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Abstract

Although being very popular all around the globe, soccer has not received much attention 
from the scientific community. In this paper we will study the Dutch Soccer Team from 
the perspective of complex networks. In the DST network every node corresponds to a 
player that has played an official match for the Dutch Soccer Team. A node is connected 
with another node if both players have appeared in the same match. The aim of this paper 
is to study the topological properties of the Dutch Soccer Team network. The motivation 
for studying the DST network is twofold. The first reason is the immense popularity of the 
DST, in the Netherlands. Through our study we obtain all kind of new statistics about the 
DST. Secondly, our results could also be used by the coach of the DST, for instance by 
determining the optimal line-up. Using data available from a public website we have 
computed the topological metrics for the DST. Furthermore, we have looked at the 
evolution of the topological metrics over time and we compared them with those of other 
real-life networks and of generic network models. We found that the DST is a small world 
network and that the player with the highest degree also has the lowest clustering 
coefficient.
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Introduction
     Soccer is a very popular sport in many 
countries. According to the coach of the 
successful AC Milan in the 1990’s, Arrigo 
Sacchi, “it is the most important of the 
unimportant things in life.” Bill Shankly, 
legendary former manager of Liverpool, made 
an even more pronounced statement: “Some 
people say soccer is a matter of life and death. 
But it is more important than that!”  

     The popularity of soccer is also reflected in 
some numbers related to the 2006 World Cup 
held in Germany. This tournament attracted a 
cumulative television audience of 27 billion 
viewers. The global TV coverage was over 
73,000 hours (FIFA, 2006).

     Although being very popular all around the 
globe, soccer has not received much attention 
from the scientific community. For instance, the 
World Congress on Science & Football, is held 
only once every 4 years (WCSF, 2007). The 
edition of this Congress, held in 2007, only 
attracted 477 attendees, which is not considered 
a high number for an important scientific 
Congress.

     A nice overview of scientific aspects of 
soccer is given by Ken Bray (Bray, 2006). In 
this book, and related references, the following 
subjects are typically dealt with: physics of the 
ball, training schemes, performance statistics, 
medical and physiological aspects, penalty 
shoot-outs, and the role of electronic devices. 
Another interesting book, albeit from a 
completely different perspective, was written by 
David Winner. In Brilliant Orange, he explores 
the relation between the Dutch, their history and 
architecture, their culture and politics, and the 
influence of each on Dutch Soccer (Winner, 
2001).

     In this paper, we will study the Dutch Soccer 
Team from the perspective of complex 
networks. Our study is inspired by a paper by 
Onody and De Castro from 2004, who studied a 
network comprised of Brazilian soccer players 
(Onody et al., 2004).  In this paper, we will 
study the Dutch Soccer Team (DST) as a social 
network. In the DST network every node 

corresponds to a player that has played an 
official match for the Dutch Soccer Team. A 
node is connected with another node if both 
players have appeared in the same match. The 
aim of this paper is to study the topological 
properties of the Dutch Soccer Team network.  

     Studying the topology of real-life networks is 
important for two reasons. First, it helps us to 
understand the structure of networks that occur 
in real-life. Secondly, it can help us to predict 
how processes on networks evolve. Examples of 
the latter point include the efficiency of Internet 
search engines and the spread of viruses on 
computer networks.  

     The motivation for studying in particular the 
DST network is also twofold. The first reason is 
the immense popularity of the DST in the 
Netherlands. In particular, Dutch people are very 
interested in all kinds of facts and statistics 
related to the DST. Through our study, we 
obtain many new statistics about the DST. An 
example of this is “which player had the most 
co-players?” Secondly, our results could also be 
used by the coach of the DST, for instance, by 
determining a line-up where certain aspects of 
the team are optimal. For instance, a team could 
be organized so that as many players as possible 
who have already played together can be on the 
same team.  

     The paper is organized as follows. Section 2 
describes the topological metrics that will be 
considered throughout this paper. In Section 3, 
we describe how we obtained the data and give a 
visual impression of the DST network. Section 4 
discusses results on the topological metrics for 
the DST network. In Section 5, we give non-
network related results that were obtained form 
the data. Section 6 summarizes our main results 
and gives some suggestions for further research. 

Background
     In this section, we provide a set of 
topological metrics, which is considered relevant 
in the networking literature (Newman, 2002a). A 
graph theoretic approach is used to model the 
topology of a complex system as a network with 
a collection of nodes V and a collection of links 
E that connect pairs of nodes. A network is 
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represented as an undirected graph G(V;E) with 
N = |V| nodes and  L = |E| links.  

Link density
The link density S is the ratio of the number of 
links and the total number of possible links, 
given by:  

)1(
2
NN

LS .

Degree
The degree di of a node i denotes the number of 
neighbours a node has. The average degree can 
be easily obtained from the total number of 
nodes and links:
E[di] = 2L/N.

Assortativity coefficient
A metric that quantifies the correlation between 
pairs of nodes is the assortativity coefficient r (-
1 < r < 1). Networks with r < 0 are 
disassortative, which means that the nodes 
connect to other nodes with various degrees. In 
networks with r > 0 (assortative networks) the 
nodes are more likely to connect to nodes with 
similar degree (Newman, 2002b).
The assortativity coefficient r is given by: 

,
where ji and ki are the degrees of the nodes at the 
ends of the i-th link, with i = 1 . . .L.

Distance
The distance between a pair of nodes i and j is 
the length of the shortest path between the 
nodes. The average distance is the distance 
averaged over all pairs of nodes. 

Diameter
The diameter is the largest distance between any 
pair of nodes. 

Eccentricity
The eccentricity of a node is the largest distance 
to any other node in the graph. The eccentricity 
of the graph is the average of eccentricities of all 
nodes.

Clustering coefficient
The clustering coefficient Ci for a node i is the 
proportion of links between the nodes within its 
neighbourhood divided by the number of edges 
that could possibly exist between the nodes. The 
clustering coefficient for the whole network is 
the average of the clustering coefficient for each 
node.

Closeness
The closeness of a node is the average distance 
to the other nodes in the graph. Note that some 
define closeness to be the reciprocal of this 
quantity. Closeness can be regarded as a 
measure of how long it will take information to 
spread from a given node to other reachable 
nodes in the network. The closeness of a node is 
a measure of centrality. The node with the 
lowest closeness is called the most central node. 

2
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Algebraic connectivity 
The Laplacian matrix of a graph G with N nodes 
is an NxN matrix Q =  - A, where  = diag(di),
di is the degree of node i and A is the adjacency 
matrix of G. The second smallest eigenvalue of 
the Laplacian matrix is called the algebraic 
connectivity. The algebraic connectivity plays a 
special role in many problems related to graph 
theory (e.g. Chung, 1997). The most important 
is its application to the overall connectivity of a 
graph: the larger the algebraic connectivity, the 
more difficult it is to cut a graph into 
independent components. 
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Dutch Soccer Team network 

     The data used to construct the DST network 
are available at www.voetbalstats.nl. This site 
contains information about all official soccer 
matches by the Dutch Soccer Team and about all 
European matches played by Dutch league 
teams. A screen shot of this site, which is only 
available in the Dutch language, is given in 
Figure 1.

      Figure 1: Screen shot of www.voetbalstats.nl

     The site gives the line-ups for all official 
DST matches. We have considered all matches 
up until Russia - The Netherlands (21 June 
2008), which was match number 670. The first 
match ever of the DST was Belgium – The 
Netherlands (30 April 1905). As an example we 
show the line-up of match number 331, The 
Netherlands – Belgium (18 November 1973), in 
Figure 2. 

      Figure 3: Visualization of the DST network 

     Nodes on the far left of the graph denote 
players that played in the beginning of the 
previous century. Nodes on the far right 
represent players that were playing in recent 
years or are still active.  

     All players in Figure 2 appear as nodes in the 
DST network and are all mutually connected. 
So, as an example, Aad Mansveld is connected 
to Rob Rensenbrink.

     By working our way through all 670 matches 
of the DST until June 2008, we have been able 
to construct the adjacency list of the DST 
network. In 670 matches, a total number of 691 
players appeared. Every individual player was 
given an ID from 1 to 691. The ID ranking was 
based on the number of matches played. The 
adjacency list is the representation of all links in 
the network as a list. For instance, because Aad 
Mansveld has ID 294 while Rob Rensenbrink 
has ID 41, the adjacency list of the DST network 
contains the entry 41 – 294. We have found that 
the total number of links in the DST network 
equals 10,450.

     In Figure 3, we have visualized the DST 
network by importing the adjacency list to the 
Pajek program (Pajek, 2007).  

       Figure 2: Line-up of Match Number 331 
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Results
     In this section we present the values of the 

topological metrics introduced in Section 2 for 
the DST network. We have computed the 
metrics using Pajek and dedicated Matlab 
functions. The results are given in  
Table 1. 
 
Metric Value 
Number of nodes 691 
Number of links 10450 
Density 0.044 
Average degree 30.25 
Assortativity coefficient -0.063 
Average distance 4.49 
Diameter 11 
Eccentricity 8.59 
Clustering coefficient 0.75 
Algebraic connectivity 0.16 

Table 1: Topological Metrics for DST Network
 
     First, we conclude that the DST network is 
connected, i.e. between every pair of players a 
path exists. As an example, consider Johan 
Cruijff and Marco van Basten. These two 
players never played in the same game. 
However, they have both played with Willy van 
de Kerkhof, hence the distance between Cruijff 
and van Basten is 2.  

     Because the average distance between 
players is small (4.49), the DST network 
exhibits, like many other social networks, the 
small world phenomenon. In addition, because 
the clustering coefficient is high (0.75) the DST 
network is a small world network (Watts, 1999).  
More detailed information is given in Table 1.  

      For instance, we are now capable of 
answering the question “which player had the 
most co-players?” It turns out that the player 
with the highest degree is Harry Dénis. In fact, 
Dénis occurred in matches with 117 other 
players. On the other hand, Edwin van der Sar, 
who played the most matches of all players, only 
has a degree of 97. Interestingly enough, Dénis 
also has the lowest clustering coefficient (0.17) 
of all players.       

     According to Table 1, the diameter of the 
DST network is 11. For instance, the shortest 
path between Rafael van der Vaart (who is still 
an active player) and Jan van Beek has length 
11.  

     Note that the DST network has many other 
shortest paths of length 11. For instance, any 
player that only played with Edwin van der Sar 
after 2000, has a shortest path of length 11 to 
Jan van Beek. In fact, by using Pajek, we have 
found that the DST network has 324 shortest 
paths of length 11.  

     By computing the closeness of all players, we 
have been able to determine the most central 
player in the DST network.  

     Table 2 shows the top 5 of players with the 
lowest closeness. The most central player in the 
DST network is Roel Wiersma, who was active 
from 1954 to 1962 and played 53 matches. Note 
that it is not surprising that the most central 
players were active about 50 years ago, because 
the Dutch Soccer Team has a history of about 
100 years. Of the players still active today, 
Edgar Davids is most central, with an average 
distance to the other players of 4.73. 
 
 
 Player DST career Closeness 
1 Roel Wiersma 1954-1962 3.119 
2 Faas Wilkes 1946-1961 3.213 
3 Bertus de 

Harder 
1938-1955 3.217 

4 Kees Rijvers 1946-1960 3.222 
5 Mick Clavan 1948-1965 3.230 

Table 2: Top 5 Most Central Players
(lowest closeness)
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The evolution of the topological metrics for the 
DST network over time is given in Table 3.  
 

