
How to migrate Db2 Mainframe
batch to AWS

David Morris

Leidos

@IDUGDb2
#IDUG_NA24

Session Code: DEVOPS1 | Platform: DevOps

My name is David Morris I been a Leidos employee for over 15 years and over 30
years of IT development experience. I work on a large U.S. government contract
using applications that access Db2 databases. Today’s database presentation is
‘how to migrate Db2 Mainframe batch to AWS’. I have been on projects where
mainframe legacy applications have been migrated successfully to modern
environments and modern development include AWS gov cloud.

Previous AWS presentations have included Db2 in AWS cloud. Today’s
presentation will be an on-prem Db2 database with batch migration. Reflecting on
my previous IDUG talk on Spring Batch, it’s evident that technology continually
evolves; currently, AWS Batch technology is at the forefront.

1

Agenda

• Overview
• Current challenges
• Why migrate to AWS?
• How to migrate to AWS
• Summary and Conclusion

Overview – Today’s discussion will focus on the architectural design of a Db2
database that utilizes AWS services for executing Db2 batch processes, transitioning
from a legacy on-premises system to a cloud-based solution. We will explore the
potential risks associated with this migration. The session will specifically address the
migration of Db2 Mainframe batch operations from an on-premises environment to
AWS, considering a scenario where the Db2 database connects to AWS web services
through a Direct Connection over the AWS network.

Current challenges – current challenges faced by AWS migration. On-prem to
cloud.

Why migrate to AWS? Why do we want to migrate? Is it just to modernize? What
are the benefits?

How to migrate to AWS. What are best practices? What are the risks involved.?

Followed up by a Summary and Conclusion. Please save any questions you may
have at the end of the presentation. We can revisit any slides.

2

Current Challenges Part (1 I 2)

• Skill Gap Concerns

• Modernization vs. Maintenance

• Security and Compliance

• Training

COBOL (Common Business-Oriented Language) has been a stalwart in the world of business data processing for
over six decades. Despite the emergence of newer technologies, COBOL continues to play a critical role ,especially
in finance and government sectors. Let's delve into some of the challenges faced by on-premises COBOL batch
systems:

1. **Skill Gap Concerns**:
- One of the most pressing issues is the diminishing pool of knowledgeable COBOL programmers. As the

workforce ages out
- Organizations struggle to find skilled COBOL developers who can maintain, update, and secure existing COBOL

systems

One of the government employees asked me if I knew of any COBOL developers. I said sure I know a few. Great she

said. Can I have their contact details, to which I responded “they are all part of our current
workforce”.

2. **Modernization vs. Maintenance**:
- The debate between modernizing COBOL systems and maintaining them in their current state is complex.
- Modernization can be costly and risky, especially for systems handling critical operations. On the other hand,

maintenance requires skilled personnel and can be challenging as technology advances¹.

Point to Horse cartoon – “You built the horse in 1962 by original developer. For all others it has morphed into a
dragon”.

3. **Security and Compliance**:
- Ensuring that COBOL systems remain secure and compliant with current data protection and privacy standards is

an ongoing challenge.
- As threats evolve, maintaining the integrity and security of these systems becomes paramount¹.

Currently in the CIO’s office for Enterprise architecture worked on MFA. ZMFA for PCOMM screens.

3

5. **Renewed Interest in Training**:
- Recognizing the skill gap, corporate and governments have emphasized the need for COBOL programmers. Not

teaching COBOL in University. The new technologies are Python, JavaScript, Web and cloud. Sure, there is Java
and .NET. Java was released in 1995.

In summary, while COBOL remains essential, addressing the skill gap, balancing modernization efforts, ensuring

security are needed for migration of COBOL batch systems to more modern processes.

3

Current Challenges Part (2 I 2)

• Understanding legacy system architecture
and code

• The mainframe skills gap

• Data migration

• Business continuity and risk

• Budget uncertainty

Legacy Systems: Understanding the architecture and code of legacy systems is crucial
for modernization efforts. It involves analyzing outdated technologies and identifying
risks and inefficiencies.

