
Oh, The Things I’ve Seen
Db2 Stories and Best Practices

Craig S. Mullins
Mullins Consulting, Inc.
www.mullinsconsulting.com

IBM Champion for Data and AI
IBM Gold Consultant

1

Oh, The
Things I’ve

Seen
Db2 Stories and Best Practices

By Craig S. Mullins
(with a nod to Dr. Seuss)

Join me on a Suess-ian journey through some of the things I’ve seen during my days as
a Db2 consultant

2

Agenda

• One Stats, Two Stats,
Old Stats, New Stats

• RID-ing is Fundamental
• The DBA Will Review It
• A Small Matter of Lock Size
• Not Db2 at All
• Some General Best Practices

Along the way we will discuss several interesting things I’ve seen. We’ll try to have
some fun, while at the same time making sure we talk about actual Db2 activities and
issues… and bring it all back around to the best practices that can eliminate those
“things I’ve seen.”

Reading the agenda here, you might be able to guess some of the things I’ve seen…
but maybe not all of them. So join me if you will…

3

One Stats, Two Stats,
Old Stats, New Stats
Dealing With Outdated RUNSTATS

One stats

two stats

old stats

 new stats

And we will start our travels by discussing Db2 RUNSTATS

4

Things I’ve
Seen…

So, what have I seen with RUNSTATS. A lot of times, I see RUNSTATS not being run. But
why?

5

Scenarios

Sometimes I see table spaces with the dreaded -1 statistics, and that means that
RUNSTATS were never run. And I see this not just on newer objects, but recently on
table spaces that were over 10 years old!

Sometimes RUNSTATS are not run because the organization has been burned in the
past (REORG/RUNSTATS/REBIND) with bad performance. So they get to a point where
things are running OK and just stop running RUNSTATS.

Another frequent issue I see is when RUNSTATS are run, then some manuals statistics
are applied to get the access paths needed. Yes, this may have happened 5, 10, 15, or
more years ago. A good implementation of this approach will still schedule RUNSTATS
but then add a step to make the manual changes. A bad implementation will just stop
running RUNSTATS. And then lose the list of table spaces with manual stats, and then
just spread FUD around so that RUNSTATS do not get run again or we’ll go back to that
problem we had in 1998.

6

7

• Scans data
• Gathers details on data
• Records statistics in the

Db2 Catalog
• Used to generate access

paths
• Can be used by DBAs, too

• RTS usually more accurate

So what is RUNSTATS? RUNSTATS is a utility that scans your data and updates
statistical metadata in the Db2 Catalog about your objects. This includes things like
number of number of records, number of pages, average record length, number of
key values, column cardinality, and so on. The Db2 optimizer uses these statistics
to determine access paths to the data.

Real Time Stats are different and can be used by DBAs and tools to automate
maintenance tasks. Like when to run RUNSTATS!

8

Table Statistics
• CARDF

• Number of rows in the table (or partition)

• NPAGESF
• Number of pages containing data

• NACTIVEF
• Number of active pages in the table space

• PCTROWCOMP
• Percentage of rows that are compressed

Some statistics provide data on tables

9

Index Statistics
• NLEAF – number of active leaf pages
• NLEVELS – number of levels in the index
• CLUSTERRATIOF – the percentage of rows

that are in clustered order
• CLUSTERING – whether the index is the

clustering index
• FIRSTKEYCARDF – number of distinct

values for the first column of the index
• FULLKEYCARDF – number of distinct

values for the complete index key (all
columns in the key)

Some statistics provide data on indexes

10

Column Statistics
Single Column
• COLCARDF – Number of distinct values for a column

• Assumes data is uniformly distributed
• HIGH2KEY – Second highest key value
• LOW2KEY – Second lowest key value

Multiple Columns
• SYSCOLDIST.CARDF – Number of distinct values for a

group of column
• Useful for correlated data
• (TYPE=C, NUMCOLS>1)

And still other statistics provide data on columns

11

Distribution Statistics
• Non-Uniform Distribution Statistics

(NUDS), also called FREQVAL
statistics, are useful for determining
skew.

