
SQL and Configuration Tips and
Tricks Learned from the SAP/Db2
Project

Joern Klauke, Edgar Maniago, Phil King

IBM and SAP

@IDUGDb2
#IDUG_NA24

Session Code: SQL3 | Platform: Working with SQL

Agenda

• Overview SAP ABAP stack environment
• Isolation Levels
• Space
• LOBs
• Performance
• Lock Wait Monitoring

Overview SAP ABAP stack environment

• An SAP ABAP system has one primary
database and multiple application servers

• The ABAP system has its own user/pwd
management for business users.

• Each application server has multiple work
processes that connect to the database
with a technical DB user

• An SAP Business Suite system contains more
than 100.000 database tables

SAP
GUI

Applikation Server

ABAP runtime, DB interface

Applicatio
ns
SAP SD
SAP FI
SAP HR
…

ABAP
Dictionary,
Debugger,
Editor

Monitoring
SAP
Monitor
DB Monitor
(DBACOCKP
IT)

SAP Database

History SAP ABAP stack environment on Db2 LUW

• SAP on Db2 LUW is a joint SAP+IBM project since 1993
• Joint SAP+IBM development team in Rot (Germany)
• Joint SAP IBM Integration Center in Toronto
• Regular meetings and calls with DB2 Development

Toronto

• Lots of SQL lessons and other Db2 tricks learned in
more than 30 years of project history

Overview SAP ABAP stack environment on Db2 LUW

• Only row based tables on ERP systems (OLTP workload)
• On SAP BW systems tables involved in OLAP queries

can be BLU
• DPF is supported for SAP BW systems
• PureScale is supported for SAP ERP systems
• Top rated features according to SAP on Db2 LUW

customers:
• Compression (BLU and non-BLU)
• Automation (Reorg, Runstats, STMM, Auto Storage)
• Performance
• Easy online table maintenance using ADMIN_MOVE_TABLE

SAP
GUI

Applikation Server

SAP DB2 Database

Overview SAP ABAP stack environment on Db2 LUW

• ABAP systems contain an
integrated DB monitoring
transaction (DBACOCKPIT)

• Data is periodically collected
using Db2s MON_GET* table
functions

• Other integrated features in
DBACOCKPIT include EXPLAIN,
Index Advisor, …

Overview SAP ABAP stack environment on Db2 LUW

Analysis of network related
performance problems
•Network statistics data is
collected by Db2 CLI
•Persisted network data can be
visualized in DBACOCKPIT
•Often slow average database
response times are wrongly
attributed to the Db2 engine

Aggregate Db2 Registry
Variable
DB2_WORKLOAD=SAP
• All SAP on Db2 LUW systems

run with aggregate registry
variable DB2_WORKLOAD=SAP

• DB2_WORKLOAD=SAP covers
lots of settings that benefit
SAP on Db2 LUW

• Settings change with new Db2
versions and fixpacks

• Settings influence:
Optimizer, Isolation, Backup,
Log Management and others

db2sap Library

The db2sap library is shipped with the Db2 software.

Invoking the library creates a number of objects in the
SAPTOOLS schema that are used by the SAP ABAP stack.

SAP default isolation level

• For SQL queries standard SAP applications require a default DB
isolation level where “readers never block writers”

• Those applications should use logical SAP enqueue locks to
prevent themselves from processing dirty data.

• Since Db2 V9.7 the SAP system can choose one of the following
default isolation levels (SAP note 1514016)

• Uncommitted read (UR)
• Cursor Stability (CS) with CUR_COMMIT semantics

ABAP “SELECT SINGLE … FOR UPDATE” statements

An ABAP “SELECT SINGLE … FOR UPDATE” statement makes sure
that the caller can execute an UPDATE in the same UOW.
Translating those statement to DB2 “SELECT … FOR UPDATE”
statements would be too weak since those statements set only
(U)pdate locks on row level and two (U)pdate locks are compatible.

As an alternative we use the following:

SELECT … WITH RS USE AND KEEP EXCLUSIVE LOCKS

X locks ensure that other statements requiring the same locks wait.