Mainframe Skills Gap: Addressing the shortage of skilled mainframe professionals is
essential as many experts retire. Strategies include education, training, and adopting
new technologies like cloud.

Data Migration: Moving data between different storage systems or computing
environments is a key IT management task, especially when adopting new
technologies or consolidating data centers

Business Continuity: Developing a Business Continuity Plan (BCP) helps
organizations prepare for and recover from potential threats, ensuring
operational integrity and resilience

Budget Uncertainty: Managing uncertainty in budgeting is important for
measurement quality and decision-making. It involves creating an uncertainty budget
to identify and quantify sources of uncertainty.

4

Why migrate to AWS

• Cost Efficiency

• Scalability and Agility

• Improved Performance

• Reliability and Availability

• Security and Compliance

• Automation and Management

• Reduced Maintenance Overhead

Cost Efficiency: AWS provides a pay-as-you-go model, allowing businesses to
scale resources up or down based on demand. By migrating to AWS, you can
avoid the upfront costs associated with maintaining on-premises infrastructure
and only pay for the resources you actually use.

Scalability and Agility: AWS offers elastic compute resources, enabling you to
easily scale your batch processing capabilities. Whether you need to process
large amounts of data during peak times or handle smaller workloads, AWS can
accommodate your needs.

Improved Performance: AWS provides high-performance computing options,
such as EC2 instances optimized for specific workloads. You can choose the
right instance type to meet your batch processing requirements, resulting in
faster execution times.

Reliability and Availability: AWS offers redundancy across multiple availability
zones, ensuring high availability for your batch processes. Additionally, services
like Amazon S3 provide durable storage for your data.

5

Security and Compliance: AWS provides robust security features, including
encryption, access controls, and compliance certifications. By migrating to AWS,
you can enhance the security of your batch processes.

Automation and Management: AWS services like AWS Batch and AWS Step
Functions allow you to automate batch processing workflows. You can define
complex job dependencies, manage retries, and monitor job progress.

Reduced Maintenance Overhead: With AWS, you no longer need to manage
physical servers, perform hardware upgrades, or handle routine maintenance
tasks. AWS takes care of infrastructure management, allowing your team to
focus on business logic and application development.

Remember that each migration is unique, and it's essential to assess your
specific business goals, workload dependencies, and regulatory requirements
before planning the migration. Collaborate with stakeholders and follow a step-
by-step process to ensure a successful transition.

5

Failure to modernize (1 | 2)

Compare pictures on left to pictures on right

6

Failure to modernize (2 | 2)

• Lack of agility
• Lost productivity
• Missed opportunities

The key risks organizations face when they fail to modernize critical business
applications are:

Lack of agility: Relying on legacy technology can mean lacking the flexibility to tackle
key business challenges or lagging behind other organizations facing similar hurdles.

Lost productivity: By failing to integrate with leading applications or leading to
workarounds, relying on outdated technology often results in unnecessarily complex,
inefficient business processes.

Missed opportunities: Sticking with legacy applications means your business won’t
be able to deliver new ways of delighting customers or enable new ways of working.
Failing to take advantage of leading-edge capabilities puts you behind the
competition, making you less able to compete for both customers and talent.

7

How to migrate to AWS

• Understand Your Db2 Batch Processes
• Design Your AWS Architecture
• Transform Legacy Batch Processes
• Proof of Concept (PoC)
• Operational Benefits

Understand your Db2 Batch processes
• Analyze your existing mainframe batch processes. Identify the critical

components, data dependencies, and performance requirements.
• Consider the specific technologies used in your mainframe environment, such

as z/OS CICS, JCL, Cobol, DB2, VSAM files

Design your AWS Architecture
• Microservices offer agility, scalability, and innovation. However, they also

introduce operational complexity. Whether to use Lamda for short running
processes to EC2 container with source code

Transform Legacy Batch Processes
• Convert your mainframe batch processes into real-time microservices.
• Leverage AWS services to achieve this transformation

Developing a Proof of Concept (PoC) is crucial in software development for several
reasons:
• Feasibility Assessment: A PoC validates your project idea early on. It helps

determine if the concept can be built within budget and technical constraints.