Table 3: Evolution of the DST Network in Time 
 

     For the DST network, the number of nodes 
and links increase over time. It can be observed 
from Table 3 that also most of the other 
topological metrics for the DST network 
increase over time. In fact, the average degree, 
the average distance, and the diameter all exhibit 
an almost linear increase in time. Looking at the 
assortativity coefficient, we conclude that the 
DST network becomes less disassortative in 
time. The link density is decreasing in a 
nonlinear fashion, while the clustering 
coefficient remains almost constant.     
Next, we will compare the topological metrics 
for the DST network with other real-life 
networks from nature and society, i.e. 
technological, social, biological and linguistic 
networks.  For this comparison, which was also 
reported in Jamakovic et al. (2007), we have 
considered the following real-life networks: 
 

Brazilian Soccer Players 
network (BSP) (Onody et al., 2004) 

the western states power grid of 
the US (Pow) (Watts et al, 1998) 

American air transportation 
network (Air) (Colizza et al., 2007) 

the Internet at the autonomous 
system level (Int) (CAIDA, 2007) 

actors co-appearing in movies 
(Act) (Barabasi et al., 1999) 

network representing frequent 
associations between dolphins (Dol) 
(Lusseau et al., 2003) 

network representing protein 
interaction of the yeast Saccharomyces 
cerevisae (Pro) (Jeong et al., 2001) 

network representing word 
adjacencies in Spanish (Spa) (Milo et 
al., 2004) 

 
     In Table 4, topological metrics for 
various real-life networks are shown. Some 
entries in the BSP column are empty 
because these metrics were not reported in 
Onody et al. (2004). 

Metric 1926 1946 1966 1986 2008 
Number of 
nodes 181 282 427 556 691 

Number of 
links 1956 3170 5190 7575 10450 

Density 0.12 0.080 0.057 0.049 0.044 
Average 
degree 21.61 22.48 24.31 27.25 30.25 

Assortativity 
coefficient - 0.17 -0.16 -0.16 -0.11 -0.063 

Average 
distance 2.32 2.70 3.37 3.88 4.49 

Diameter 4 6 8 10 11 
Eccentricity 3.48 4.58 6.16 7.54 8.59 
Clustering 
coefficient 0.77 0.76 0.76 0.75 0.75 

Algebraic 
connectivity 1.13 0.68 0.31 0.21 0.16 
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Table 4: Topological Metrics for Various  
Real-Life Networks 
 
     Many observations can be made from Table 
4. Here we confine ourselves to just a few. The 
average degree of the DST network (30.25) has 
the same order of magnitude as that of the air 
transportation network and the actor network.  

On average, a player in the Brasilian league, 
played with 50% more players, than a player in 
the DST. The reason for this is probably that far 
more games are played in a league competition 
than in a national team. Apart from the power 
grid network, the DST network has the highest 
average distance (4.49) between nodes. The 
clustering coefficients of the DST, the BSP, and 
the actor networks are comparable and much 
higher than the other networks considered in 
Table 4. Next, we compare the topological 
metrics for the DST network with those of 
generic network models, such as the random 
graph of Erdös-Rényi (ER), the small-world 
graph of Watts-Strogatz (WS), and the scale-free 
graph of Barabási-Albert (BA) (Bollobás, 2001; 
Watts, 1999; Barabasi, 2002).  

     The ER graph is the most investigated 
topology model (Bollobás, 2001). The most 
frequently occurring realization of this model is 
Gp(N), in which N is the number of nodes and p 
is the probability that there is a link between any 
two nodes. The major characteristic of Gp(N) is 
that the existence of a link is independent from 
the existence of other links. The total number of 
links in Gp(N) is on average equal to pLmax, 
where Lmax = N(N-1)/2 is the maximum possible 
number of links. Hence, the link density q = 
L/Lmax equals p.  

     The WS graph captures the fact that, despite 
the large size of the topology, in most real-world 
networks, there is a relatively short path between 
any two nodes. Initially, the WS graph is built 
on the ring lattice C(N, k), where each of the N 
nodes is connected to its first 2k neighbors (k on 
either side). Subsequently, a small world is 
created by moving, for every node, one end of 
each link (connected to a clockwise neighbor) to 
a new location chosen uniformly with rewiring 
probability pr, such that no double links or loops 
are allowed. The number of links L in the WS 
graph, irrespective of pr, is always equal to L = 

Nk. Hence, the link density satisfies 
1

2
N

kq .  

The BA graph gives rise to a class of graphs 
with a power-law degree distribution. The BA 
graph is based on two ingredients: growth and 
preferential attachment of nodes, which implies 
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that nodes with larger degree are more likely 
candidates for attachment of new nodes. The BA 
algorithm starts with a small number m0 of fully-
meshed nodes, followed at every time step by a 
new node attached to m  m0 nodes already 
present in the system. After t timesteps, this 
procedure results in a graph with N = t + m0 
nodes and L = m0(m0 1)/2 + mt links. Hence, the 
link density is  

)1(
2)1( 00

NN
mtmm

q .  

     Table 5 compares the topological metrics of the 
DST network and the three considered network 
models. The values for the metrics for the generic 
network models are averaged over 1000 simulation 
runs. The parameters p, k, m, and m0 are chosen such 
that all three network models have link density 
almost identical to that of the DST network. This 
means that for the WS graph we set k = 15, while for 
the BA graph we choose m = 15 and m0 = 31. 
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Metric DST ER 
WS 
pr = 0.1 

WS 
pr = 0.2 

BA 

Number of 
nodes 691 691 691 691 691 

Number of 
links 10450 10450 10365 10365 10365 

Link 
density 0.044 0.044 0.044 0.044 0.044 

Average 
degree 30.25 30.19 30.00 30.00 30.00 

Assort. 
coeff. - 0.063 - 0.005 0.38 0.34 - 0.005 

Average 
distance 4.49 2.22 8.12 6.51 2.19 

Diameter 11 3.00 18.39 14.75 3.00 

Eccentricity 8.59 3.00 15.30 11.88 2.96 

Clust. 
coeff. 0.75 0.044 0.72 0.71 0.13 

Algebr. 
conn. 0.16 13.46 0.15 0.21 12.10 

Table 5: Comparing the DST Network with  
Generic Network Models 
 
     The main conclusion from Table 5 is that, 
with respect to the considered topological 
metrics, the DST network most resembles a WS 

graph, with rewiring probability pr = 0.2. The 
only exception is the assortativity coefficient, 
which is much higher for the WS graph than for 
the DST network. Note that both the ER and BA 
graph have a much smaller diameter and 
clustering coefficient than the DST network.  
 
Non-Network Results 
     In this next section we give a number of non-
network related results about the Dutch Soccer 
Team. Figure 4 shows the number of matches 
played by the DST per year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Number of Matches of the DST per 
Year
 
     A visual inspection of Figure 4 reveals, 
amongst others,  the occurrence of two world 
wars,  local maxima when the DST reached the 
World Cup final (1974 and 1978), a local 
minimum when the DST failed to quality for the 
World Cup (2002) and the trend that the number 
of matches played per year is increasing.  

     Because goals are the quintessence of soccer, 
we will now focus on some goal statistics.  
The 10 players that have scored the most goals 
for the DST are given in Table 6.  
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Player Matches Goals 
1 Patrick Kluivert 79 40
2 Dennis Bergkamp 79 37
3 Faas Wilkes 38 35
4 Abe Lenstra 47 33
5 Johan Cruijff 48 33

6 Ruud van 
Nistelrooy 64 33

7 Beb Bakhuys 23 28
8 Kick Smit 29 26
9 Marco van Basten 58 24
10 Leen Vente 21 19

Table 1: Leading scorers for DST

Table 1 shows that Patrick Kluivert has scored 
most goals for the DST. However, we can also 
see that Kluivert needed more than twice as 
many games as Faas Wilkes, to score only 5 
more goals. For this reason we have also looked 
at the goal ratio per player, i.e. the number of 
goals scored by a player per 90 minutes. We 
only considered players who played 20 matches 
or more. The result is shown in Table 7.  

Player Goals Matches Minutes 
Goals
per 90 
minutes 

1 Beb 
Bakhuys 28 23 2070 1.22

2 Pierre van 
Hooijdonk 14 46 1295 0.97

3 Leen
Vente 19 21 1870 0.91

4 Faas
Wilkes 35 38 3450 0.91

5 Kick Smit 26 29 2587 0.90

6 John
Bosman 17 30 1968 0.78

7 Mannes 
Francken 17 22 2010 0.76

8 Ruud 
Geels 11 20 1310 0.76

9 Tonny van 
de Linden 17 24 2138 0.72

10 Abe
Lenstra 33 47 4260 0.70

Table 2: Goal Ratio for Players with 20 Matches 
or More 

     Of all players that played 20 matches or 
more, Beb Bakhuys has the highest goal ratio. 
On this list, Patrick Kluivert is only ranked 14, 
with a goal ratio of 0.62. It should be noted that 
Piet de Boer has a goal ratio of 3. He only 
played once for the DST (match 148 in 1937) 
and scored three times in this match. The reason 
that Piet de Boer did not play a second match for 
the DST is unknown. 
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Conclusions
     In this paper we have studied the topological 
characteristics of the Dutch Soccer Team 
network. Taking all matches until June 2008 into 
account, the main conclusions are as follows: 

The DST network consists of 
691 players with 10,450 connections 
between them. 

The DST network is connected, 
i.e. between any two players a path 
exists.

The DST network is a small 
world network, because the average 
distance between players is small (4.49), 
while the clustering coefficient is high 
(0.75).

The player with the most co-
players is Harry Dénis, who played 
together with 117 others. 

Of all players Harry Dénis has 
the lowest clustering coefficient, i.e. he is 
the player whose co-players are the least 
mutually connected. 

The diameter of the DST 
network is 11, i.e. the longest shortest 
path has length 11. 

The most central player in the 
DST network is Roel Wiersma.  

     Furthermore, we have looked at the evolution 
of the topological metrics over time. Then, we 
compared the topological metrics of the DST 
network with those of other real-life networks 
and of generic network models.  

     Finally we have discussed some non-network 
related results: 

The largest number of matches 
played by the DST per year is 17. This 
took place in 2004. 

Of all players that played 20 
matches or more, Beb Bakhuys has 
scored the most goals per 90 minutes 
(1.22).

     Our study reveals a lot of new, interesting 
statistics, which would best be utilized by the 
coaches of the DST. The first step towards the 
development of a decision support tool for 
coaches would be to examine the topological 
metrics of players who participated in a 
particular match and the outcome of the match. 
The coaches could then determine the line-up for 
upcoming matches in such a way that certain 
properties of the team are optimal. For instance, 
they could choose a line-up so that as many 
players as possible have already played together. 
We assume that a team becomes better when 
enough players have played together before, e.g. 
because they can anticipate better what the other 
players are going to do or how they want the ball 
to be passed to them. Further research could 
include conducting the same study for the 
national soccer teams of other countries, the 
automatic collection and visualization of the 
DST network, and the development of an 
interactive tool, which would allow the user to 
navigate through the DST network, for instance 
to obtain quickly statistics of a favorite player.  

     A final possible application of our study is 
the generation of questions for soccer quizzes.
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Abstract
Utilizing two surveys administered to a classroom of college students, this study explores 
differences in social network measures based on survey instrument design. By administering 
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Introduction

     Many important methodological issues have 
been raised for social network researchers to 
consider (e.g., Marsden, 1990). In part, a 
significant amount of research in this area has 
been devoted to testing survey questions for 
response effects.  Survey researchers have 
explored the impact of question phrasing, 
question ordering, and survey design layout on 
individual response.  As a result of this research, 
a series of recommendations have been 
developed to help ensure that researchers are 
able to elicit responses while reducing non-
response and measurement error (Braverman 
and Slater, 1997; Dillman, 2000).  Unfortunately 
for social network researchers, most of this 
literature is aimed at researchers who have little 
interest in examining social network structures. 
The survey methodology literature tends to 
follow standard neo-classical economic 
assumptions that treat individuals as 
independent, atomistic units, and does not focus 
attention on the methodological challenges 
associated with measuring relational variables.  
As such, this literature does not present a 
coherent set of guidelines for the collection of 
social network data.  Nevertheless, the structure 
of a survey may very well influence the quality 
of network data collected.  

Fortunately, a number of studies exploring 
the impact of questionnaire construction and 
item writing on the quality of social network 
data collected have recently emerged. Marin 
(2004) considered the issue of name-generation 
versus questions about all alters, and found 
network-level measures differed substantially. 
Fu (2005) studied daily contacts in personal 
networks by utilizing two methods:  a diary 
approach and a single-item survey. Kosovsek 
and Ferligoj (2005) examine differences in 
response by multiple methods – whether validity 
and reliability are affected by type of survey 
(phone vs. in-person) and by question (by alter 
vs. by question). Following a similar pattern, 
Coromina and Coenders (2006) checked layout 
and design of web surveys, including by 
question/by alter, graphics vs. text, and varying 
response labels, to assess network data quality.  