• Without them, data is assumed to be
uniform.

• SYSCOLDIST.FREQUENCYF – number of
times a given value (or values) occur(s)

• Can be collected for a single column
• (TYPE = F, NUMCOLS = 1)

• Or for multiple columns with
COLGROUP

• (TYPE = F, NUMCOLS > 1)

Then there are statistics for special situations

12

Histogram Statistics
• Statistics in quantiles over intervals

• aka Range statistics
• Maximum of 100 quantiles

• Fewer than 10 quantiles, reverts to
distribution statistics

• A column value belongs to only one quantile
• NULL has its own separate quantile

• Db2 will attempt to:
• keep the quantiles of similar size

• same # of rows, not same # of values
• avoid big gaps between the quantiles

Another special situation is handled by histogram statistics. A histogram is a way of
summarizing data that’s measured on an interval scale. A histogram is particularly helpful
when you want to highlight how data is distributed, to determine if data is symmetrical or
skewed, and to indicate whether or not outliers exists.

The histogram is appropriate only for variables whose values are numerical and measured on
an interval scale. To be complete, let’s define interval: a set of real numbers between two
numbers either including or excluding one or both of them. Histograms are generally used
when dealing with large data sets. And you will be interested in histogram statistics because
they can be quite useful to the Db2 optimizer for certain types of data and queries. Instead of
the frequency statistics, which are collected for only a subset of the data, sometimes Db2 can
improve access path selection by estimating predicate selectivity from histogram statistics,
which are collected over all values in a table space.

Consider collecting histogram statistics to improve access paths for troublesome queries with
RANGE, LIKE, and BETWEEN predicates. They also can help in some cases for equality (=), IS
NULL, IN LIST, and COL op COL predicates.

13

What Should You Collect?

So, what is a good rule of thumb for what to collect???

First of all, you should be running RUNSTATS regularly if your data is changing. And most data
changes, right?

14

RUNSTATS
Guidelines (1)

• Collect RUNSTATS for all indexes

RUNSTATS TABLESPACE DSN8D81A.DSN8S81D

INDEX (ALL)

• Collect RUNSTATS for columns in
sensitive WHERE clauses

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE (DSN8810.EMP)

COLUMN (FIRSTNME, LASTNAME, SALARY)

Here we see some examples of collecting what I just recommended.

The first example shows collecting RUNSTATS on all indexes of tables in the identified
table space.

Then we show an example for collecting stats for named columns in sensitive WHERE
clauses.

15

RUNSTATS Guidelines (2)
• Collect RUNSTATS for skewed data

RUNSTATS TABLESPACE
DSN8D81A.DSN8S81E
TABLE (DSN8810.EMP)
COLGROUP(JOB) FREQVAL COUNT 10

Here we see an example where the JOB column is skewed. That is, there will be more
worker bees than there will be managers, or CxOs. So we capture that using FREQVAL
statistics.

16

RUNSTATS Guidelines (3)
• Collect RUNSTATS for correlated data

RUNSTATS TABLESPACE
DSN8D81A.DSN8S81E
TABLE (DSN8810.EMP)
COLGROUP(CITY, STATE, ZIP)
FREQVAL COUNT 10

Here we capture information on correlated data – like CITY, STATE, and ZIP – using a
COLGROUP with FREQVAL.

17

RUNSTATS Guidelines (4)
• Collect Histogram RUNSTATS for range skews

• Stores QUANTILENO, LOWVALUE, and HIGHVALUE for up to 100 quantiles

RUNSTATS INDEX (OWNER.XTRG)
HISTOGRAM NUMCOLS 2

Slow6:00-6:45Breakfast

Busy6:46-8:10

Slow8:11-11:25

Busy11:25-1:15Lunch

Moderate1:16-1:45

Slow1:46-4:55

Moderate4:56-5:45Dinner

Busy5:46-7:15

Slow7:16-11:00

e.g.) DATE, TIMESTAMP

And here is an example collecting histogram statistics.