ABAP “MODIFY” statements

An ABAP “MODIFY” statement wants to
UPDATE a row it exists and
INSERT if it does not exist.
We use DB2 MERGE statements for this purpose.

Using “WITH CS WAIT FOR OUTCOME” reduces the probability
that MERGE returns a SQL0803N .

ABAP “INSERT … ACCEPTING DUPLICATE KEYS” statements

An ABAP “INSERT … ACCEPTING DUPLICATE KEYS” statement
INSERTs rows that do not exist.
SQL0803 errors due to existing rows are ignored. We use the
IGNORE DUPLICATE clause for this purpose.

INSERT … IGNORE DUPLICATES

Currently the IGNORE DUPLICATES clause is only available under
DB2_WORKLOAD=SAP.

Such INSERT statements can also be non-atomic INSERT … SELECT
statements.

Space – Virtual Tables

An SAP ERP system can contain more than 100.000 tables. Around
70% of those tables are initially empty and may never be used. Each
empty table consumes space in data, index and long table spaces.

1 EMP extent (EMP = Extent Map Pages)
1 data extent
2 extents for the index object
1 page per index
2 extents for the LONG object if exists
4 extents for the LOB Object if exists

5 - 11 Extents for a single empty table

Space – Virtual Tables

The waste of space caused by empty or small tables increases
with larger extent sizes.
=> extentsize 2 is used as SAP default (pagesize 16K)

Empty tables…
•also consume memory in other areas like DBHEAP
•contribute to the number of objects in a table space
(DB2 limit at about 51000 objects per table space)
• cause increased workload at DBA operations
(Automatic Runstats, Automatic Reorg, monitoring jobs , ...)

Space – Virtual Tables

Tables are created on demand by the SAP database interface when
the first write occurs.

CREATE TABLE “POSTAB"
("NUM" SAPDB6FIXCHAR(3) DEFAULT '000' NOT NULL ,
"POS" INTEGER DEFAULT 0)
IN LZY#DDICD INDEX IN LZY#DDICI LONG IN LZY#DDICD

CREATE UNIQUE INDEX "POSTAB~0" ON "POSTAB“ ("NUM“)
ALLOW REVERSE SCANS

ALTER TABLE "POSTAB“ ADD CONSTRAINT “POSTAB~0" PRIMARY KEY
("NUM")

CREATE INDEX "POSTAB~A" ON "POSTAB“ (“POS“) ALLOW REVERSE
SCANS

Space – Virtual Tables

Table exist as virtual tables (views without dependent objects) as
long as no writes occur.

CREATE VIEW “POSTAB" AS SELECT * FROM
(VALUES(CAST (NULL AS VARCHAR(9)), CAST (NULL AS INTEGER))
AS “POSTAB" ("NUM", "POS“) WHERE 1 = 2
--DDL_TABLE CREATE TABLE “POSTAB"

("NUM" SAPDB6FIXCHAR(3) DEFAULT '000' NOT NULL ,
"POS" INTEGER DEFAULT 0)
IN LZY#DDICD INDEX IN LZY#DDICI LONG IN LZY#DDIC

--DDL_INDEX CREATE UNIQUE INDEX "POSTAB~0" ON
"POSTAB“ ("NUM“) ALLOW REVERSE SCAN

--DDL_PRKEY ALTER TABLE “POSTAB" ADD CONSTRAINT “POSTAB~0"
PRIMARY KEY ("NUM", "POS")

--DDL_INDEX CREATE INDEX "POSTAB~A" ON "POSTAB“ (“POS“)
ALLOW REVERSE SCANS

Reading applications do not
notice the difference.

Space – Tablespace Pools

To circumvent the maximum number of objects limit for a single
tablespace and to optimize database backup times tables are
distributed over a pool of tablespaces at create time

Tablespaces (DATA, INDEX, LONG/LOB):
SID#DATA@01D SID#DATA@01D SID#DATA@01D
SID#DATA@02D SID#DATA@02D SID#DATA@02D
SID#DATA@03D SID#DATA@03D SID#DATA@03D
SID#DATA@04D SID#DATA@04D SID#DATA@04D
SID#DATA@05D SID#DATA@05D SID#DATA@05D
SID#DATA@06D SID#DATA@06D SID#DATA@06D
…

Space – DB2_OBJECT_TABLE_ENTRIES

Operations like TRUNCATE TABLE … REUSE STORAGE, REORG may
have to wait for an online backup to backup all object table pages
before they can proceed.

db2set DB2_OBJECT_TABLE_ENTRIES=65532

ensures that all object table pages are created at the beginning of
each tablespace. This minimizes such lock wait times.