Adding to this growing body of literature, 
our research uses social network data obtained 
from students in a college classroom to 
determine if differences arise among several 
network characteristics when we ask 
respondents about relationships using an alter-
centered or a relationship-centered structured 
questionnaire. It is our aim in this research to 
further frame the discussion of survey design 
effects on the collection of social network data.  

Collecting Network Data 

     As the popularity of collecting social network 
data with survey techniques has grown, attention 
has started to focus on assessing the networks’ 
quality of measurement. Of interest to this study 
is the source and method of collecting 
information on social ties.  Network researchers 
must make a number of decisions regarding how 
to measure the relationships between actors. 
Network researchers wishing to use survey 
instruments to collect data immediately face two 
key decisions. First, does the researcher provide 
the respondent with a list or roster of actors or 
allow the respondent to use free recall? Second, 
does the researcher allow a fixed maximum 
number of alters or an open-ended number of 
choices for respondents to make when 
identifying alters (Wasserman and Faust, 1995, 
p. 46)?  

The primary difficulty in utilizing the roster 
format remains the potentially challenging task 
of creating an exhaustive list of all of the actors 
in a social network. For some research settings, 
a complete roster can be constructed and applied 
with relative ease, especially when the number 
of actors is limited. For instance, researchers can 
often obtain lists for students in a class from an 
enrollment roster, union participants as specified 
by due-paying members, or membership lists for 
other bounded or relatively stable groups.  In 
such cases, a respondent can be presented with 
an entire list of people in the network and then 
the researcher can ask the respondent to identify 
with whom the respondent shares a particular 
relationship. However, there are times when 
rosters are not readily available.  In some 
settings, there are too many actors in the system 
to create a comprehensive list, while in other 
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situations exhaustive rosters are simply 
unknown.  When the researcher cannot construct 
a complete roster of actors, the respondent can 
be asked to list those persons with whom the 
respondent had a particular relationship. For 
instance, respondents would be asked to 
“identify all friends.” This name-generator 
approach is likely to work well with questions 
about relationships that are salient and 
accessible to the respondent.

Another critical decision that network 
researchers face involves the number of actors 
the respondents are allowed to identify on the 
survey.  This issue becomes very important if 
using the name-generator or free-recall 
approach. Often, time and space limitations 
prevent respondents from generating a complete 
list of actors with whom a particular relationship 
is shared.  Instead, respondents are asked to 
name only a small number of people with whom 
they have a particular relationship.  For example, 
respondents might be asked to identify “your 
three best friends” or “the five people with 
whom you discuss important matters.” 
Alternatively, respondents might be provided 
with an initial question without an upper limit on 
responses, but subsequent follow-up questions 
might ask information about only the first n
people the respondent mentioned. This, too, can 
be problematic. As Holland and Leinhardt 
(1973) have suggested, by limiting the number 
of choices a respondent can make, an inherent 
selection bias may be present and therefore 
introducing measurement error.  

Many of the design issues discussed above 
were taken into consideration with the first effort 
to collect representative social network data 
from the United States population in the 1985 
General Social Survey (GSS). Prior to 
implementation of the GSS social network 
module, Burt (1984) conducted an extensive 
review of the amount of time it would take 
respondents to answer a series of 15 network-
related questions, the number of alters a 
respondent would be asked to name, and the 
types of relationships about which respondents 
would be questioned. On the basis of this study, 
the social network module in the GSS used a 

name-generator approach to identify alters, 
limited responses to five alters, and was 
estimated to take approximately eleven minutes 
to administer.   

In this process, Burt also questions how 
information about relationships between pairs of 
alters should be gathered. Burt distinguishes 
between a “short-form” and a “long-form” 
questionnaire:

The short-form variation frames items in 
terms of a specific kind of relationship. 
The respondent is asked to identify 
people between whom the specified 
relation exists. Are any of these people 
married to one another? Who among 
these people dislike one another? (Burt, 
1984, p.320).  

     In contrast, “The long-form instrument, 
frames items in terms of a specific pair of alters. 
The respondent is asked to describe the 
relationship between a specific pair of people” 
(Burt 1984, p. 321). Thus, in the short-form 
instrument, the respondent focuses on the 
relationship and must recall the names of all 
individuals meeting the condition of the 
specified relationship.  The instrument typically 
cycles through a number of different types of 
relationships. The long-form instrument begins 
with two actors, and asks the respondent to 
recall the types of relationships shared by these 
two actors.  Then, the respondent must consider 
the relationships in terms of all other pairs of 
alters.

In discussing the strengths and weaknesses 
of each approach, Burt acknowledges possible 
differences in completion time, reliability, and 
bias in choosing one form over another. He 
suggests that the long-form requires more time 
to administer and would be more likely to tire 
the respondent, as they assess  all possible 
combinations of actors.   

Burt also claims that measures of social 
network density would be upwardly biased with 
the long-form because the respondent is asked 
about the relationship between two specific 
actors. As Burt puts it, “Given a set of people 
named as intimates, cognitive balance implies a 
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bias toward perceiving some kind of relation 
between each pair of intimates” (1984, p. 321). 
On the other hand, the short-form items require 
respondents “to evaluate relations for their 
relative strength, identifying the strongest and 
weakest” (1984, p. 321).  Burt concludes that the 
differences between short and long forms will 
result in the short form items producing “greater 
variability in the structure of interpersonal 
environments” (1984, p. 322) because the 
evaluation of the relative strength of the 
relationship (long-form) will be more stable than 
the evaluation of the boundaries between 
relationships (short-form).  While Burt 
empirically tested other aspects of this module, 
differences between the short and long-form 
responses were not explored. Instead the short-
form was selected for the GSS, primarily 
because this form takes less time for respondents 
to complete.   

Burt acknowledges the possibility of 
measurement error that may occur due to 
differences in how the survey is created and 
administered. These differences should be of 
concern in measuring social relationships and 
evaluating results.  If the character and quality of 
social network data varies by the type of survey 
instrument used, questions arise about the 
usefulness of survey approaches, collecting 
future network data, and the conclusions of prior 
studies relying on network data collected with 
such survey techniques.  In the following 
sections, we report on one such effort to explore 
survey design effects in the collection of social 
network data.

Data and Methods 

     The social networks that will be used in this 
analysis come from one classroom of college 
students enrolled in a sociology course.  
Focusing on students as actors in a network 
allows us to use a roster format for the 
collection of network data because all 
members of the group (the students officially 
enrolled in the class) are known from 
enrollment records.  The classroom had 42 
enrolled students.  While attendance in the 
class was quite high, not all students enrolled 
in the class at the start of the semester were 

present in the classroom when the surveys 
were administered.  Students not completing 
the survey were not included as respondents 
nor were these students counted as alters if 
named.   

The students enrolled in the class do not 
constitute a random selection from the 
population of all students.  Nevertheless, the 
composition of students in this class parallels 
that observed in other offerings of this course. 
Students in this classroom were homogenous 
with respect to major, race, and age.  No “high-
profile” students were enrolled in the class (e.g., 
male varsity athletes, student government 
leaders, or other students who might be expected 
to have larger social networks). While samples 
drawn from different populations may exhibit 
different network structures, we have no reason 
to suspect that our participants would react 
uniquely to differences in question format.    

To assess the possibility of different 
responses based on question wording, two 
surveys were constructed, each asking about 
relationships in different ways.  Appendix A 
provides examples of the layout for each 
survey. The first survey, the alter-centered 
survey, generates network data by providing 
respondents with a series of questions about 
each of his or her classmates and the particular 
relationships that he or she has with each of 
these individuals. In the alter-centered survey, 
the respondent is first given the name of a 
classmate (alter) and then provided with a list of 
all of the possible types of relationships that the 
respondent could have with that classmate. For 
example, the respondent is given the name “John 
Smith,” followed by a list of possible 
relationships (recognize his/her name, 
acquaintance, friend, etc.). The survey continues 
through a list of each member of the class with 
each of the possible relationships available for 
checking.

The second survey, the relationship-
centered survey, asks respondents a series of 
questions about the types of relationships the 
actor has with others in the classroom. First, 
the respondent is provided with the statement 
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that defines a specific type of relationship.  For 
instance, “I recognize the following person(s) 
by name…”. This phrase is followed by an 
alphabetized list of all students in the class.  
Respondents are asked to check all students 
whom she or he “recognizes by name”. The 
survey continues asking questions in this 
manner, first identifying a relationship 
(acquaintance, friend, etc.) and then asking the 
respondent to mark those classmates that he or 
she considers having that type of relationship.   

The alter-centered instrument resembles 
Burt’s long-form in that respondents must first 
consider pairs of actors (i.e., the respondent and 
alter) and then provide information on the 
relationship.  The relationship-centered survey 
parallels Burt’s short-form because respondents 
are asked to consider a specific type of 
relationship and then must identify respondent-
alter pairs that meet the conditions of the 
relationship.  We expect the alter-centered 
instrument to be more likely to tire respondents 
as they shift from one classmate to the next, 
identifying all relationships that apply, until the 
entire roster of students is exhausted.  As a 
respondent tires, he or she might not check all 
relationships that apply for each classmate.  
Instead, in an effort to complete the survey in an 
efficient manner, or perhaps because boredom 
sets in as the respondent considers every student 
in the class, respondents might resort to 
checking only the most salient relationships for 
each respondent.   Therefore, a measure of a 
network characteristic like network degree will 
likely be underreported in the alter-centered 
survey. However, we might find, similar to 
Burt’s long form, inflated measures of social 
network density because the actors are the focus 
of the survey.  The relationship-centered survey 
will likely produce more variability in the 
network structure as respondents may have more 
difficulty distinguishing the boundary of a 
specific relationship (e.g. acquaintance) when 
evaluating on a person-to-person basis. That is, 
difficulty may arise when a respondent must 
decide whether Actor 1 truly deserves 
acquaintance status when compared to the 
acquaintance shared by, say, Actor 2 and Actor 
3.

Both survey forms were administered to the 
same students in the classroom. The alter-
centered survey was administered on a Friday 
and the relationship-centered survey was 
administered the following Monday. The 
analyses within the same classroom allow us to 
see what differences may be revealed by the 
same people taking two different versions of the 
survey. This reduces variation in scores that 
might result due to differences in individuals. 
However, the possibility of testing effects exists 
for a within group design. . That is, subjects may 
remember taking the first survey and retain 
information to use on the second survey.    

Measures

     Using the two surveys, we compare the 
measures of a number of network characteristics.  
One of the most basic network properties is 
degree.  The degree of an actor or node is the 
measure of how many other nodes (or alters) the 
actor is directly connected to, represented as 
d(ni) or the degree of node i . The degree of node 
i can range from zero (a node has no relationship 
with any other actor in the network) to n-1 (a 
node has a relationship with every actor in the 
network with reciprocal ties excepted). This 
measure provides information about how 
“connected” nodes are within the network.  A 
group or network-level measure of degree (mean 
degree) can be developed by summing the 
degrees of all nodes in the network and dividing 
by the size of the network (Wasserman and 
Faust, 1994, p. 100, equation 4.1).    

In the first set of analyses, we compare 
mean degree and other descriptive group-level 
statistics as measured by the two types of 
surveys for three salient types of relations that 
connect students: name recognition, 
acquaintances, and friends.  In the second set of 
analyses, we compare two additional group-level 
network properties, density and centrality, for 
these same three ties: name recognition, 
acquaintance and friendship relations.   

Density is the ratio of the actual 
number of relationships between people 
observed in the network and the total 
number of relationships that are possible 
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within the network.  Following Wasserman 
and Faust (1994, p. 101), if a network of 
size g contains L relationships, the density 
of the network is defined as: 

Finally, we conduct nonparametric tests for 
differences in a variety of network 
characteristics across surveys. We use non-
parametric tests because the assumption of 
normality is not met for the network measures 
we consider. And, while t-tests and other 
statistical tests based on the arithmetic mean are 
subject to influence by possible outliers, our 
non-parametric tests are not. In particular, we 
conduct a median test to assess whether two or 
more samples are drawn from populations with 
the same median.  