You can tell RUNSTATS to collect histogram statistics by coding the HISTOGRAM keyword in
conjunction with the COLGROUP option. In this way, you can collect histogram statistics for a
group of columns. You also must tell DB2 the number of quantiles to collect by specifying the
NUMQUANTILES parameter. NUMQUANTILES also can be specified with the INDEX
parameter, in which case, it indicates that histogram statistics are to be collected for the
columns of the index.

In this case, we want to capture the time periods for a lunch rush and we are collecting
histogram statistics for the columns of the index XTRG.

Things I’ve Seen
Outdated statistics,

a silent foe,
Caused the RID pool

to overflow.
Queries stumbled,

indexes failed,
As SQL's prowess

became impaled.

So, be sure to have a plan for keeping you RUNSTATS up-to-date!

18

RID-ing is Fundamental!
Watch your Access Paths and RIDs!

RIDs are another area that I’ve seen cause problems, especially when coupled with a
lack of RUNSTATS.

Also, as of Db2 12 for z/OS, RID usage in access paths has increased. Note this blog
post that explains why: https://tinyurl.com/listpreDb2-12

19

What is a RID?

In Db2 for z/OS, a RID (Record IDentifier) is a unique identifier assigned to each row within a
table. It consists of a page number and a slot number within that page. The RID serves as a
physical address that allows Db2 to locate and access specific rows efficiently. RIDs are
commonly used in Db2's internal processing for navigating and retrieving data from tables.

20

When does Db2 use
RIDs in access paths

• The RID pool is used for:
• Enforcing unique keys for multi-row updates
• List prefetch
• Multiple index access
• Hybrid joins

• The RID pool is allocated dynamically as
it is needed

• MAXRBLK zparm defines size of the RID pool
• Setting MAXRBLK to 0 disables RID list processing

• Work file can be used for RID lists when
RID pool storage is insufficient

• MAXTEMPS_RID zparm defines the maximum
number of RIDs that can be stored in the work
file

The RID pool is used for all record identifier (RID) processing, including enforcing unique keys
for multi-row updates, list prefetch, multiple index access paths, and hybrid joins.

Db2 collects RIDs that match the selection criteria and places them in a list in the RID pool.
The list is sorted by page number, which is contained in the RID. DB2 then uses the sorted list
to access the table by reading up to 32 pages per I/O and attempting to read ahead one block
of 32 pages before use. The RID pool is allocated dynamically as it is needed. The maximum
size of the pool is determined by the ZPARM MAXRBLK.

The work file database is used to store a RID list when the RID pool storage cannot contain all
the RIDs of the list. When RID pool storage overflow occurs for a RID list, DB2 attempts to
store the RID list in work file storage instead of falling back to a relational scan.

The maximum number of RIDs (measured in RID blocks) that DB2 is allowed to store in the
work file database is determined by ZPARM MAXTEMPS_RID. Setting it to NO LIMIT can help to
prevent reverting to table space scan when an arbitrary limit for work file usage is reached.

21

What is List
Prefetch?
• When list prefetch is

involved in an access path:
• Db2 retrieves a list of RIDs

through a matching index
scan on one or more
indexes.

• The list of RIDs is sorted in
ascending order by page
number.

• Pages are prefetched in
order, using the sorted list
of RIDs.

List prefetch reads a set of data pages determined by a list of record identifiers
(RIDs) taken from an index. List prefetch access paths are ideally suited for queries
where the qualified rows, as determined in index key sequence, are not sequential,
are skip-sequential but sparse, or when the value of the DATAREPEATFACTORF
statistic is large.

22

When is List Prefetch Used?
• Typically with a single index that has a cluster

ratio lower than 80%
• Sometimes on indexes with a high cluster

ratio, if the estimated amount of data to be
accessed is too small to make sequential
prefetch efficient, but large enough to require
more than one regular read.

• Always to access data by multiple index
access.

• Always to access data from the inner table
during a hybrid join.

• Typically for updatable cursors when the
index contains columns that might be
updated.

• When IN-list predicates are used through an
in-memory table as matching predicates
(ACCESSTYPE='IN').

https://www.ibm.com/docs/en/db2-for-zos/12?topic=u-list-prefetch-prefetchl

List prefetch may be used in multiple circumstances, as outlined here. This list comes
directly from the IBM Db2 documentation as listed at the URL on the bottom of the
slide.

