with 50 links, average time to convergence is 
12 in the case of rings and 16 in the case of 
total sub-networks.  The overall pattern of the 
two graphs is also very much the same.  What 
that similarity shows is the striking effect of 
degree linkage in each case: an effect that in the 
transmission of belief overrides the fact that we 
are dealing with totally distributed ring 
networks in one case, totally connected 
networks in the other. 
 
Belief Transmission across Small World, 
Random, and Scale-Free Networks 
 
The same contrasts between single and linked 
sub-networks in the case of belief transmission 
hold for other network structures as well.   
The effect of added linkages within a single 
small-world network closely parallels that for 

the single ring shown above.  Results for added 
linkages in small-world sub-networks are 
dramatically different.  In absolute terms the 
results for small worlds differ from those shown 
for rings, declining from 481 steps to 11.4.  The 
shape of the curve for small worlds, however, is 
very much that shown for rings above.   
 
Given a single random network, using 2.25% of 
possible linkages, additional linkages give a 
decline in time to belief consensus from only 
approximately 6 steps to 4.  Where random sub-
networks are at issue (using 4.5% of possible 
linkages in each sub-network), the curve is again 
that displayed for rings above, though here 
absolute values decline from 244 to 10.15. 
 
For single scale-free networks, additional 
linkages give a roughly linear decline from 20 to 
7 steps.  For scale-free sub-networks, additional 
linkages again follow the curve shown above, 
here with absolute values dipping from 325 to 
11.73. 
 
A similar curve characterizes effects of degree 
linkage in belief transmission regardless of the 
basic structure of the sub-networks involved.  
Although absolute values across that curve differ 
significantly, the shape of the curve does not.  
We emphasize this point in Figure 5 by plotting 
belief transmission results for sub-network types 
in log-log form. 
 
Linkage degree effects follow the same pattern 
regardless of the structure of sub-networks.  If 
one wants to plot the course of an epidemic, we 
noted in section I, it is crucial that one knows the 
structure of the networks involved.  If one wants 
to plot the course of belief transmission, 
knowledge of structure is much less important.   
 
The particular structure of networks is important 
in order to gauge whether a single link between 
sub-networks will allow consensus in 140 steps 
or 700, as indicated for hub and total networks
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represented on such a scale, and people are 
influenced to change those beliefs by, among 
other things, the expressed beliefs of those with 
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unrealistic is the simple form of belief updating 
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there will be to change one's beliefs.   
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admittedly artificial assumption of belief 
averaging is our simplification.6   
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dynamics of belief change across information 

                                                 
6  For background on both the importance and limit of 
realism in different forms of models, see Grim, 
Rosenberg, Rosenfeld, Anderson, & Eason 2010 and 
Rosenberg, Grim, Rosenfeld, Anderson & Eason 
2010.   

networks and the dynamics of infection 
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decline in time to belief consensus from only 
approximately 6 steps to 4.  Where random sub-
networks are at issue (using 4.5% of possible 
linkages in each sub-network), the curve is again 
that displayed for rings above, though here 
absolute values decline from 244 to 10.15. 
 
For single scale-free networks, additional 
linkages give a roughly linear decline from 20 to 
7 steps.  For scale-free sub-networks, additional 
linkages again follow the curve shown above, 
here with absolute values dipping from 325 to 
11.73. 
 
A similar curve characterizes effects of degree 
linkage in belief transmission regardless of the 
basic structure of the sub-networks involved.  
Although absolute values across that curve differ 
significantly, the shape of the curve does not.  
We emphasize this point in Figure 5 by plotting 
belief transmission results for sub-network types 
in log-log form. 
 
Linkage degree effects follow the same pattern 
regardless of the structure of sub-networks.  If 
one wants to plot the course of an epidemic, we 
noted in section I, it is crucial that one knows the 
structure of the networks involved.  If one wants 
to plot the course of belief transmission, 
knowledge of structure is much less important.   
 
The particular structure of networks is important 
in order to gauge whether a single link between 
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Figure 5.  Time to Belief Consensus with Increasing Linkages Between Sub-Networks  

(plotted log-log) 

in Figure 5.  The pattern of changes in belief 
transmission with increasing linkages between 
sub-networks from any initial point, however, is 
precisely the same regardless of network 
structure.  That pattern is the classic signature of 
power law distributions, indicating that the 
relationship between increased linkage and time 
to consensus parallels a range of natural and 
social phenomena, including the relationship 
between frequency and size of earthquakes, 
metabolic rate and body mass of a species, size 
of a city and the number of patents it produces.  
Power law distributions also appear in some 
empirically observed characteristics of 
biochemical, protein, citation and sexual contact 
networks (Faloutsos, Faloutsos, & Faloutsos, 
1999; Jeong, Tombor, Albert, Ottvai, & Barbási 
2000; Fell & Wagner 2000; Liljeros, Edling, 
Amaral, Stanley, & Åberg 2001; Newman 2001, 
2005).  The fact that such an effect appears in 
linkage effects on the dynamics of belief 
suggests the possibility of incorporating a range 
of theoretical and methodological work from 
other disciplines in studying behavior dynamics 
in the spread of disease, particularly with an eye 
to the effect of belief polarization, health care 
disparities, and social linkage or integration 
between ethnic and socio-economic sub-
communities.   
 
CONCLUSIONS & FUTURE WORK 
 
Our focus here has been on the structure of 
contact and informational networks and the 
very different impact of aspects of that structure 
on the dynamics of infection and information. 
 
For infection, measured in terms of average 
time to total infection across a network, it is the 
structure of the network or sub-networks that 
trumps other effects.  In attempting to gauge 
time to total infection across a community, the 
primary piece of information needed is whether 
the social network or component networks at 
issue approximate rings, hubs, wheels, small 
worlds, random, scale-free or total networks.  
For time to total infection, degree of linkage 
between sub-networks is of much less 
importance, though we have noted that points 
of linkage continue to play an important role 

with regard to fragility and prospects for 
targeted intervention.   
 
For information, measured in terms of average 
time to belief consensus, the importance of 
general structure and linkage between sub-
networks are reversed.  On the model of belief 
used here, in attempting to gauge the dynamics 
of information flow across a community, the 
primary piece of information needed is the 
degree of linkage between composite sub-
communities, whatever their internal structure.  
The fact that the particular structure of those 
sub-communities is of lesser importance is 
highlighted by the fact that average time to 
belief consensus given increasing linkages 
follows the same familiar power-law pattern 
regardless of networks structures involved.    
 
It is quite plausible that belief transmission 
involves strong reinforcement effects; the 
model of belief used here is designed to capture 
such an effect.  In other regards, however, the 
belief model used is quite clearly artificial.  
Belief change is by simple averaging of 
information contacts, and all agents follow the 
same formula for belief updating.  Our attempt 
in future work will be to test the robustness of 
conclusions here by considering a range of 
variations on the central model of belief 
change.   
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