)1(gg
L

,

when L=0 there are no relationships between 
any actors in the network and density equals a 
minimum of zero.  When all nodes are 
connected to all other actors, L=g(g-1) and 
density equals a maximum of one.   Results

Various measures of network centrality exist 
in the literature.  Our measure of centralization 
corresponds to “actor closeness centrality,” a 
measure reflecting the closeness (or distance) of 
all actors in the network to each of the other 
nodes (Wasserman and Faust 2004, pp. 184-
186). We use a standardized measure of actor 
closeness centrality, ranging from 0 (an isolated 
node) to 1 (an actor is adjacent to all other actors 
in the system).  As Wasserman and Faust 
explain, this measure is based on Sabidussi’s 
index (1966) of actor closeness, “the inverse 
sum of the distances from actor i to all the other 
actors” (1994, p. 184).  In mathematical form, 
the measure is specified as: 

     Respondents were asked about seventeen 
different relationships they had with other 
members of the class.  In this analysis, we focus 
on three of the most often cited relationship ties: 
recognizing the name of other classmates, 
considering a classmate an acquaintance, and 
considering a classmate a friend. The degree, 
density and network centralization of actors is 
then considered within each of these relationship 
types across the two surveys administered.  All 
social network measures were calculated using 
UCINET 6 Social Network Analysis Software 
(Borgatti, Everett, & Freeman, 2002).

Table 1 presents the results for the group 
mean degree, standard deviation, median degree, 
and minimum and maximum values of degree 
observed.  For two of the three relationships 
observed within the classroom, the relationship-
centered survey produces more alters named by 
respondents as compared to the alter-centered 
survey. (The third relationship – recognize name 
– resulted in the same mean value.) In other 
words, respondents failed to identify some of the 
existing relationships that were measured in the 
alter-centered survey.  These results provide 
support for the idea that respondents became 
tired or perhaps identified only the most salient 
relationships when responding to the alter-
centered survey.  
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where d(ni, nj) indicates the smallest number of 
lines linking nodes ni and nj (the geodesic 
distance).  This distance function is summed 
over all network actors, g, and the closeness 
centrality measure is calculated by taking the 
reciprocal of this sum.  The standardized actor 
closeness centrality measure is multiplied by the 
size of the network minus unity, (g-1), in order 
to allow for an accurate comparison across 
networks of varying size.  

The Measurement of Social Networks: 
A Comparison of Alter-Centered and Relationship-Centered Survey Designs



21

Table 1.  Degree Measures
Relationship  Classroom  Mean  S.D.  Median  Minimum  Maximum  N

Recognize Name  Alter-Centered  6.90 8.22 4.5 0 38 42

Relationship-
Centered

6.90 3.62 6 1 18 42

Acquaintance  Alter-Centered  2.10 1.78 2 0 9 42

Relationship-
Centered

3.40 3.15 3 0 21 42

Friend Alter-Centered  1.57 1.02 2 0 3 42

Relationship-
Centered

2.14 1.24 2 0 4 42

     This finding is further supported by 
considering the total number of relationships 
identified by respondents in each survey.  Table 
2 shows that the relationship-centered survey 
produced an average of 18.33 relationships 
identified by each respondent, while the alter-

centered survey resulted in only 15.26 
relationships.  Thus, when the same respondents 
are asked about relationships with classmates 
using two different survey instruments, the 
relationship-centered survey identified more 
relationships than the alter-centered survey.  

Table 2.  Total Number of Relationships Recognized 
Classroom  Mean # of Relationships  S.D.  Median  Min  Max  

Alter-Centered  15.26 9.78 12 1 46

Relationship-Centered  18.33 8.92 17 5 49

Table 3 provides another look at these 
relationships by providing the network density 
and centralization measures. Here, too, we find 
for the three major relationships (recognize 
name, acquaintance, friend), network density is 
higher in the relationship-centered survey 
(recognize name density = 0.1678, acquaintance 
density = 0.0830, friend density = 0.0523) 
compared to the alter-centered survey (recognize 
name density = 0.0523, acquaintance density = 
0.0511, friend density = 0.0383). While these 
reported differences are small, this pattern of 

within classroom difference for density holds 
when looking at even less salient relationships, 
such as the identification of homework partners 
or shared organizational membership. Similarly, 
we find that the relationship-centered survey 
produces higher measures of centralization for 
both name recognition (0.010 compared to 
0.001) and acquaintance (0.012 compared to 
0.005). This would seem to indicate that, as 
reported above, the relationship-centered
instrument produces networks with higher levels 
of connectedness between actors in this system.   
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Table 3: Centralization and Density Measures 

Relationship Classroom Density 

S.D. of 
Personal 
Network 
Densities

Network 
Centralization N

Recognize Name Alter-Centered 0.0523 0.2226 0.001 42

Relationship-
Centered 0.1678 0.3737 0.010 42

Acquaintance Alter-Centered 0.0511 0.2202 0.005 42

Relationship-
Centered 0.0830 0.2259 0.012 42

Friend Alter-Centered 0.0383 0.1920 0.001 42

Relationship-
Centered 0.0523 0.2226 0.001 42

Non-parametric Tests 
     We also test for significant differences 
between the survey instruments with tests for 
variations in the median across classrooms and 
across relationships. We find no statistical 
difference in median degree for the relationship 
of “recognize name.” However, we do find a 
significant difference in the median when 
respondents are asked to identify acquaintances 
(p < 0.05) or friends (p < 0.05). This implies that 
these two classrooms are not from populations 
with the same medians, although they are in fact 
the same students.  These findings suggest that 
differences in the structure of the survey 
instruments produce differences in the 
respondents’ network structures.  

Discussion 

     The results presented above leave us with 
evidence that differences occur between alter-
centered and relationship-centered question 
formatting. Clear differences emerge when we 
examine the broadest relationship-type – 
recognizing a classmate by name. Here, the 

range and standard deviation of alters named is 
much greater when the alter-centered survey is 
used. Similar differences are observed with the 
network centralization measure; the alter-
centered survey once again yields significantly 
higher estimates than its relationship-centered 
counterpart. These findings substantiate Burt’s 
(1984) intuition regarding the reliability of 
respondents’ choices due to the focus on one 
individual classmate at a time.  

Contrary to Burt’s (1984) hypothesis, 
however, upwardly biased estimates of network 
density do not appear when using the alter-
centered form of the questionnaire. In fact, the 
results indicate the opposite – although the 
difference is not statistically significant. This 
finding is consistent not just with the recognition 
of name relationship; similar conclusions are 
reached when considering acquaintance and 
friendship ties.  

Network degree and centralization are more 
stable when evaluating the acquaintance and 
friendship ties. Here, unlike the relationship 
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involving the recognition of a classmate’s name, 
variation is greatly reduced. When we look at 
the differences between surveys, it appears as 
though the relationship-centered survey 
produces greater recognition of acquaintances 
and friends. However, the range in degree 
minimum and maximum, along with the 
standard deviations, are reduced considerably. 
The same is true with the network centralization 
measure.  

These results lead us to conclude that 
meaningful differences in measurement are not 
apparent when we ask about extremely close 
relationships like friendship ties. In this case, we 
suggest Burt’s (1984) consideration of time is 
most important. Results of this study did find 
that respondents completed the relationship-
centered survey more quickly (3.91 minutes) 
than they completed the alter-centered survey 
(4.67 minutes). This is similar to what Burt 
found with the short-form versus long-form of 
the GSS module.  

However, when we ask respondents about 
people they know less well, researchers would 
do well to consider the type of survey instrument 
used to elicit response. Clearly, greater 
connections, as measured by network density 
and centralization, were acknowledged when the 

relationship-centered survey was used to elicit 
recognition of other classmates by name.  In a 
world where weak ties are acknowledged to be 
of great importance for many outcomes 
(Granovetter 1973), accurate measurement of 
these weak ties must be obtained.  

Certainly, this examination is only a 
beginning.  Additional research about how social 
network researchers should best measure 
relationships must be pursued.  Explorations of 
other populations of actors and relationships 
would be beneficial. Further, future studies 
should consider different modes of 
administration. A test of the differences explored 
in this study using web-based surveys may yield 
very interesting results – especially among 
young college-aged respondents who are 
familiar with this technology. Utilizing a split-
half study in these types of large groups, either 
by web or paper survey, may provide further 
evidence that confirms the results found in this 
study. Additionally, looking at other network 
measures, such as individual measures of 
centrality, reciprocal ties between actors, and 
even clique structure, may help to further clarify 
differences that emerge based on 
instrumentation.
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Introduction

     In analyzing data on social networks, 
researchers are often interested in betweenness
centrality, which is one measure of an actor’s 
importance in a network.  Betweenness 
centrality reflects the extent to which an actor 
lies on geodesics between others in the network.  
Depending on the context, betweenness 
centrality might indicate the degree of power, 
control, or stress experienced by an actor in the 
course of network interactions (Freeman, 1977).  
The idea was introduced by Bavelas (1948, cited 
in Freeman, 1977), and the measure was defined 
by Freeman (1977): 
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where pk is a point on the graph, n is the total 
number of vertices, i and j index vertices on the 
graph other than pk, gij is the number of 
geodesics between a pair of vertices, and gij(pk)
is the number of such geodesics that include pk.
CB, then, is the proportion of geodesics between 
others in the network on which actor p

B

k lies.  As 
defined by Freeman, betweenness centrality is 
normalized by dividing by its maximum possible 
value, which is the number of vertex pairs 
excluding pk:
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The normalized version of betweenness 
centrality ranges from 0 to 1 and allows 
comparisons between networks. 
There are two significant barriers to the use of 
these measures of betweenness centrality by 
social scientists: (1) the need for specialized 
network analysis software and (2) the space and 
time typically required for processing.  A related 
measure that requires less computation is 
egocentric network centrality (i.e., centrality of 
an actor within its first-order zone), which may 
predict betweenness centrality fairly well.  
Marsden (2002) found correlations ranging from 
.83 to .99 in an analysis of network data from a 
variety of studies with network sizes from 14 to 

217.  More recently, Everett and Borgatti (2005) 
found average correlations ranging from .85 to 
.99 in simulations with 25-500 actors and 
network density ranging from .1 to .6.  However, 
a correlation of .83 implies that in the worst case 
tested, 31% (=1-.832) of the variance in 
betweenness centrality was not explained by the 
egocentric measure.  

     Furthermore, Marsden identified scenarios in 
which the egocentric measure does a poor job of 
predicting betweenness centrality for a particular 
actor.  (These involved the index actor having 
alters with extremely high or extremely low 
centrality in their own first-order zones.)  Rather 
than perform analyses that are subject to this 
type of error, it is preferable to calculate the 
standard measure of betweenness centrality if 
data on the full network are available.  This 
paper diminishes the barriers to calculating 
betweenness centrality by introducing a SAS 
Interactive Matrix Language (IML; SAS 
Institute, 2007) module that implements the 
faster algorithm for betweenness centrality 
recently developed by Brandes (2001). 

A SAS PROC IML module to calculate 
betweenness centrality 

     Brandes’ (2001) strategy is to count and store 
a network’s geodesics more quickly using 
network traversal algorithms instead of matrix 
multiplications.  The author implemented 
Brandes’ algorithm for unweighted graphs using 
a SAS PROC IML module and supporting 
macros (Appendix 1; also available from the 
author’s website, http://www.unc.edu/~arellis).  
The supporting macros use row vectors to 
implement stacks and queues to store 
information obtained during network traversal. 
Stacks are “last-in, first-out” storage 
mechanisms into which a unit of information can 
be “pushed” and out of which a unit of 
information can be “popped”.  Queues are “first-
in, first-out” storage mechanisms into which a 
unit of information can be “enqueued” and out 
of which a unit of information can be 
“dequeued”.  The PROC IML module expects as 
input a square matrix (which should be 
symmetric if the graph is undirected), a dummy 
(0-1) variable to indicate whether the graph is 
directed, and another dummy variable to indicate 
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whether betweenness centrality should be 
normalized.  Based on this input, the module 
traverses the network and returns a column 
vector which contains, for each vertex in the 
graph, the requested form of betweenness 
centrality. 

Performance on simulated networks 

     The module was used to calculate 
betweenness centrality for 30 simulated 
networks with size ranging from 100-1000 

vertices (100, 200, …, 1000) and with densities 
of .25, .50, and .75.  The module was run on a 
POWER5+ processor server running AIX 
UNIX.  The maximum amount of memory used 
was 47 MB.  Figure 1 shows the amount of 
processing time required as a function of 
network size and density.  For the network with 
1000 vertices and a density of .75, the 
processing time was 5,318 seconds 
(approximately 89 minutes).