8

• Stakeholder Trust: stakeholders need evidence before committing resources. A
PoC builds trust by demonstrating viability

• Better Planning: Thinking ahead during the PoC phase allows teams to solve
logistical issues before full-scale development

Operational Benefits
• By migrating to AWS, you can achieve a more efficient and cost-optimized

architecture.
• AWS provides on-demand resources, infrastructure as code, and continuous

delivery.
• The transformation allows you to move from monolithic mainframe batch

processing to real-time microservices.

8

The 7 Rs of Migration

• Re-architect to a cloud-native serverless architecture
• Replatform (or "Lift and Reshape")
• Repurchase - SaaS
• Rehost (or “Lift and Shift”)
• Relocate (or "Hypervisor-Level Lift and Shift")
• Retain
• Retire

Most Effort

Least Effort

7 Rs of cloud migration are a set of strategies designed to help organizations
plan, execute, and optimize their migration projects. These strategies provide a
roadmap for determining the best approach to moving applications and data
from on-premises infrastructure to the cloud.

Starting from the bottom up. Least effort to Most effort.

Retire:
- Evaluate existing applications and data to determine if they are still necessary.
- Retire any workloads that are no longer relevant or valuable.
- Decommissioning unused systems reduces complexity and costs.

Retain:
- Not all applications and data need to move to the cloud.
- Some workloads may be better suited to remain on-premises due to

regulatory requirements, performance constraints, or other factors.
- The retain strategy allows organizations to selectively keep certain workloads

in their current environment.

9

Relocate:
- Similar to rehosting, relocation involves moving VMs to the cloud.
- However, it allows for minor adjustments, such as resizing VMs or changing

the underlying hypervisor.
- This strategy aims to optimize performance and resource utilization during

migration.

Rehost:
- In this strategy, you move your existing applications and data to the cloud

without making significant changes.
- It involves migrating virtual machines (VMs) as-is, maintaining the same

architecture and functionality.
- Rehosting is often a quick way to get workloads into the cloud but may not

fully leverage cloud-native features¹.

Repurchase:
- In this strategy, you replace existing software with a cloud-based alternative.
- For example, migrating from an on-premises CRM system to a Software-as-a-

Service (SaaS) CRM solution.
- Repurchasing can simplify management and reduce maintenance overhead.

Replatform:
- Replatforming involves making some modifications to your applications

during migration.
- You adapt the application to take advantage of cloud services while

minimizing code changes.
- For example, you might move a database from an on-premises server to a

managed database service in the cloud.

Re-architect:
- Refactoring is a more significant transformation.
- It involves redesigning parts of your application to fully leverage cloud-native

capabilities.
- You might break monolithic applications into microservices, use serverless

functions, or adopt containerization.

9

• 208 million California DMV mainframe overhaul cancelled
• After 367.5 million Texas gets no new child support system
• State of Michigan 49 million mainframe migration failure

Migration Failures

The $208 million California DMV mainframe overhaul project was cancelled due to
several issues:
• Lack of Progress: Significant concerns arose regarding the project’s

advancement
• Contractual Issues: Hewlett-Packard’s contract ended, and they refused to

hire key staff until renegotiation
• Historical Challenges: The DMV had previously experienced a failed IT

project, indicating a pattern of difficulties in modernization efforts
These factors contributed to the decision to halt the project

The failure of the Texas child support system overhaul, despite the investment of
$367.5 million, can be attributed to several factors:
• Poor Design: The system’s design was not up to the required standards.
• Insufficient Skills: There was a lack of sufficiently skilled labor to execute the

project.
• Budget Overrun: The project’s budget ballooned from the initial estimate, leading

to financial concerns.