23

But List
Prefetch Can
Cause
Problems

Although it can be helpful at times, sometimes list prefetch can cause problems, too!

24

Types of RID
Problems

RDS Limit
exceeded

The number of
RIDs that can fit
into the guaran-
teed number of
RID blocks was

greater than 25%
of the table.

DM Limit
Exceeded

The number of
RID entries was
greater than the
physical limit of

approximately
26 million RIDs.

Proc.Lim.
Exceeded

RID pool storage
was exceeded.

Overflow

RID list
overflowed to a

work file.

* Index access abandoned and replaced with tablespace scan.

* * *

RDS Limit exceeded
The number of RIDs that can fit into the guaranteed number of RID blocks was
greater than 25% of the table.
Index access abandoned and replaced with tablespace scan.

DM Limit Exceeded
The number of RID entries was greater than the physical limit of approximately
26 million RIDs.
Index access abandoned and replaced with tablespace scan.

Proc.Lim. Exceeded
RID pool storage was exceeded.

Overflow
RID list overflowed to a work file.

25

RDS Problems Identified

Used a monitor (in this case Mainview) to identify RID issues.

An awful lot of RDS failures were occurring.

26

RDS Limit Failure Details

Drilled down in the monitor to identify the packages and statements that were
causing the RDS failures.

Here we can identify RDS Limit failures with RID Fail equal to M and RID used equal
to NO.
This particular shop had a day’s worth of data available to the monitor, so I had to
scroll through the RID list data looking for RDS failures each day. There were pages
and pages of data.

After identifying a collection and package to review you have to PF11 over to the right
to get the statement number.

27

Statement Numbers

After scrolling to the right with PF11 you can see the statement numbers associated
with each entry. Armed with collection, package, and statement number you can go to
the Db2 Catalog and find the offending statement.

The next step was to check the PLAN_TABLE to see the access path and verify that the
statement was using List Prefetch in the access path for the identified statement
number.

28

Sometimes the
PLAN_TABLE Data was
Not There!

• Best practice was EXPLAIN(YES)
• Either they didn’t follow it or…
• They deleted PLAN_TABLE data over

time as the table grew

• Solution?
• EXPLAIN PACKAGE

• Nobody there had ever done this
• Execution requires (one of):

• SQLADM, SYSADM, SYSOPR, or
SYSCTRL

• And, of course, I did not have any of
those authorities

• Waited……

Even though this site had a best practice in place to BIND everything that went to
production with EXPLAIN(YES), there were still times that the access paths were
missing from the PLAN_TABLE!

29

Most Common Reason
for RID Failures

• RUNSTATS!
• Never Run
• Inaccurate
• Outdated

One of the most common reasons for RID pool process failures is not running RUNSTATS.

If you look back at the first story about RUNSTATS not being run, yes, this particular client had
that problem. Manual stats were added (decades ago), RUNSTATS were not run to keep the
manual stats in place, but the list of tables this was done for (although documented I’m told)
could not be found. So, some RUNSTATS were being done but nobody wanted to run anything
additional for fear of messing up 30-year-old tuning efforts.

30

Dealing with RID
Pool Failures

The client in this case was the same one that was afraid of running RUNSTATS, so that
was off the table. At least until a lot of reviewing was done.

But we wanted to eliminate the RDS failures because there were a LOT of them and
they were chewing up CPU.

31

• Monitored daily for RDS
failures

• Captured package and
StmtNo

• Reviewed access paths
• Not always there

• Recommended fixes
• OPTIMIZE FOR 1 ROW

• Not always possible
• New index
• REBIND
• IDAA

QUERYACCELERATION(ELIGIBLE)

What I Did

So what did we do?

Reviewed access paths (which were not always there)
Added OPTIMIZE FOR 1 ROW to the statement to remove List Prefetch

Worked well, except for “environments” (some were failing, others not)
In some cases added a covering index to resolve and remove List Prefetch
Also, cannot add OPTIMIZE FOR 1 ROW to an UPDATE statement!