Figure 1. Processing time as a function of network size and density 

     Given current computer technology, the 
memory required for running the module is 
negligible even for a network with 1000 
vertices.  Therefore, processing time is more 
important than memory as a potential barrier to 
data analysis.  According to Brandes (2001), 
processing time should be on the order of n*m,

where n is network size and m is the number of 
links in the network, equal to p*n(n-1)/2 where p
is the network density (Scott, 2000).  For the 
simulated networks, processing time was indeed 
on the order of n*m.  This was verified with a 
linear regression model that predicted processing 
time as a function of n3*p (R2=.996; other 

Using SAS to Calculate Betweenness Centrality



29

results not shown). This means that (1) for 
networks of a given density, the processing time 
required is roughly proportional to n3, and (2) 
for networks of a given size, the processing time 
required is roughly proportional to p.

Conclusion

     Betweenness centrality is a useful measure of 
an actor’s importance in a social network.  The 
SAS PROC IML module presented in this paper 
facilitates the calculation of betweenness 
centrality by social scientists by making it 

possible to run Brandes’ (2001) faster algorithm 
for betweenness centrality using popular 
statistical software.  As noted by Brandes 
(2001), his algorithm, and therefore the module 
presented here, could be extended in order to 
calculate betweenness centrality for weighted 
graphs or to calculate other network measures 
that are based on geodesics such as closeness 
centrality (Sabidussi, 1966), graph centrality 
(Hage & Harary, 1995), or radiality (Valente & 
Foreman, 1998). 
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Appendix 1. SAS PROC IML module and supporting macros 
/* bcent.sas

2007/09/12

[Alan R. Ellis, MSW, http://www.unc.edu/~arellis; emial: are@unc.edu]

IML modules and supporting SAS macros to calculate betweenness centrality
Uses algorithm by Ulrik Brandes

Brandes, Ulrik. (2001). A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2), 163 177.

returns a vector of betweenness centrality values

Usage: %include bcent.sas;
bc=bcent(m,directed,normalize)

m = matrix for which betweenness centrality is to be computed
directed = 0 if relationships are undirected, 1 if directed
normalize = 0 if raw centrality is desired, 1 if normalized value is desired

This module creates the following macros: push, pop, enq, deq, isempty

Input matrix should be square and, if relationships are undirected, should be symmetric.

2006/04/11 original version
2006/05/04 changed code so input matrix would not be modified
2007/08/31 revised comments
2007/09/12 changed name of input matrix and disabled error checking code that modified input matrix

*/

/* push values onto a stack i.e., insert into column 1 of a row vector */
%macro push(s,val);

if ncol(&s)=0 then /* if empty then start with value */
&s=&val;

else
&s=insert(&s,&val,0,1); /* otherwise insert value */

%mend;

/* pop value off a stack i.e., remove from column 1 of a row vector */
%macro pop(s,val);

if ncol(&s)=0 then do; /* if empty then return undefined value */
free &val;
end;

else do;
&val=&s[1];
&s=remove(&s,1);

end;
%mend;

/* enqueue a value i.e., insert it at the end of a row vector */
/* adapted from "push" macro simply changed location of insertion */
%macro enq(s,val);

if ncol(&s)=0 then /* if empty then start with value */
&s=&val;

else
&s=insert(&s,&val,0,1+ncol(&s)); /* otherwise insert value at end of queue */

%mend;

/* dequeue a value i.e., remove it from column 1 of a row vector */
%macro deq(q,val);

%pop(&q,&val);
%mend;

/* function to determine whether a stack or queue (i.e., row vector) is empty */
%macro isempty(sq);

%str((ncol(&sq)=0))
%mend;

/* function to calculate Betweenness Centrality using Brandes' algorithm */
start bcent(m,directed,normalize);

nvert=nrow(m); /* # vertices in network */

/* check input */
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err=0;
if ((directed^=0) & (directed^=1) & (normalize^=0) & (normalize^=1)) then

err=1;

/* The following lines could be enabled in order to check input further. Note that the input
matrix is modified. */

/*
else if (nvert^=ncol(m)) then

err=1;
else do;

tm=m`;
if ((directed=0) & any(m^=tm)) then err=1;

end;
*/

if err=1 then do;
file log;
put 'ERROR: invalid parameter values for bcent(). Returning 1.';
put 'USAGE: bcent(m,directed,normalize);';
put ' <m> : square matrix (symmetric if graph is undirected)';
put ' <directed> : 1 if graph is directed, 0 otherwise';
put ' <normalize>: 1 if result should be normalized, 0 otherwise';
return( 1);

end;
cb=j(nvert,1,0); /* betweenness centrality of each vertex starts at zero */

do s=1 to nvert;
free stack; /* start with empty stack just being explicit */
p=j(nvert,nvert,0); /* create empty list of predecessors for each vertex */

sigma=j(nvert,1,0); /* count # geodesics each vertex is on: initially zero, */
sigma[s]=1; /* except one for current vertex */

d=j(nvert,1, 1); /* vector of 1 values, except zero for current vertex */
d[s]=0; /* d appears to measure depth */

free queue; /* start with empty queue just being explicit */
%enq(queue,s); /* add current vertex to queue */

do while (%isempty(queue)^=1); /* while queue is not empty */
%deq(queue,v); /* de queue a vertex number into v */
%push(stack,v); /* and also push it onto the stack */

/* loop through each neighbor w sub j of v */
w=loc(m[v,]); /* loop through vertices w where m(v,w) is nonzero */

/* i.e., there is a path from v to w */
do j=1 to ncol(w);

/* w sub j found for the first time? */
if d[w[j]]<0 then do;

%enq(queue,w[j]);
d[w[j]]=d[v]+1;

end;

/* shortest path to w via v? */
if d[w[j]]=d[v]+1 then do;

sigma[w[j]]=sigma[w[j]]+sigma[v];
p[w[j],v]=1; /* add v to w's list of vertices */

end;
end;

end;

delta=j(nvert,1,0); /* initialize delta to zero for each vertex */

/* stack returns vertices in order of non increasing distance from vertex s */

do while (%isempty(stack)^=1); /* while stack is not empty */
%pop(stack,ww); /* use double w; this is distinct from */

/* the w used for neighbors to v above */

vv=loc(p[ww,]); /* indices of vertices on ww's list of predecessors */
/* use vv this is a new v, too */
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do k=1 to ncol(vv);
delta[vv[k]]=delta[vv[k]]+(sigma[vv[k]]/sigma[ww])*(1+delta[ww]);

end;
if ww ^= s then cb[ww]=cb[ww]+delta[ww];

end;
end;
if (directed=0) then cb=cb/2; /* if undirected then divide by 2 */
if (normalize=1) then do;

if (directed=0) then cb=2*cb/(nvert 1)/(nvert 2); /* normalize by maximum possible centrality */
else cb=cb/(nvert 1)/(nvert 2);

end;
return(cb);

finish;
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Abstract
The fabric of society lies in the networks of connections and patterns of communication that its 
members create deliberately or inadvertently.  Information, ideas, values and norms are passed 
across this fabric and members can form aggregates or allegiances that centre on common 
interests, goals, attitudes and the like.  Simple multi-agent models of social networks have 
provided useful insights into the emergence of global network behavior where agents have 
limited or binary choices of state.  This paper examines the impact that a greater number of 
choices of state have on the emergence of clusters of agents. It examines the global behavior of 
static populations of interacting computational agents, connected in fixed networks structures 
that are faced with multiple choices of state.  Results indicate that aggregation around a few 
states appears to be a universal property, independent of network structure. 
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Introduction
     How does the process of socialization occur? 
How are society's values, norms, and ideals 
cemented in social structure?  How do rumours, 
urban legends and myths spread in society?  
Why are some people better informed than 
others?  How do people form into groups?  What 
influences the outcome of political elections?  
These questions create strong interest for social 
network researchers. Typical of complex 
adaptive systems, social networks exhibit 
clustering behavior that may be based around a 
common principle.

     Complex systems are characterised by large 
numbers of components that interact and 
communicate through patterns of connections 
called networks (Holland 1995). Complex 
systems behavior is at the root of many natural 
and artificial phenomena. However, knowledge 
and understanding about their behavior, design 
and management remains largely empirical. The
complexity of multi-agent systems means that 
traditional methods of studying them are not 
effective (Bura et al. 1995; Gilbert & Troitzsch 
1999; Goldspink 2002; Wassermann 1980), as 
they tend to be unstable and unpredictable (Bak 
& Sneppen 1993; Erdös & Rènyi 1960; Green 
1993; Horgan 1995; Langton 1990).  

     Structural analysis (Berkowitz 1982; 
Freeman 1989; Hammer 1979; Hummon & 
Carly 1993; Wellman 1988) investigates sets of 
relationships that exist in the complex 
interactions of social members in the context of 
the social system in which they act (Erickson 
1988; Lorrain & White 1971; Scott 2000).
Analogous to emergent properties and phase 
changes common in complex systems, such 
social transitions result from network topology 
and information exchange between connected 
network members (Bura et al. 1995; Fliedner 
2001; Holyst et al. 2000; Klüver & Schmidt 
1999; Schecter 2002). Network models provide 
a natural and effective means of representing 
hierarchical levels in social systems (Fliedner 
2001; Hammer 1979; Hummon & Carly 1993; 
Sanil et al. 1995; Wassermann & Faust 1995). 
Graph theory (a mature research discipline) can 
be used to draw maps or topologies of social 
structures including random graphs, scale-free 

(
al. 2000; Albert & Barabási 2001; Barrat & 
Weigt 2000; Doreian 1979; Erdös & Rènyi 
1960; Jeong et al. 2000; Wassermann 1980; 
Watts & Strogatz 1998). The dynamic behavior 
of multi-agent network systems is typically 
modeled using general rules that describe the 
behavior of the agents, and topological rules that 
describe the patterns by which agents are 
interconnected and communicate (Klüver & 
Schmidt 1999).  

     Multi-agent simulations allow us to 
develop theory, demonstrate robust 
characteristics and observe the mechanisms 
behind unexpected, novel, emergent behavior 
(Brassel et al. 1997; Doreian & Stokman 1997; 
Freeman 1989; Troitzsch 1997; Wellman & 
Berkowitz 1988. We can investigate patterns 
that emerge from the interaction of explicitly 
defined states of individual agents and the causal 
processes that change these states over time 
(Deadman & Gimblett 1994; Fararo & Hummon 
1994; Hanneman 1995; Itami et al. 2000) 
providing the capacity to study the complexity 
of these systems in silico, when real-world 
investigation is impractical, improbable, or 
impossible (Conte Hegselman & Terna 1997; 
Gilbert & Triotzsch 1999; Troitzsch 1998). 

Clustering
     Clustering appears as a phenomenon in 
diverse systems. It appears to be a common 
mechanism for coping with complexity. The
formation of hierarchies of clusters reduces 
internal interactions and constrains behavior 
(Green 2002). Much has yet to be explained 
about how clusters emerge in multi-agent 
systems.  Social groups can be described as 
clusters, alliances and networks, where common 
ideals, interests, and the like link individuals 
together (Lee 1980). They are formed from, and 
are maintained by, the patterns of connectivity 
and information exchange between members 
(Gilbert 1997). These patterns will influence the 
collective opinion of the network.

Previous studies by Stocker et al. (2001, 
2002, 2003) focus on a binary choice of state, 
that is, either agreement (yes) or disagreement 
(no) about an issue.  A significant research 
question concerns how a range of different 

Different States, Choice, Structure and Aggregation in Simulated Social Networks



35

opinions or ideas among a group of individuals 
connected by different network structures will 
affect collective or global opinion as members 
interact over time. 

Individual states, social structure, and global 
opinion
     In real-world situations, public opinion is 
usually diverse and spread across many different 
ideas, attitudes, and preferences. From time to 
time, there occurs a coalescing of public opinion 
towards main ideas that strongly resist changes 
over time (Schecter 2002), even though each 
individual makes a choice from several different 
ideas (Lomborg 1997). A relatively new area of 
research, Memetics, suggests that certain 
characteristics of ideas themselves influence 
selection (Aunger 2002; Blackmore 1999; 
Brodie 1996; Gladwell 1999; Lynch 1996; 
Marsden 2000).  