These issues highlight the complexities and challenges associated with large-scale IT

10

projects

The State of Michigan’s $49 million mainframe migration project faced failure due to
several reasons:
• Contractual Disputes: The state sued Hewlett-Packard (HP) for failing to

meet contract requirements
• Project Delays: The project experienced multiple deadline extensions and

remained unfinished
• Termination of Contract: Michigan terminated the contract after fruitless

negotiations, claiming HP failed to deliver any new functions despite
payments

10

Large mainframe manual rewrite failures

• Risks with manual rewrite of many millions of lines of code:
• Old logic specifications risks
• Manual code development risks
• Functional equivalence test risks
• Large teams and politics risks
• Documentation risks

• Not updated
• No documentation
• Wrong documentation

• Risk is more manageable with small scale tactical rewrite and
limited number of pinpoint transactions

Manual rewrites of large mainframe applications have historically faced
numerous challenges and often resulted in failures. Here's a summary based on
research:

Old logic specifications risks: May lack clarity or be incomplete due to the
passage of time, changes in personnel, or poor documentation practices. Lost of
tribal knowledge when someone leaves or retires.

Manual code development risks: Error-prone. Manual code rewrite involves a
high risk of errors due to human oversight or mistakes. Since mainframe code
can be complex and intricate, even minor errors can lead to significant issues in
the software.

Functional equivalence test risks: the challenges and pitfalls associated with
ensuring that the rewritten code performs identically to the original code in terms
of functionality. Mainframe systems often consist of highly complex and
interconnected components, making it challenging to accurately replicate the
behavior of the original code during the rewrite process. This complexity
introduces a significant risk of overlooking certain functionalities or edge cases.

11

Large teams and politics risks: the involvement of large teams and
organizational politics can introduce several risks that may impact project
success.
• Communication
• Coordination
• Resistance to Change
• Resource Allocation
• Lack of Accountability

1.Complexity Overwhelm: Mainframe applications tend to be highly complex,
with extensive codebases and intricate dependencies. Manual rewriting efforts
often struggle to comprehensively understand and replicate this complexity,
leading to incomplete or inaccurate translations.
2.Resource Intensiveness: Manual rewriting requires significant resources in
terms of time, manpower, and expertise. Teams may underestimate the effort
required, leading to delays, cost overruns, and ultimately project abandonment.
3.Functional Equivalence Issues: Ensuring that the rewritten application
behaves identically to the original is challenging. Variations in interpretation,
overlooked functionalities, or differences in business logic can lead to functional
discrepancies that impact operations.
4.Lack of Maintenance: Mainframe applications typically lack adequate
documentation and have undergone years of ad-hoc modifications, leading to
"spaghetti code" and accumulated technical debt. Manual rewrites may fail to
address this underlying maintenance issue, perpetuating problems in the new
system.
5.Testing Complexity: Verifying the correctness and reliability of a manually
rewritten application is daunting. Comprehensive testing is essential but can be
time-consuming and costly, particularly for large and complex systems.
6.Loss of Domain Knowledge: Mainframe applications often represent decades
of institutional knowledge embedded in the codebase. Manual rewriting risks
losing this domain expertise if not adequately captured and transferred during
the process.
7.Disruption to Operations: Attempting a manual rewrite can disrupt ongoing
operations, leading to downtime, user dissatisfaction, and potential business
disruptions. The longer the manual rewrite takes, the more disruptive it
becomes.
8.Technological Obsolescence: Manual rewrites may adopt outdated
technologies or design patterns, missing opportunities for modernization and

11

optimization available in newer platforms or architectures.
In summary, manual rewrites of large mainframe applications often fail due to
their complexity, resource intensiveness, challenges in achieving functional
equivalence, lack of maintenance, testing complexities, loss of domain
knowledge, operational disruptions, and risks of technological obsolescence. As
a result, alternative approaches such as automated refactoring or gradual
modernization strategies are increasingly favored for mitigating these risks and
achieving successful transformations.