Some issues arose
Could not add OPTIMIZE FOR 1 ROW to a SELECT COUNT(*)

Singleton SELECT
Changed to a cursor and added OPTIMIZE FOR 1 ROW

Could not add OPTIMIZE FOR 1 ROW to an UPDATE statement
Added an index or REBIND in some cases

Sometimes a simple REBIND helped…
when it had been a looong time since the last REBIND and data volumes changed

A few packages were accessing data already on IDAA, but a table or 2 was missing
Reviewed and loaded the table to IDAA

Rebound with QUERYACCELERATION (ELIGIBLE)

32

Things I’ve Seen
So let us heed

this cautionary tale,
And keep our statistics

fresh without fail.
For in the world of data,

chaos can reign,
And success relies

on keeping stats sane.

33

The DBA Will
Review It

No Need to Worry!

The DBAs are the center of the Universe, right? They will review EVERYTHING and
make sure it is OK!

34

Things I’ve Seen

With scrutinizing eyes
and a meticulous hand,

The DBA reviews all,
a task ever grand.

All queries and updates,
each column and row,

No badness escapes,
this we all know!

But can the DBA review EVERYTHING all the time?

Is that the right thing to make the DBA team do?

35

The Situation
• I was working on a team of DBAs

for a period of time
• Developers send “data fix SQL” to

DBAs to review and accept for
accuracy

• Done instead of coding programs to
correct data problems

• Instead just issue some SQL
• Mostly INSERT and UPDATE

statements

• One group did this frequently
• Usually, a dozen or so statements

Developers created and then sent “data fix SQL” to the DBA team to review and accept for
accuracy.

This was being done instead of coding programs to correct data problems.

Works fine for a few statements but not for pages and pages of SQL!

36

Then…

• …I got a request with
hundreds of statements!

I am not a human compiler, nor is any DBA!

37

The Truth
• A DBA will find 10 problems

in a 12-line SQL
statement…

• But nothing in a 7,500-line
program!

A DBA (or any reviewer) will find 10 problems in a 12-line program…

But nothing in a 7,500-line program!

38

What I Did

• I refused to review it.
• It is an application issue.

• Instead, I took an image
COPY of the tables that
were being modified before
leaving for the day.

• I knew I’d have something
to fall back to if the
modifications were somehow
wrong.

But I did NOT want to take responsibility for reviewing hundreds of SQL statements for
accuracy and if any failed then it would be the DBA’s fault!

39

Also
• I recommended to the DBA team

lead that reviewing SQL this way is
not a good plan moving forward

• Why?
• If the DBA reviews it and misses

something it becomes the
DBA’s fault!

• It is better to write “fix”
programs to implement changes
because it can be easier to
track and back out problems

• If data is constantly needing to
be modified like this there is
some sort of root cause that
should be analyzed and
remediated instead of just
constantly fixing data

40

In the realm of data,
where things are not right,

Lies a daunting task,
a DBA’s great fight.

Hundreds of statements,
awaiting review,

But why the DBA? What did he do?

Line by line, the DBA delves,
Through the pages of statements,

where the data is shelved.
But as the pile grows taller,

the hours they wane,
And efficiency falters,

under the strain.

Instead let us honor the
programmer's art,

In crafting a program
to play its true part.

To change so much data
correctly it seems,

A program solves
all of the DBA’s dreams!

41

A Small Matter
of Lock Size

Escalating locking problems!

Another situation I have seen at some sites is a ton of lock escalations.

42

Lock Escalation!

In Db2 land,
so big and so wide,

Lived apps that locked,
oh, how they'd collide!

When queries ran,
all eager and quick,

Locks would escalate,
creating quite the shtick.

43

Lots of Lock Escalations Occurring
• Lock escalation occurs when a threshold is hit

• DSNZPARMs
• NUMLKUS
• NUMLKTS
• Db2 12 FL 507 delivers built-in global

variable so these can be set
at the package level

• LOCKMAX

• What is a lock escalation?
• Row or page locks, held by an application process on a

single table or tablespace, are released.
• And a tablespace lock, or a set of partition locks is acquired.
• When locks escalation occurs, Db2 issues message DSNI031I,

which identifies the tablespace for which lock escalation occurred,
and some information to help identify the plan or package that was
running when the escalation occurred.