     Social network simulation research supports 
that group opinion is influenced by direct 
contact and communication between peers 
(Stocker et al. 2001, 2002, 2003). Ideas change 
depending on a susceptibility to attack from 
other ideas and the structure of connections 
between individuals (Hales 1998). Individual 
influence in the course of social transition is an 
important determinant of public opinion (Burt 
1987). Public opinion change is dependent on 
the exchange of information between connected 
individuals (Nowak & Lewenstein 1996).  

Social comparison stabilizes agreement of 
opinion (Granovetter 1978; Werner & Davis 
1997) and depends on the nature of individuals 
and their relationships (Erickson 1988).
However, diversity means that disagreement 

may also result in the formation of sub-groups 
whose members share similar points of view 
(Doreian & Stokman 1997). These influences 
have a critical effect on the dynamics of a social 
system (Nowak & Lewenstein 1996). Smaller 
disenfranchised or "fringe" groups can collect 
around radical opinions or ideas that are not 
representative of the majority.  

In this study, A multi-agent simulation of 
specific network structures is used to represent 
the patterns of connection and communication 
between interacting agents. In what is essentially 
a network diffusion simulation (Valente 2005; 
see also Becker 1970; Rogers 1958, 1995) this 
simulation uses multiple instead of binary 
choices. The following questions are addressed:
1) how do individual states and membership of 
different network structures influence global 
opinion in a social network? and 2) do 
individual members tend to form a cluster 
around particular states or ideas so that sub-
groups emerge? 

Methods
     In the simulation, 100 nodes are connected in 
three different network structures to represent 
patterns of connectivity and communication. 
Networks are static (that is, links and population 
remain the same) and network parameters are 
shown in Table 1.  Each node is randomly 
initialized with a choice of state from 2 to 10 
representing different issues or ideas. Each node 
is also randomly initialized with values for 
levels of influence and susceptibility (between 
0.0 and 1.0). The result of interactions between 
nodes over time is observed to determine 
aggregation of nodes around particular states. 

Table 1.  Ranges of Values Assigned to Parameters in the Simulation for Each Network Type 

Hierarchy Random Scale-free

Network 
Parameters

2 to 10 
(layers)

0.01 to 0.5 
(connectivity) 

0.0 to 1.0 
(constant) 
1.6 to 4.0 

(exponent) 
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Nodes in the simulation change states 
asynchronously as do individuals in real world 
networks (Harvey & Bossomaier 1997; 
Cornforth et al. 2001, 2002). There are 10 runs 
of 1000 time steps for each combination of the 
network structure parameters. 

The expected number of nodes (E) that adopt 
a given state at initialization will approximate to 
the population (N) divided by the number of 
states (S). For example, for 100 nodes with a 
choice of 5 states, we expect 20 nodes to adopt 
each state. Comparison of this expected value 
with the average maximum number of nodes that 
adopt each state after T iterations (time steps) 
provides a reliable measure of the relative 
degree to which nodes have adopted particular 
states as a result of their interaction. This
comparison, expressed as an Adoption Ratio
(AR) is defined by: 

S
N

ttt
T

AR

T

t
innn

1
21

,...,max1

 [Eq 1.]

Where  is the number of nodes adopting 
each state i at time t, N is the number of nodes in 
the population, T is the total number of time 
steps and S is the number of states available. 

in t

Results
     Selected results below describe the behavior 
of hierarchy, random and scale-free networks 
and demonstrate that cohesion (the number of 
nodes in the same state) varies for the number of 
different states available to each node over time.
As the number of states available increases, the 
maximum number of nodes adopting each state 
decreases, regardless of network structure.  

     There is a significant change of node 
"loyalty" to specific states where the maximum 
number of nodes adopting one or another state is 
not consistent. That is, aggregation of the nodes 
around specific states occurs to varying degrees.
However, in each experiment only two or three 
states emerge as having the largest number of 
nodes adopting that state. This suggests that 

clustering is an emergent feature or principle of 
social structures independent of the parameters 
associated with network structure.  

     Of interest in hierarchy networks, is the 
critical change around a depth of 5 to 6 
hierarchy layers (Figure 1). In the random 
network, there is evidence of critical behavior at 
a connectivity level of 0.25 to 0.3 (see Dunbar 
1995; Wellman 1988) (Figure 1).  Clustering of 
nodes around particular states is more evenly 
spread across the different states and node 
"loyalty" is less evident than in hierarchy 
networks.

     As the scale-free constant (Z), the scale-free 
exponent ( ) and the number of states vary, the 
clustering of nodes around one to three states is 
less pronounced than for either the hierarchy or 
random structures. At a scale-free constant of 
0.25, as the scale-free exponent and the number 
of states are varied, the maximum number of 
nodes adopting a state is only affected after the 
scale-free exponent reaches a value of 2.8.
Interestingly, when the number of states is 
around 4, a significant reduction in the largest 
cluster size occurs for values of the scale-free 
exponent above 2.8. As the scale-free exponent 
moves above 2.8, a linear increase 
(approximate) in the maximum number of nodes 
adopting particular states occurs.  

     When the scale-free exponent is 2.2 and the 
scale-free constant and the number of available 
states are varied, the largest cluster is affected 
when the scale-free constant reaches 0.5. Again,
when the number of states is around 4, a 
significant reduction in the largest cluster size 
occurs for values of the scale-free constant 
above 0.5 (Figure 1).  

     These preliminary results are somewhat 
expected. It is logical that when the number of 
choices available to a group is increased, the 
maximum number of individual’s choosing a 
particular state will necessarily decrease. 
Likewise, it is apparent that, at key values for 
each network’s structural parameters, there is 
change in the global behavior of the network - 
also an intuitive result. 
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Figure1. Maximum Cohesion in a Population of 100 Nodes for Hierarchy, Random, & Scale-free 
Networks

Figure 1.  The surface plots show the relationship between the number of states that nodes can adopt 
and the key parameters of each network structure (viz, hierarchy layers, random connectivity and 
scale-free exponent/constant). 
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     However when we examine the results from 
calculating the Adoption Ratio AR (Equation 1) 
over time, it is evident that counter-intuitive 
behavior is occurring. The behavior manifests as 
an increase in the AR as the number of states 
available increases. This occurs consistently for 
each of the hierarchy, random, and scale-free 
network structures.

     In the hierarchy network, AR is consistently 
greater than 1.1 and varies between 1.1 and 2.2, 
showing clustering behavior away from the 
initialized state of the model. As the number of 
states is held constant and the depth of the 
hierarchy is varied, and the number of layers 
increases, AR remains fairly constant with a 
peak at 5 to 6 hierarchy layers. Counter-
intuitively, as the number of layers is held 
constant and the number of states available is 
varied, the Adoption Ratio increases (Figure 2 – 
red squares).

For the random network, as the number of states 
is held constant and connectivity is varied AR
remains within the range 1.1 to 1.8, with 
increased activity around critical connectivity of 
0.25 to 0.30.  When connectivity is held constant 
and the number of states is varied, AR increases 
with the number of states available with peaks at 
5 and 7 states, a counter-intuitive result, 
indicating cluster size is dependent on number of 
states (Figure 2 – yellow triangles).  

With the scale-free network structure, AR
shows a steady increase as the number of 
available states increases with a peak at 6 states 
(Figure 2 – blue diamonds), indicating that 
cluster size increases with the number of 
available states. The similarity to hierarchy and 
random network behavior is evident. 

Figure 2. Adoption Ratios by the Number of States in Hierarchy, Random,  
and Scale-free Network Structures 

Association of Nodes to States

0.00

0.50

1.00

1.50

2.00
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1 2 3 4 5 6 7 8 9 10

Number of States

Scale Free Network
Hierarchy Network
Random Network

Figure 2. Graph of the Adoption Ratio (AR) where the Y Axis shows AR and the X Axis shows the 
number of states in each of the hierarchy, random, and scale-free network structures. It shows the 
increase of AR with increasing number of states available.
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Discussion and Conclusions 
     Society comprises individuals who are 
connected by their involvement in work, social 
organisations, sporting clubs, religious 
communities, and so on. As members of more 
than one group they are influenced by the 
opinions, attitudes, and ideas of other members 
of the groups to which they belong. The 
boundaries of these groups often enclose a small 
to medium population of around 100 to 150 
(Dunbar 1992, 1993; Wellman 1988). The
manner in which members are connected will 
also vary.  

     This simulation suggests that network 
structure has an impact on the formation of 
public opinion in groups of social members that 
share common ideals, attitudes, or opinions.
There is criticality with respect to parameters 
associated with network structure. In different 
social structures: (1) a majority of the population 
will change state from a large range of ideas to 
form aggregates, groups or clusters around on 
two to three preferred ideas, and, (2) clustering 
is dependent on the parameters associated with 
the patterns of connectivity between peer nodes 
(the structure of the networks). Clusters emerge 
as a result of a choice of states, although the 
maximum number of nodes that adopt each 
specific state reduces as the number of available 
states increases. This confirms an intuitive 
understanding that the more choices there are, 
the more difficult it is to make a choice. 

However, the Adoption Ratio (AR) demonstrated 
counter-intuitive behaviors. Regardless of the 
type of network, as the number of states 
available increases so did the Adoption Ratio, 
which demonstrates universality. One possible 
explanation (not yet confirmed) for this 
phenomenon is that some form of positive or 
reinforcing feedback is occurring amongst 
individuals in the social structure.  As the 
number of nodes that adopt a specific state 
increases from the initial state above that 
expected, those nodes exert a converting force 
on the other nodes to which they are connected, 
regardless of network structure. However, there 
is a tension between this effect and the 
individual nodes' levels of influence and 
susceptibility. This tension provides the main 
constraint against the connected nodes changing 
state, thus explaining why the whole population 
is not converted. There is also criticality in 
respect of the parameters inherent in the 
different network structures. These factors 
suggest that there are general principles that 
apply to the formation of sub-groups within 
fixed populations, regardless of the structure to 
which they belong.  

There are implications from this research for 
the management of change and survival of 
groups whose members will be connected to 
sources of different ideas, attitudes and opinions. 
Future research will focus on the behavior of 
dynamic networks where the network structure 
is influenced by the addition and deletion of 
nodes and links. 
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Abstract

Social network analysis has been a particularly hot area across the social (and some non-social) sciences.  
How has this growth, in turn, affected the field of social network analysis within sociology, the discipline 
which has served as the primary home of social network analysis over the last several decades?  In order 
to answer this question, we examined the citation patterns of the social network papers in the two leading 
general sociology journals, the American Sociological Review and the American Journal of Sociology,
from 1990-2005, focusing on the body of literature that was cited by at least two social network papers in 
a given year.  We produced two network snapshots of the social network canon during this period.   

These analyses reveal a combination of great change and substantial continuity.  There was a substantial 
increase in interest in social networks in sociology throughout this period, and, in particular, an enormous 
rise in interest in small world issues, coupled with the abrupt entry of mathematicians and physicists into 
the sociology social network canon.  However, during this entire period Granovetter’s work remained 
squarely at the center of the canon, with Granovetter (1973) as the most cited piece at both the earlier and 
later snapshots. 
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Co-Citation of Prominent Social Network Articles in Sociology Journals: 
 The Evolving Canon

Introduction

     The study of networks has been one of the 
major growth areas within scholarly research 
over the last decade.  Particularly striking has 
been the growth of research on networks within 
physics, dating from Watts and Strogatz’s 
(1998) work on small world networks.  What 
impact has this growth had on the study of 
networks within sociology, a discipline that has 
served as the primary home for the study of 
networks for the last several decades?  In this 
paper, we examine the co-citation pattern of 
papers published in the two leading generalist 
journals within sociology, the American 
Sociological Review (ASR) and the American 
Journal of Sociology (AJS), for 1990-2, 2000, 
and 2005.  A co-citation is a shared reference of 
two articles to a third source.  The list of co-
cited references of social network research 
within ASR and AJS for a given year offers a 
rough measure of what the field collectively 
believes is within the canon:  those sources 
worthy of attention and acknowledgement.  How 
has the content of the canon evolved over the 
years?  In particular, what impact has the work 
within physics had on the study of social 
networks within sociology?  What is the 
underlying structure of the canon?  For example, 
is there a common core of sources that all social 
network articles cite?  Or does the field have a 
more decentralized structure? 