11

Rip and Replace is
Risky

The “Rip and Replace” approach for migrating from mainframe to AWS is considered
risky due to several factors:
• Complexity: Mainframes often run intricate, mission-critical applications

developed over many years, making migration without business disruption
challenging

• Compatibility Issues: Potential compatibility problems between old
mainframe applications and the new cloud environment can lead to
unexpected migration issues

• Data Loss: The risk of data loss when transferring large volumes of data,
especially if data structures differ significantly between systems

• Downtime: Migration might require system downtime, affecting business
continuity

• Security Concerns: New security vulnerabilities could emerge during the
transition if not properly managed

For a successful migration, careful planning and execution are essential to mitigate
these risks.

12

New York Times Migration (1 I 2)

• Mainframe
• Core-business daily home delivery workload supporting $500 million revenue
• z/OS CICS application with VSAM; 2 million lines of COBOL;600 batch jobs
• Need to reduce operating costs and enable technical convergence with other

platforms

• Solution
• Automated Refactoring to Java, Spring Batch, Amazon RDS
• Automation of tests and deployments with new CI/CD pipeline
• Front-end and APIs in Auto Scaling Groups;Batch logic supported by large EC2

instances
• Isofunctional migration and Functional Equivalence Testing critical for success

The core IT system supporting The New York Times' daily Home Delivery
Platform, running on a mainframe, faced critical business demands. To
modernize and optimize operations, the legacy COBOL-based application
underwent a successful transformation into a Java-based system hosted on
Amazon Web Services (AWS). Through innovative automated refactoring, the
application transitioned to object-oriented code, and its data was migrated from
legacy indexed-files to a relational database.

The migration from the IBM Z mainframe, with its z/OS operating system, was
driven by the need to reduce operating expenses and align the Digital Platform
with the Home Delivery Platform. Previous attempts to manually rewrite the
application proved unsuccessful, leading to the adoption of a strategy focused
on automated refactoring for code and data migration. This approach ensured
functional equivalence, cost reduction, and seamless integration with modern
technologies.

The mainframe application handled crucial functionalities such as billing,
invoicing, customer accounts, delivery routing, product catalog management,
pricing, and financial reporting. It operated as a CICS/COBOL application with a

13

BMS-based 3270 interface accessing VSAM KSDS business data, supported by
batch processing via JCL jobs with CA7 for job scheduling.
With over two million lines of COBOL code, 600 batch jobs, and 3,500 files
transmitted daily to downstream systems, the legacy system consumed
substantial storage and resources. Transitioning to Java involved converting each
COBOL program into a Java class, with JCL transformed into JSR-352 XML using
the Spring Batch runtime. VSAM KSDS files were migrated to an Oracle relational
database, streamlining data management.

Testing, constituting a significant portion of the project timeline, was crucial for
ensuring functional equivalence between the Java and COBOL applications. High
test coverage was imperative, necessitating the automation of test case creation
and analysis, particularly for batch jobs.
The migration to the cloud, specifically AWS, became the preferred deployment
environment for The New York Times, marking a strategic shift. Aristo, the
transformed application, transitioned from a private data center to AWS within a
year of operation.

To expedite releases, a Continuous Integration and Continuous Delivery (CI/CD)
pipeline was established. This phase encompassed the COBOL-to-Java
transformation and the VSAM-to-relational database conversion, culminating in
the launch of the Aristo application in production on-premises.

Future improvements for The New York Times include breaking down the
application monolith into microservices. Key lessons learned emphasized the
importance of comprehensive testing, identification, and removal of obsolete
code, cross-training of developers, and meticulous application understanding
during analysis and planning phases.

Overall, the modernization project evolved from a cost-cutting initiative into a
strategic move to leverage advanced technology for improved customer service
and competitive advantage in the dynamic media industry.