What is a lock escalation?

When a threshold is reached (either a ZPARM or a tablespace parameter), all row or page locks
held by an application process on a
single table or tablespace, are released. And a tablespace lock, or a set of partition locks is
acquired.

When locks escalation occurs, Db2 issues message DSNI031I, which identifies the
tablespace for which lock escalation occurred, and some information to help identify the plan
or package that was running when the escalation occurred.

44

Finding Them

• Viewed MSTR log
• Looking for DSNI031I

• Table space (Resource)
• Package

Finding lock escalations can be a tedious process. There are tools that can help but
not every organization has such a tool.

You can always look at the DSNMSTR log and search for the DSNI031I messages. Or,
you can always just search for “escalation” which is easier to spell!

Then you have the table space being impacted and the package causing the
escalation.

45

Recurring Theme

• Escalating on tablespaces
with LOCKSIZE ROW

• Never re-evaluated LOCKMAX
• All were set to SYSTEM

• Moving from PAGE to ROW locking
means acquiring more locks because
there are multiple rows per page

• But when they changed from ANY/PAGE
to ROW no add’l analysis was done!

A recurring theme at this shop was that lock escalations were occurring on table
spaces with LOCKSIZE ROW. I did a bit of digging and it seems that “long ago there
were problems” so some of the table spaces were modified from PAGE locks to ROW
locks.

OK, but at the same time they SHOULD have re-evaluated the number of locks for the
table space by setting the LOCKMAX parameter from something other than SYSTEM.
Using SYSTEM, the LOCKMAX is the same as the NUMLKTS DSNZPARM value. But
there are more row locks taken than page locks, at least most of the time, because
there are multiple rows per page. But no analysis was done and all the table spaces
used LOCKMAX SYSTEM.

46

Check COMMIT
Frequency
• Some programs had no COMMIT

logic
• This should NEVER be the case

for any program that changes
data!

• Adjustments to programs with
COMMIT logic

• COMMIT more frequently to
reduce the instances of lock
escalation

So the first thing we did was throw things over to the application teams and make sure
that every program had COMMIT logic in place. And, of course, some did not. Those
programs had to be changed to add COMMIT logic.

The programs that had COMMITs in them had to be changed to COMMIT more
frequently.

Committing, or committing more frequently, helped to alleviate many of the issues.

47

Consider Setting
LOCKMAX

• Number of rows per page
multiplied by NUMLKTS

• Also take into account
compression

• Still may have issues with
NUMLKUS

• Consider the host variables
added with Db2 FL507

Perhaps a better approach would have been to modify the LOCKMAX setting. If
NUMLKTS is 10,000, then setting LOCKMAX to 10,000 x (rows per page) would be a
good approach to consider. Be sure to also take compression into account, which can
increase the number of rows/page.

Of course, there still may be NUMLKUS issues (because a user is now taking a lot
more locks). The Db2 12 FL507 host variables can be used for those packages that still
present lock escalation issues.

48

Lock De-escalation!

First, it starts small, just a row or two,

But as things heated up, it grew into view.

Shared locks turn exclusive, escalating high,

Blocking other queries as they pass by.

So, programmers and admins dug right in,

To smooth things out keeping problems to the min.

So, remember, dear friend, in Db2's domain,

Lock escalation's a dance, a delicate game.

With finesse and precision, it keeps things in line,

In the wondrous world of Db2 so fine!

It can take time, but with a team effort lock escalations can be tackled!

49

Not Db2 at all
Big problems, it must be Db2!

50

Things I’ve Seen

In the realm of the mainframe,
a mystery did brew,

A problem perplexed,
with no clue what to do.

Db2, they suspected,
the culprit for sure,

But beneath the surface,
dwelled a different cure!