Our analysis reveals a combination of great 
change and substantial continuity in the field.  
There was a major increase in interest in social 
networks in sociology during this period, and, in  

particular, an enormous rise in interest in small 
world issues, coupled with the abrupt entry of 
mathematicians and physicists into the sociology 
canon.  However, across all periods, 
Granovetter’s work remained squarely at the 
center of the canon, with Granovetter (1973) as 
the most cited piece in both the early and late 
periods.

Co-citation analysis 

     The list of citations within a published article 
offers a glimpse into what is considered the 
canon at a particular point in time of the field, 
reflecting the collective wisdom of the author, 
editor, and referees as to what prior research acts 
as the foundation for the findings of that article.  
The list of citations for a particular article will 
certainly reflect the idiosyncrasies of that 
particular author, and details of the article’s 
subject area.  However, the body of articles 
published in a given year reflects a communal 
consensus as to what the collective research 
agenda is, and, in particular, what prior research 
is worth paying attention to.  We therefore used 
the concept of co-citation analysis from 
bibliometrics (White/Griffith 1981).  A co-
citation occurs when two articles share a 
reference.  Co-citation analysis is used in 
different ways: it can help to identify so-called 
“invisible colleges” in forms of clusters of 
authors who cite similar references; it can also 
detect emerging trends within a research field or 
shows bridges among research disciplines (see 
Table 1 for examples).  

Table 1.  Examples of Co-citation Analysis 

Study Field Authors 

Co-Authorship in Management and 
Organization Studies 

Organizational Behavior (Acedo/Barroso et al. 2006) 

Search for invisible colleges Methodological evaluation (Gmuer 2003) 

Bridges between research disciplines Information Science (Karki 1996) 

Intellectual Development of MIS: 
clusters/invisible colleges 

Management Information Science  (Culnan 1987) 
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     We contrast co-citation research with the 
recent work on co-authorship networks that 
illuminates the emerging structure of 
collaboration among academics within different 
disciplines (Newman 2001; Barabasi/Jeong et al. 
2002; Newman 2004).  While co-authorship 
networks reflect the structure of collaboration 
within a research community, co-citation 
networks reflect the structure of attention within 
a research community—that is, what prior 
research is worth paying attention to (de Solla 
Price 1965). 

The standard procedure to conduct a co-
citation analysis is presented by McCain (1990), 
see also description of the process in 
Ahlgren/Jarneving et al. (2003, p. 550).  In our 
study, we have adopted the following 
procedures:

Identify articles that are primarily 
focused on the study of social networks in the 
top two generalist sociology journals—AJS 
and the ASR—for 1990-92, and in 2000 and 
2005.  (We aggregate 1990-92 in order to 
produce a list of seed articles of a comparable 
size as 2005, allowing useful structural 
comparisons.)  We therefore do not claim to 
offer an overall picture of social network 
analysis as a field but rather of social network 
analysis within sociology. Articles were 
selected by hand-coding the abstracts (see 
Appendix A). 

The citations from each article were 
collected, where for each period studied, we 
eliminated cited literature that was only 
referenced by one article. In short, inclusion 

in the canon requires a minimum of “two 
votes” from top journals.  

The resulting graphs offer a picture of the 
evolution of structure of the sociologically-based 
social network analysis as a field. 

Social Network articles in ASR and AJS 

     A comparison across the years highlights the 
increase in the quantity of research on social 
networks.  For example, while there were 20 
articles published 1990-92 that examined social 
networks, there were none in 1995, 7 in 2000, 
and 14 publications in 2005.  This increase is 
consistent with, but not as dramatic as, findings 
described by Borgatti and Foster (2003) in their 
review of the applications of social network 
analysis in the field of organizational behavior. 
Perhaps this contrast reflects that social network 
analysis was starting from a higher base in 
sociology.  In addition, across all of the years, 
AJS appears to be far more likely to provide a 
venue for social network research than ASR.  
Figure 1 portrays the co-citation structure for 
ASR and AJS from 2005.  The seed articles are 
circles, and the cited papers and books are 
squares. We also distinguish between articles 
from ASR (yellow) and AJS (red).  We note that 
AJS featured a “Special Issue on Computation” 
in 2005 that prominently featured social network 
research, contributing five of the fourteen 
articles from that year. We denote these articles 
with a dark outline and consider them further 
below.  The black squares are from the social 
sciences, and grey squares from mathematics 
and physics. 



46

Figure 1. Co-citation Patterns 20051

     A comparison over the years also reflects the 
fact that the average number of total citations in 
each article grew during this period.  Figure 2 
highlights the growth of the number of citations 
where the average social network article had 
47% more references in 2005 than in the early 
1990s.

                                    
1  An earlier version of this figure appeared in 
Heyman (2006: p. 606). 

(This partly reflects the secular trend during this 
period toward the inclusion of more references 
where the average non-network articles in 
AJS/ASR experienced approximately a 26% 
increase in number of references.) 

Co-Citation of Prominent Social Network Articles in Sociology Journals: 
 The Evolving Canon
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Figure 2. Comparison of Total Number of Articles Cited by Year (1990-2005)                             
(overlaid with non-network citation pattern distribution) 

     The data embedded in these figures also 
reveals the “erosion” of older pieces of the 
canon, i.e., how the probability of being cited 
declines over time.  Figure 3 plots the proportion 
of papers cited for each of the three periods 
against the year of the citation.  It generally 
appears that attention is maximized about four 
years after an item is published, dropping about 
50% every 5-7 years after that.2  We would note, 
however, of the top four articles cited in 2005, 
one is from the early 1990s, one from the 1980s, 
one from the 1970s, and one from the 1960s (see 
Table 2).  Figure 3 thus reflects the fact that 
most articles largely disappear after a decade, 
but a handful of classics continue to receive 
citations for long after. 

                                    
2 We would note that the “decline” for the 

2005 data is exaggerated by the fact that there 
likely more references in the preceding five-
year period than any other period that 
references were observed. 

Co-Citation of Prominent Social Network Articles in Sociology Journals: 
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Figure 3.  Distribution of Citations by Year Published 

     Of the 46 articles cited multiple times in 
1990-1992, three are cited at least twice in 2000. 
Notably, Granovetter (1973), Granovetter (1974) 
and Lin/Ensel et al. (1981) also reappear in 
2005, along with four others found in the early 
1990s. Of the 20 articles in the canon of 2000, 
five remain in the 2005 canon.  In addition, there 
were 16 articles from the 1980s or earlier that 
appeared in the canon in 2005 that did not 
appear in 2000 or the early 1990s (in 
comparison, 45 co-cited articles in the early 
1990s were from the 1980s or earlier).  This 
certainly reflects the vagaries of the particular 
articles that happened to appear in the time 
periods we looked at, where, for example, 
Krackhardt (1987; 1988) was certainly in the 
canon during the 1990s.  However, it is also 

clear that some research veins that had faded 
over the years have returned to prominence - in 
particular, with respect to “small world” 
research.  For example, Milgram (1967) was not 
co-cited in the earlier periods, but became the 
second most cited article in 2005, likely due to 
its complementarity with Watts (1999) and 
Watts and Strogatz (1998).  Similarly, fairly old 
work on random graphs was also resurrected - 
e.g., Erdös and Renyi (1959). 

Other items, at the center of the canon in the 
early 1990s - e.g., Homans (1974) and Fischer 
(1982a; 1982b) - essentially disappeared. These 
shifts, in part, reflect the movement of the field 
into different areas.  In addition, concepts such 
as network centrality that used to demand a 
specific citation are now accepted generic 

Co-Citation of Prominent Social Network Articles in Sociology Journals: 
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metrics. And, of course, the nature of academic 
trends demand a fresh set of underpinnings for 
each wave of analysis in the forward progress of 
the field. Appendix B presents the articles and 
books that were cited at least twice in any of the 
tim

and 2000 to 37 (23% of the total) of all co-

e periods we examined. 

The most striking change in the canon, 
however, is what Bonacich (2004) termed “the
invasion of the physicists.”  We identify the 
recent work by mathematicians and physicists, 
which made a rapid entry into the canon after 
2000—from no co-citations in the early 1990s 

citations in 2005.  The AJS special issue on 
computation drives a disproportionate number of 
these citations. A full 28 of the 37 (~75%) of 
those co-citations are from the special issue, 
where three of the four heavy science citers are 
found in this issue. 

Table 2 provides an additional sense of 
evolution of the field:  it includes a list of the 
most co-cited articles during these three periods; 
and a list of the most co-cited authors. The 
mathematicians/physicists are highlighted in 
italics.

Table 2. Most Cited Articles and Author by Year 

Most cited articles by year 

1990-92 2000 2005 

Granovetter 1973 (4) 

Homans 1974 (4)

t 1997 (3) 
(Multiple articles at 2) ) 

(5) 

atz 1998 (4) 

Wasserman and Faust 1994 (4)

Fischer 1982 (4) 
Fernandez and Weinber Granovetter 1973 (6) 

Granovetter 1985 (5
Milgram 1967 
Burt 1992 (5) 
Watts and Strog
Watts 1999 (4) 

Most cited authors by year 
1990-92 2000 2005 
Granovetter (13)

)
6) 

Freeman (5) 

(No one else above 3) 
14) 

Barabasi (7)

Marsden (11
Fischer (
Lin (5) 

Granovetter (6) Granovetter (
Watts (12)
Newman (9)
Strogatz (8)

The table highlights the striking dominance of 
Granovetter in this field across all periods.  
However, equally remarkable is that four of the 
five most cited authors in 2005 are 
mathematicians and phy 3sicists.

In order to get another view of the evolution 
of the canon, we converted the 2-mode seed-

                                    
3 This is not a completely fair comparison in that 

some of this work was co-authored among these 
individuals.  However, coauthorship among 
physicists/mathematicians was not obviously higher 
than sociologists (with the notable exception of 
Granovetter, who was single author on all of his co-
cited pieces, making his dominance in Table 2 all the 
more striking). 

article-by-co-citation matrix into a 1-mode 
reference-by-reference affiliation matrix. That 
is, references A and B are are assumed to be 
linked if they were on the same list of references 
(and the more that they appear together, the 
more strongly they are linked).  Figure 4 shows 
the resulting graph using valued data for 1990-
1992, where the link strength is based on the 
number of times two articles appeared on a 
reference list together.  The figure shows only 
papers with more than one shared reference. 
There are a number of clusters of references that 
tend to be cited together where one cluster is 
dominated by Granovetter’s strength of weak 
ties work (1973, 1974, 1982), and, to a lesser 
extent, by Wellman (1982, 1988) and Fischer 
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(1982a, 1982b).  There are two other clusters, 
bridged by Yamagishi et al. (1988), one of 
which is dominated by Homans (1974) and Blau 
(1964), and the other by Freeman (1979).  The 
canon in the early 1990s, while all connected, 

looks easily decomposable into multiple areas, 
the biggest of which focused on the strength of 
weak ties, the second on exchange, and the third 
on centrality. 

Figure 4.  Affiliation Diagram: Subgroups Among Co-cited Articles (1990-1992)

     Figure 5 provides the equivalent figures for 
the 2005 data, with the physics/mathematics 
articles highlighted as grey squares.  The graph 
of the 2005 data looks dramatically different 
than the early 1990s.  Whereas the 1990s had a 
number of fairly equally balanced clusters, the 
2005 data reveal a clear core-periphery structure, 
where the core is dominated by a set of strongly 
connected articles by physicists/mathematicians.  
This comes through most clearly in Figure 5, 
where there is one, very large, well-connected 
component to which all of the physics articles 
belong, a few small components (e.g., around 
Goffman), and a number of isolates.  In short, 
there appears to be a core in the reference 

structure of sociological social network research, 
to which all of the physicists belong, but also a 
large diffuse penumbra, which is only loosely 
connected to the core.  This penumbra is 
connected to the core through a few key articles, 
such as Granovetter (1973; 1985), Burt (1992) 
and Milgram (1967). 