13

New York Times Migration (2 I 2)

• Benefits
• 70% operational costs reduction
• Accelerates software development and cloud-native services adoption
• Easier access to data gaining business and technology insights
• Improves customer service and gains competitive advantage

Automated Refactoring of a New York Times Mainframe to AWS

The modernization of The New York Times' core IT system supporting its Home
Delivery Platform resulted in significant benefits. The legacy COBOL-based
application was successfully transformed into a Java-based system hosted on
AWS, reducing operating expenses and aligning with modern technologies.
Automated refactoring ensured functional equivalence, cost reduction, and
seamless integration. Crucial functionalities such as billing, invoicing, and
product catalog management were streamlined. Transitioning to Java and a
relational database optimized data management, while comprehensive testing
ensured application reliability. Migration to AWS improved deployment flexibility,
and the establishment of a CI/CD pipeline expedited releases. Future
improvements include breaking down the application into microservices.
Lessons learned emphasized the importance of testing, code maintenance,
developer cross-training, and thorough application understanding. Overall, the
project transitioned from cost-cutting to strategic enhancement, enhancing
customer service and competitive advantage in the media industry.

14

De-risking Db2 on-prem batch

• Principles align with AWS mass migration methodology
• Start small, Scale fast
• Migrate then optimize
• Automate as much as possible
• Go build

The AWS mass migration methodology, known as the AWS Migration Acceleration
Program (MAP), is a comprehensive cloud migration program designed to accelerate
the migration and modernization journey to the cloud. It’s based on AWS’s
experience with migrating thousands of enterprise customers to the cloud.

15

Business Benefits

Explain slide

16

ApproachBusiness Benefits

• Break down into workloads
• Migrate workloads in separate

projects
• Each project provides business

value
• Develop best practices

• Measurable benefits
• Start with one workload
• Prove feasibility and value
• Enable innovation

Start small

• Automate where possible, to
minimize technical risk

• Automate to avoid increasing
duration, cost and human risks

• De-risk short term business benefits
• Infrastructure cost reduction
• Infrastructure agility and elasticity
• Leverage DevOps

Migrate quickly

• Incremental transitions
• From COBOL to Java, Python,

C#, etc.
• From IaaS to cloud-native
• From monolith to

microservices

• Agility with cloud-native services
• Agility with polyglot architecture
• Innovate

Optimize on AWS

• Proof of Concept
• Migration Plan
• First workload into production

• Prove technical viability and deliverable quality early
• Prove migration speed and functional equivalence early
• Early benefits from deliverables

Go Build

17

On-prem refactoring

18

Modernized architecture stack

AWS ServiceTargetSource

EC2, ECS, EKS, Elastic Beanstalk,
AWS Lambda

Java, C#, C++, Spring Framework,
JavaScript, Python, Node.js

COBOL, PL/1, Assembler,
FORTRAN

S3, EC2, ECS, EKS, Elastic
Beanstalk, AWS Lambda

XML, JSON, YAMLCICS

AWS Batch, EC2, ECSGroovy, AWS Batch, Ctrl-M,
Spring Boot

JCL

Amazon RDS for Db2, DynamoDBDb2, MongoDBVSAM, IMS, IDMS, Db2

EC2Jasper, BIRTReporting

Explain slide

19

Accessing on-premises Db2 from AWS

• AWS Lambda and Docker
• AWS Glue

Accessing an on-premises DB2 database from AWS

AWS Lambda and Docker: You can use AWS Lambda to run external transactions
on DB2 for IBM i databases. This involves using Docker on Amazon ECR and AWS
Lambda container images to transfer data between the two environments1. The
process includes building a Docker image with DB2 interfacing code, deploying it
to ECR, and creating a Lambda function from the image to run your queries on
the target DB2 database.

AWS Glue: AWS Glue is a fully managed ETL service that can connect to on-
premises JDBC data stores, including DB2. It allows you to access and analyze
data stores using JDBC connectivity through elastic network interfaces (ENIs) in
an Amazon VPC. This connection can be established over a virtual private
network (VPN) or AWS Direct Connect (DX)2.