Space – SAP RUNSTATs and REORG strategy

•Automatic runstats and real time stats are recommended
•Automatic reorg is recommended for index cleanup and
extent reclaim
•ADMIN_MOVE_TABLE is recommended as online method for
other REORG like purposes

Space – Insert Time Clustered tables (ITC)

The SAP system contains tables where older data is
periodically archived and deleted.
Customers that what to easily reclaim the space freed up by
archive deletes can use ITC for such tables.
Similar to MDC tables empty extents in an ITC table can be
easily reclaimed without data movement.

LOB Performance – Separate LOB Tablespaces

File system caching helps for tablespaces that contain LOB data
only.

All other tablespaces are created without FILE SYSTEM CACHING.

LOB Performance – LOB Inlining

ABAP system databases contain many LOB columns that
contain mostly small LOB values
LOB Inlining allows to store small LOB values in data pages

Inline LOB values:
•do not need additional LOB segments
•can be compressed
•are buffered in the DB2 bufferpool

LOB Performance – Prefetcher Configuration

Only small LOB values can be directly retrieved by db2agents
Larger LOB values are fetched by the Db2 prefetchers
For good LOB performance it is important to have enough
prefetchers available and to have a maximum number of Prefetch
queues.

NUM_IO_SERVERS = AUTOMATIC(104)

LOB space consumption

DB2 Runstats does not collect statistics about space used by LOB values.
After deleting data there is no straightforward way to find out if a LOB
object is partly empty or fragmented.
The following queries can be used to estimate the space a single LOB
column should need in a LOB object of a table.
This can be compared with the current LOB object size:

SELECT LOB_OBJECT_P_SIZE
FROM TABLE(

ADMIN_GET_TAB_INFO(CURRENT SCHEMA, 'LOBTAB'))

LOB space consumption- COMPACT LOBs

Estimated Space used in the LOB object by a single COMPACT LOB
column:

SELECT
SUM((LENGTHB(DATA) + 1023)/1024) AS SIZE_IN_KB

FROM LOBTAB
WHERE ADMIN_IS_INLINED(LOBCOL) <> 1

(LOB values are stored in segments with minimum size 1K)

LOB space consumption- NON COMPACT LOBs

Estimated Space used in the LOB object by a single NON COMPACT LOB
column:

WITH T (BYTELEN) AS (
SELECT LENGTHB(DATA) FROM LOBTAB
WHERE ADMIN_IS_INLINED(LOBCOL) <> 1)
SELECT
SUM(POWER(2.0, CEIL(log10(DOUBLE(BYTELEN))/log10(2.0) -10.0))))
AS SIZE_IN_KB FROM T

(LOB values are stored in segments of size 1K times 2^N)

LOB space consumption- NON COMPACT LOBs

WITH T (BYTELEN) AS (SELECT LENGTHB(DATA) FROM LOBTEST1 WHERE ADMIN_IS_INLINED(DATA) <> 1)
SELECT
SUM(case

when BYTELEN <= 1024 THEN 1
when BYTELEN <= 2048 THEN 2
when BYTELEN <= 4096 THEN 4
when BYTELEN <= 8192 THEN 8
…
when BYTELEN <= 536870912 THEN 524288
when BYTELEN <= 1073741824 THEN 1048576
ELSE 2097152
END)
AS SIZE_IN_KB

FROM T

Looks more clumsy but is faster …

Performance- Use of generic table functions

ABAP SQL statements can contain both DB tables and ABAP internal
tables.
To execute such statements the rows from the ABAP internal tables need
to be passed to the DB2 server efficiently.
Since ABAP internal tables can have any structure we use a generic table
function to pass the internal table rows encoded as BLOB input
parameter.

SAPTOOLS.MEMORY_TABLE is a fenced C procedure.