51

The Situation
• Hired to help with a

“significant performance
problem”

• System was an entangled
mass of parts

• Old application that ran on
batch, CICS, VSAM and flat
files

• Many program from old app
converted to Db2 and CICS,
but not all

• Other portions rewritten in
.NET using Oracle

It can take time and effort to dig through a system best described as “A big old mess of
stuff”

52

A Few More
Details

• They had hired other experts
for the other parts of the
application

• Wanted me to focus on their
Db2 SQL

• I reviewed access paths and
tuned many statements

• Had to be implemented by
programmers

• Regular tests of the entire
application conducted

• Small performance gains

This was a long-running project where the client had hired many experts for the other
parts of the application. I was brought in to focus only on the Db2 SQL, looking for
potential performance issues.

I reviewed access paths and tuned many statements. In some cases adding indexes
and in others making code changes that had to be implemented by programmers.

Regular tests of the entire application were conducted

And each time there were small, but measurable performance gains

53

Then One of the Old Guys They Brought Out of
Retirement Had an Idea

Have you
looked at
the VSAM

files lately?

Then…

54

And…

• They had not been
attended to in years…

• Actually decades!

• Very disorganized.

• Somebody suggested
running AMS REPRO

The VSAM files were still a part of the overall application but they had not been looked
at in literally “years”

Turns out, the VSAM files were a mess.

The suggestion was to use REPRO to reorganize them.

55

REPRO is a VSAM utility program that can perform a lot of functions on your VSAM
files.

56

What Happens
When REPRO
is Not Run on VSAM
Data Sets

• Disorganization!
• Data integrity issues
• Performance degradation
• Index inconsistencies
• Increased space usage
• Risk of duplicate records

When REPRO is not run on a VSAM data set and it becomes disorganized, several
consequences can occur:

1.Data Integrity Issues: If the REPRO command is not used to copy or reorganize the VSAM
data set, the data within it may become fragmented or disordered. This can lead to incorrect or
incomplete records being retrieved during subsequent read operations.
2.Performance Degradation: Disorganization can impact the performance of VSAM data
sets. Retrieving records from a disorganized VSAM data set may require additional I/O
operations, resulting in slower access times.
3.Index Inconsistencies: In VSAM, index entries are crucial for efficient data retrieval. When a
VSAM data set becomes disorganized, index entries may no longer accurately reflect the
actual data location. This can lead to incorrect record retrieval or even data loss.
4.Increased Space Usage: Disorganization can cause unused space within the data set,
leading to inefficient storage utilization. As data control intervals and control areas fill up, free
space may not be optimally managed.
5.Risk of Duplicate Records: Without proper organization, duplicate records may
inadvertently be introduced into the data set. If the REPRO command is not used to handle
duplicates, this can lead to data inconsistencies.

Running REPRO is essential for maintaining the integrity, performance, and organization of
VSAM data sets. Neglecting to do so can result in data-related issues and inefficiencies.

57

Oh, the lesson learned,
in this database tale,

To look beyond the obvious,
without fail.

For sometimes the problem,
though it may seem,

Is lurking elsewhere,
in a different scheme.

The Lesson

58

Best
Practices
Some Good High-Level
“Things” to Do

59

High Level Best
Practices
• Keep maintenance up-to-date
• Ensure that appropriate RUNSTATS are being

run
• And kept up-to-date

• Automate as much as you can
• May require tools

• Make sure backups are taken for all database
objects

• And test your backups
• Make sure every program has a COMMIT

strategy in place!
• Document!

• And make the doc accessible!
• Be proactive.

Keep mtce up to date

• Talk about planned migration to another system

• Kept system folks but not DBAs

• Ran into the RBA expansion issue

Still waiting for some doc at one client that was requested last November!
• My guess is that it no longer exists.

60

Always Be Learning

61

Oh, The Things I’ve Seen!

Craig S. Mullins

President & Principal Consultant
IBM Champion for Data & AI
IBM Gold Consultant
mullc@craigsmullins.com

62

www.mullinsconsulting.com

https://www.mullinsconsulting.com/books.htm

Thank you for your time and all the best as you work to avoid these (ugly) things I’ve
seen.

© 2024 Mullins Consulting, Inc. 62