20

AWS Direct Connect

AWS offers a connectivity solution called Direct
Connect, which addresses concerns about sending
large amounts of data over the public internet due to
potential inconsistencies and security regulations.
Direct Connect establishes a private network
connection between corporate offices or traditional
data centers and AWS Virtual Private Cloud (VPC)
without relying on the public internet.

To set up Direct Connect, one typically engages with a
partner internet service provider to establish a
dedicated network link between their network and the

21

Direct Connect facility. Approval from AWS is
required, which involves a brief waiting period. Once
approved, a special authorization letter is provided to
the network partner to establish the connection with
AWS's networking equipment. This creates a private
network link into AWS's backbone network.

Direct Connect offers various connection speeds,
from 50 megabits per second to 100 gigabits per
second, depending on the location and partners
involved. Apart from the speed benefits, Direct
Connect can significantly reduce data transfer costs
compared to using the public internet, especially for
large volumes of data. For instance, while outbound
data traffic from AWS to office locations via the
internet might cost nine cents per gigabyte, Direct
Connect could reduce this to around two cents per
gigabyte.

However, there are considerations and potential risks
with Direct Connect. It relies on a single network
connection, making it vulnerable to failures, whether
from equipment malfunctions, maintenance
activities, or external factors like cable damage. To

21

mitigate these risks, redundancy is crucial, often
requiring at least two Direct Connect connections to
ensure continuous operation and business-critical
traffic flow.

In summary, AWS Direct Connect provides a secure,
high-speed, and cost-effective solution for connecting
corporate offices and data centers to AWS VPC,
bypassing the public internet. However, implementing
redundancy is essential to safeguard against potential
network failures and ensure uninterrupted
connectivity.

21

Db2 with Direct Connect and AWS Batch

Explain slide

22

AWS Batch Wizard (1 | 10)

• Define Job
• Create a Compute Environment
• Compute Resources
• Networking
• Create a Job Queue
• Docker Image
• Bash Script
• Create Job Definition
• Submit Batch Job

23

AWS Batch Wizard (2 | 10)

Explain slide

24

AWS Batch Wizard (3 | 10)

Explain slide

25

AWS Batch Wizard (4 | 10)

Explain slide

26

AWS Batch Wizard (5 | 10)

Explain slide

27

AWS Batch Wizard (6 | 10)

Explain slide

28

AWS Batch Wizard (7 | 10)

Explain slide

29

AWS Batch Wizard (8 | 10)

Explain slide

30

AWS Batch Wizard (9 | 10)

Explain slide

31

AWS Batch Wizard (10 | 10)

Explain slide

32

AWS Batch Best Practices

• Right size the batch job
• Optimize Containers and AMIs
• Consider Lambda for Jobs < 15 mins
• EC2 On-Demand or EC2 Spot instances
• Troubleshooting

Right size the batch job
AWS Batch is suitable for running jobs at scale and low cost. However,
consider the following scenarios:

Short Jobs: If a job runs for only a few seconds, binpack tasks together
before submitting them to AWS Batch.
Jobs That Must Run Immediately: If you need a response in under a
few seconds, consider using Amazon ECS or Amazon EKS instead.

Before running a large workload (50,000 or more vCPUs), follow this checklist:
Check EC2 Quotas: Verify your Amazon EC2 quotas (limits) for both
Amazon EC2 Spot and On-Demand instances.
Elastic Block Store (EBS) Quota: Ensure you have enough EBS volume
quota for each Region.
Use Amazon S3 for Storage: Leverage Amazon S3 for high throughput
and storage needs.

Optimize Containers and AMIs:
Choose efficient container images and optimize your Amazon Machine Images
(AMIs) for performance.
Compute Environment Resource:
Decide between Amazon EC2 On-Demand or Amazon EC2 Spot instances

33

based on your workload requirements.
Consider Lambda for Jobs < 15 mins
Use Amazon EC2 Spot Best Practices for AWS Batch:

Configure your job definitions to use Spot instances effectively.
Set up fallback strategies to handle Spot instance interruptions.