Performance- Joining DB table(s) and ABAP table

An ABAP statement with FOR ALL ENTRIES clause
joins a single ABAP internal table with one or more
DB tables.

• This is translated to a JOIN of
the DB table with the
MEMORY_TABLE table
function

• „CARDINALITY 1“ clause is
used to enforce a save NLJOIN
access path.

ABAP SQL

Performance- Joining DB table and generic table function

• In most cases
MEMORY_TABLE
should be used on the
outer side of a nested
loop join with the
database tables.

• This allows to
efficiently use the
database indexes

Performance – Inserting from ABAP table into DB table

This ABAP SQL statement inserts all rows from an ABAP table
into a DB table. Duplicate Key errors are ignored.

The statement used to be translated into a non-atomic CLI
array INSERT where SQL0803N errors were ignored.

Using MEMORY_TABLE and IGNORE DUPLICATES this can now
be executed as atomic INSERT statement.

ABAP SQL

Performance – Inserting from ABAP table into DB table

Atomic INSERT statements can benefit from parallel INSERT on BLU target
tables. The CARDINALITY clause can be used to influence the degree of
INSERT parallelism.

ABAP Mass DELETE and Mass UPDATE statements can be translated to
Atomic statements in a similar way. Mass UPDATE is a little more tricky.
We still need some optimizer enhancements for good performance.

Performance – Using Optimizer Guidelines in statement text

ABAP SQL statements can contain hints that are translated to Db2
Optguidelines.
We prefer Optguidelines over Db2 Optimizer Profiles because
Optguidelines
•are easier visible in SQL Cache monitoring
•can be contained in the ABAP code and can be added at prepare time

ABAP SQL

Performance – REOPT Guidelines
ABAP SQL uses parameter markers for input parameters in the statement
text. REOPT Guidelines can be used when this takes away too much
information from the Db2 optimizer.

REOPT ONCE generates the final access path when the first set of input
parameters is available
REOPT ALWAYS generates the final access path at every execution
This guideline should be used in exceptional cases only for statements
with high execution time that are not too often executed.

Lock Wait Monitoring – tool db6util

The tool shows the application handles
and more detailed information
about the lock wait participants.

SAP tool „db6util“
can be used
for ad hoc monitoring
of lock wait
or deadlock situations.

Lock Wait Monitoring – tool db6util details

The details section
contains
•the last SQL statement
•the held and required
lock types
•the locked object
•in case of row locks:
the locked key values
•the lock name
•…

Step 1: Lock Wait Monitoring – MON_GET_APPL_LOCKWAIT

MON_GET_APPL_LOCKWAIT is used to retrieve all participants in a
lock wait chain.

Step 2: Lock Wait Monitoring – using MON_GET*

MON_GET_CONNECTION and MON_GET_UNIT_OF_WORK_DETAILS are used to
retrieve status and last executable id for lock participants.
After this MON_GET_PKG_CACHE_STMT is used to retrieve the last SQL statement.

Step 3: Lock Wait Monitoring – resolving row lock names

For row locks MON_FORMAT_LOCK_NAME can be used to retrieve
more information about the locked row.

Step 4: Lock Wait Monitoring – retrieve the locked row
For row based tables an old blog from Serge Rielau described how to calculate the
RID .

https://community.ibm.com/community/user/hybriddatamanagement/viewdocument/have-lock-seek-row-a-handy-
functi?CommunityKey=ea909850-39ea-4ac4-9512-8e2eb37ea09a&tab=librarydocuments

After this the locked row can be retrieved via SQL .

Both UR and CS isolation may have to be tried depending on the pending operation.

Step 4b: Lock Wait Monitoring
– retrieve the locked row (BLU)

For BLU table the TSNID can be used directly as input for the RID
function to retrieve the locked row.

Prerequisite:
Db2 V11.5.4.0 or higher

DB2 v11.5.4.0

Please fill out your session evaluation!

SQL3

@IDUGDb2
#IDUG_NA24

SQL and Configuration Tips and
Tricks Learned from the SAP/Db2
Project

Joern Klauke, Edgar Maniago, Phil King

jklauke@de.ibm.com
edgar.maniago@sap.com
phil.leslie.king@ibm.com