While we would be hesitant to predict 
that this core-periphery structure will be 
reflective of the citation pattern of a more 
extended period because of the AJS special issue 
in 2005, it is notable that of the eight social 
network articles not from the special issue, half 
cite at least one of the physicists. 

Co-Citation of Prominent Social Network Articles in Sociology Journals: 
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Figure 5.   Affiliation Diagram: Subgroups Among Co-cited Articles (2005)

Conclusion

     Our co-citation analysis of the social network 
literature within sociology highlights the rapid 
evolution of the field in the period 1990-2005.  
While our analysis suggests that there is a 
durable core of the field (most notably, around 
Granovetter’s research), it also highlights the  

rapid entry of the physicists into the canon 
between 2000 (where no physicists were co-
cited) and 2005 (where four of the top five co-
cited authors were physicists), and a possible 
centralization of the field around small-world 
networks related research. 
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Appendix A.  Seed Articles by Year 

1990-1992

Code ASR AJS Seed Reference Total # of 
Citations 

BO1992 
Baum, Joel A. C./Oliver, C. (1992): Institutional 
Embeddedness and the Dynamics of Organizational 
Populations, in: American Sociological Review, 57/4:540ff. 

45

B01990 
Bonacich, P. (1990): Communication Dilemmas in Social 
Networks: An Experimental Study, in: American 
Sociological Review, 55/3 pp. 448-459. 

26

Fe1991 
Feld, S. L. (1991): Why Your Friends Have More Friends 
Than You Do, in: American Journal of Sociology,
96/6:1464-1478.

8

Fr1991 
Friedkin, N. E. (1991): Theoretical Foundations for 
Centrality Measures, in: American Journal of Sociology,
96/6:1478-1505.

61

LGT1992 
Lincoln, J. R/Gerlach, M. L./Takahashi, P. (1992): Keiretsu 
Networks in the Japanese Economy: A Dyad Analysis of 
Intercorporate, in: American Sociological Review, 57/5. 

75

Mo1992 
Montgomery, J. D. (1992): Job Search and Network 
Composition: Implications of the Strength-Of-Weak-Tie, in: 
American Sociological Review, 57/5: 586-596. 

27

Mo1990a 
Moore, G. (1990): Structural Determinants of Men’s and 
Women’s Personal Networks, in: American Sociological 
Review, 55/5:726-736. 

34

Mo1990c 
Molm, L. (1990): Structure, Action, and Outcomes: The 
Dynamics of Power in Social Exchange, in: American
Sociological Review, 55/3:427-448. 

38

Sh1990 
Shrum, W. (1990) Status Incongruence among Boundary 
Spanners: Structure, Exchange, and Conflict. American 
Sociological Review, Vol. 55, No. 4 pp. 496-511

71

RW1990 
Raub, W./Weesie, J. (1990): Reputation and Efficiency in 
Social Interactions: An Example of Network Effects, in: 
American Journal of Sociology, 96/3:626-655.

23

Ue1990 
Uehara, E. (1990): Dual Exchange Theory, Social Networks, 
and Informal Social Support, in: American Journal of 
Sociology, 96/3:521-558.

65

WW1990 
Wellman, B./Wortley, S. (1990): Different Strokes From 
Different Folks: Community Ties and Social Support, in: 
American Journal of Sociology, 96/3, 558-589.

91

We1991 
Wegener, B. (1991): Job Mobility and Social Ties: Social 
Resources, Prior Job, and Status Attainment, in: American
Sociological Review, 56/1:60-72. 

54
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2000

Code ASR AJS Seed Reference Total # of 
Citations 

FCM2000 

Fernandez R. M./Castilla E. J./Moore P. (2000) Social 
capital at work: Networks and employment at a phone 
centers, in: American Journal of Sociology, 105/5:1288-
1356. 

61

Ha2000 
Hargens, L. L. (2000) Using the literature: Reference 
networks, reference contexts, and the social structure of 
scholarship. American Sociological Review, 65/6:846-865. 

70

HHB2000 

Hurlbert, J. S./Haines, V. A./Beggs, J. J. (2000): Core 
networks and tie activation: What kinds of routine networks 
allocate resources in nonroutine situations?, in: American 
Sociological Review, 65/4:598-618. 

58

PSS2000 
Petersen, T./Saporta, I./Seidel, M.-D. L. (2000): Offering a 
Job: Meritocracy and Social Networks, in: American
Journal of Sociology, 106/3:763-816. 

48

HSS2000 

Hedström, P./Sandell, R./Stern, C. (2000): Mesolevel 
Networks and the Diffusion of Social Movements: The Case 
of the Swedish Social Democratic Party, in: American
Journal of Sociology, 106/1:145-173. 

51

My2000 
Myers, J. D. (2000): The Diffusion of Collective Violence: 
Infectiousness, Susceptibility, and Mass Media Networks, 
in: American Journal of Sociology, 106/1:173-209. 

83

PR2000 
Pescosolido, B.A./Rubin, B.A. (2000) The Web of Group 
Affiliations Revisited: Social Life, Postmodernism, and 
Sociology, in: American Sociological Review, 65/1. 

132 

2005

Code ASR AJS Seed Reference Total # of 
Citations 

KEJ2005 

Korinek/Entwisle/Jampaklay (2005): Through Thick and 
Thin: Layers of Social Ties and Urban Settlement among 
Thai Immigrants, in: American Sociological Review, 70:779-
800. 

72

Ya2005 
Yakubovich, V. (2005) Weak ties, information, and 
influence: How workers find jobs in a local russian labor 
market. American Sociological Review, 70/3:408-421. 

Sm2005 
Smith, S. S. (2005): Don't put my name on it": Social 
Capital Activation and Job-Finding Assistance among the 
Black Urban, American Journal of Sociology; 111:1:1-57. 
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Code ASR AJS Seed Reference Total # of 
Citations 

St2005 Stewart, D. (2005): Social Status in an Open-Source 
Community, in: American Sociological Review, 70:823-842. 49

CH2005 
Chang, M-H, Harrington, J.E. (2005) Discovery and 
Diffusion of Knowledge in an Endogenous Social Network. 
American Journal of Sociology, 110:4. 

Bu2005 
Burris, B. (2005): Interlocking Directorates and Political 
Cohesion among Corporate Elites1, in: The American
Journal of Sociology, 111/1:249ff. 

93

MMB2005 
Moody, McFarland, Bender-deMoll (2005: Dynamic 
Network Visualization, in: American Journal of Sociology, 
110/4:1206–41. 

75

IRB2005 

Ingram, P./Robinson, J./Busch, M. L. (2005): The 
Intergovernmental Network of World Trade: IGO 
Connectedness, Governance, and Embeddedness, in: 
American Journal of Sociology, 111/3:824ff. 

61

EZC2005 

Eguiluz, V.M., Zimmerman, M.G., Cela-Conde, C.J., San 
Miguel, M. (2005) Cooperation and the Emergence of Role 
Differentiation in the Dynamics of Social Networks, in: 
American Journal of Sociology, 110:4.

74

FS2005 
Fernandez, R. M./Sosa, M. L. (2005): Gendering the Job: 
Networks and Recruitment at a Call Center, in: American 
Journal of Sociology, 111/3:859ff.

84

Gi2005 
Gibson, D. (2005): Taking Turns and Talking Ties: 
Networks and Conversational Interaction, in: American 
Journal of Sociology, 110/6:1561-1597.

64

PKWO2005 

Powell, W.W. White, D.R., Koput, K.W., Owen-Smith, J. 
(2005) Network Dynamics and Field Evolution: The Growth 
of Interorganizational Collaboration in the Life Sciences, in:
American Journal of Sociology, 110/4.

92

RWP2005 
Robins, G./Pattison, P./Woolcock, J. (2005): Small and 
Other Worlds: Global Network Structures from Local 
Processes, American Journal of Sociology , 110/4: 894–936. 

71

US2005 
Brian Uzzi, Jarrett Spiro (2005): Collaboration and 
Creativity: The Small World Problem, in: American Journal 
of Sociology, 111/2:447ff. 

77
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Appendix B:  Co-cited items4

Code 2005 2000 90-92 Citation Total Co-
Citations 

AB2002 2 
Albert, R., and A.-L. Barabási. 2002. "Statistical 
Mechanics of Complex Networks." Review of 
Modern Physics 74:4797. 

2

Al1979 3 Allan, Graham. 1979. A Sociology of Friendship and 
Kinship. London: Allen & Unwin.  3

ASBS200
0 3

Amaral, L. A. N., A. Scala, M. Barthélémy, and H. E. 
Stanley. 2000. "Classes of Small-World Networks." 
Proceedings of the National Academy of Sciences of 
the United States of America 97:1114952. 

3

Ax1984 2 Axelrod, Robert. 1984. The Evolution of 
Cooperation. New York: Basic.  2

Ba1950 2 
Bavelas, Alex. 1950. “Communication Patterns in 
Task Oriented Groups.” Journal of the Acoustical 
Society of America 22: 271-282.  

2

BA1999 3 Barabási, A. L., and R. Albert. 1999. "Emergence of 
Scaling in Random Networks." Science 286:50912. 3

Ba2002 2 Barabasi, A. L. 2002. Linked: The new science of 
networks.Cambridge, M.A.: Perseus Publishing. 2

Be1997 2 Bearman, P. 1997. "Generalized Exchange." 
American Journal of Sociology 102:13831415. 2

BG2000 2 
Bala, V., and S. Goyal. 2000. “A non-cooperative 
model of network formation.” Econometrica 
68:1181-1229 

2

Bl1964 2 3 Blau, P. M. 1964. Exchange and Power in Social 
Life. New York: Wiley.  5

Bl1977 3 Blau, P. M. 1977. Inequality and Heterogeneity: A 
Primitive Theory of Social Structure. Free Press. 3

Bo1985 3 Bollobas, B. 1985. Random Graphs. London: 
Academic Press. 3

BR2002 2

Busch, M. L., and E. Reinhardt. 2002. "Testing 
International Trade Law: Empirical Studies of 
GATT/WTO Dispute Settlement." Pp. 457-81 in The 
Political Economy of International Trade Law: 
Essays in Honor of Robert E. Hudec, edited by 
Daniel L. M. Kennedy and James D. Southwick. 
Cambridge: Cambridge University Press. 

2

                                    
4 The list of co-cited references is sorted alphetically in the order of codes for each reference, so that finding the 

reference in the network diagrams is easier. The codes for each cited article were generated by using the first two 
letters of the author plus the year of the publication. In caseof multipleauthors, the first letter of each last name 
plus the year (for the first three authors only). 
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Code 2005 2000 90-92 Citation Total Co-
Citations 

BS1984 2 Blau, P. M., and Joseph Schwartz. 1984. Crosscutting 
Social Circles. Orlando, Fla.: Academic Press.  2

Bu1983 2
Burt, R. S. 1983. Range, Chapter 9 in Burt and Minor 
(eds.) Applied network analysis: A methodological 
introduction. Beverly Hills: Sage. 

2

Bu1992 5 Burt, R. S. 1992. Structural Holes. Cambridge: 
Cambridge University Press. 5

CDD1980 2 

Corcoran, M., Linda Datcher, and Greg Duncan. 
1980. “Information and Influence Networks in Labor 
Markets,'' 1-37, in Duncan, Greg J., and James N. 
Morgan,eds., Five Thousand American Families, Vol. 
VIII, Institute for Social Research,University of 
Michigan.

2

CMH1986 2
Campbell, K., Peter Marsden, and Jeanne Hurlbert. 
1986. “Social Resources and Socioeconomic Status.” 
Social Networks 8: 97-117.  

2

Co1988 2
Coleman, J. S. 1988. "Social Capital in the Creation 
of Human Capital." American Journal of Sociology 
94(supp.):S95-5120. 

2

DG1997 2 
Davis, G. F., and Henrich R. Greve. 1997. "Corporate 
Elite Networks and Governance Changes in the 
1980s." American Journal of Sociology 103:1-37. 

2

Di1991 2 

DiMaggio, P. J. 1991. "Constructing an 
Organizational Field as a Professional Project: U.S. 
Art Museums, 1920-1940." Pp. 267-92 in The New 
Institutionalism in Organizational Analysis, edited by 
W. Powell and P. J. DiMaggio. Chicago: University 
of Chicago Press. 

2

Dr1998 2 
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