Common Errors and Troubleshooting:
Be aware of common issues related to job scheduling, dependencies, and
resource allocation.

33

Explain slide

34

AWS ECS or AWS Lambda?

AWS LambdaAWS ECS

A function-executing service that runs
in response to triggers, powered by a
serverless environment.

High-performing and scalable
container management service

Requires code. Currently, AWS Lambda
supports Python, NodeJS, Java, Ruby,
GO, C# and PowerShell.

Only works with containers.

Generally, a small application built
with a few lines of code.

Used for running Docker containers
and deploying entire enterprise-scale
applications.

Execution time is limited to 15
minutes.

The tasks can be run for a long time .

Billed based on the number of
requests

Charged by the hour

Explain slide

Amazon Elastic Container Service (ECS) is a fully managed container orchestration
service provided by Amazon Web Services (AWS). It simplifies the deployment,
scaling, and management of containerized applications, making it easier for
developers to build, package, and run applications using containers

AWS Lambda is an event-driven, serverless Function as a Service (FaaS) provided
by Amazon Web Services (AWS). It allows developers to run code without
provisioning or managing servers. When a Lambda function is triggered, AWS
automatically provisions the necessary resources to execute the code

35

AWS Batch Architecture with Lambda

Explain slide, defs for each component

36

AWS ECS vs AWS Lambda: How To Choose

• What is the size of my application?
• What is the run time of my application?
• What is my software development and deployment budget?
• What are my project configuration requirements?

Choosing between AWS ECS and AWS Lambda depends on the specific needs of your
application. Here’s a brief comparison to help you decide:

AWS ECS:
• Suitable for container management and orchestration.
• Offers more control over the environment and networking.
• Ideal for long-running applications and complex microservices architectures

AWS Lambda
• Serverless compute service, automatically managing the compute resources.
• Best for event-driven applications and executing code in response to triggers.
• Simplifies deployment and scaling, with a pay-per-use pricing model

37

Summary and Conclusion

• Why migrate to AWS?
• Modernization
• Skill gap challenge

• How to migrate to AWS?
• Understand your Db2 batch processes
• Design your AWS Architecture
• De-risk Db2 on-prem batch
• Proof of concept

Today's summary and conclusion highlight the benefits and key steps involved in
migrating to AWS, emphasizing its advantages such as cost savings, scalability,
and modernization opportunities.

Migrating to AWS offers significant benefits, including cost savings through its
pay-as-you-go model, agility for quick deployment and innovation, and the
opportunity to modernize applications and infrastructure. It also helps mitigate
skill gaps associated with on-premises mainframe Db2 batch processes.

The migration process involves several key steps to ensure a smooth transition.
First, understanding Db2 batch processes is crucial for analyzing current
workflows and requirements. Then, designing an AWS architecture that is
scalable, secure, and efficient is essential, leveraging best practices and
reference architectures provided by AWS. De-risking Db2 on-prem batch
processes involves evaluating potential risks and developing mitigation
strategies before migration. Finally, conducting a proof of concept allows for
testing the migration strategy to ensure it aligns with business requirements and
is cost-effective.

38

In conclusion, migrating to AWS offers numerous benefits and opportunities for
organizations, but it requires careful planning and execution. By following the
outlined steps and leveraging AWS's resources, businesses can achieve a
successful transition to the cloud and realize its full potential.

38

Please fill out your session evaluation!

Session Code DEVOPS1

@IDUGDb2
#IDUG_NA24

How to migrate Db2 Mainframe
batch to AWS

David Morris

David.P.Morris.Jr@Leidos.com

Thank you for attending today’s presentation. I hope you found it interesting and
informative on migrating Db2 Mainframe batch to AWS. If you have any questions
you can reach me at my email address. I wish you best of luck slaying your IT
dragons.

Please remember to fill out your session cards. The Session Code is DEVOPS1.

39

