
Implicitly or Explicitly Defined Db2
Objects – the Good, the Bad and the
Ugly

Steen Rasmussen

Broadcom

@IDUGDb2
#IDUG_NA24

Session Code: SQL1 | Platform: Db2 z/OS

1

Abstract

Across the many releases of Db2 for z/OS, the database
engine has introduced several significant changes to which
and how objects can be created implicitly. This session will
dive into the type of objects Db2 can create automatically,
describing advantages and pitfalls for their respective usage.
In the end, how this is accomplished will depend heavily on
the SQL syntax and keywords used.

2

Agenda

• What can be defined implicitly & how to “semi control” behavior
• CURRENT RULES special register impact
• Challenges having implicitly/explicitly defined objects
• Advantages using implicitly/explicitly defined objects
• Real life scenarios to illustrate differences

• Starting with the most simple use case gradually increasing complexity

3

Why Bother Using One or The Other(1)

• Do you have an object naming convention in place ?
• It will be violated using Implicit objects

• Are you using LISTDEF processing and wildcarding ?
• You might find this a challenge

• Are you using catalog queries based on your naming convention
• This might get a lot harder – wildcarding based on naming standard probably

not possible (unless you are very lucky)

• If implicitly defined database names used
• There’s a LIMIT
• You can’t explicitly create DBs prefixed DSNnnnnn

• Think about PRIQTY/SECQTY – you might have to ALTER unless (MGEXTSZ)

Let’s have a closer look at why you might want to consider whether you want to
utilize IMPLICITLY defined objects or not.

1) If you have the need to use your site’s naming convention, you might not be able
to take advantage of implicitly defined objects since you can’t control the names
of these objects.

2) If you are using LISTDEF and wildcarding for utility processing, you might have
some challenges based on how you use implicitly defined objects.

3) If you are using your own queries – or even tooling and depend on wildcarding for
the object names, this could provide a challenge so the queries might have to be
adjusted.

4) Depending on how you utilize IMPLICITLY defined objects – and how much, you
might run out of database names.

5) Lastly, if you don’t use the sliding scheme but want to explicitly specify the QTY’s,
and depending on your ZPARM setting (TSQTY & IXQTY), you might have to ALTER
the PRIQTY/SECQTY after the object is created.

4

Why Bother Using One or The Other(2)

• You can create certain DSN* databases

You can’t explicitly create DBs prefixed DSNnnnnn.

However, you can create DB’s prefixed with DSN as long as it’s not all numeric –
despite what the Db2 message indicates. In this example I was able to create
DSNSTEEN but getting message DSNT408I when the first four bytes are DSNn

5

What can be created IMPLICITLY

• Database for Table if not specified.
• Tablespace for Table if not specified.
• Index for Uniqueness / Constraint if the Table’s Tablespace Implicitly

created.
• ROWID GENERATED BY DEFAULT when RULES=STD or Tablespace

Implicitly created.
• xLOB objects depends on RULES and whether Tablespace Implicitly

created (use cases to follow).
• For XML the DOCID

6

What can be created IMPLICITLY

• Are you happy with the DEFAULT
Tablespace/Indexspace attributes ?

• If not - talk to your favorite Db2
SYSPROG to modify ZPARM
attributes/values (those you can
modify)

CREATE TABLESPACE IDUGEU23
USING STOGROUP SYSDEFLT

PRIQTY -1
SECQTY -1
ERASE NO

BUFFERPOOL BP1
DSSIZE 4G
CLOSE YES
LOCKMAX SYSTEM
SEGSIZE 32
INSERT ALGORITHM 0
FREEPAGE 0
PCTFREE 5 FOR UPDATE 0
GBPCACHE CHANGED
DEFINE NO
LOGGED
TRACKMOD YES
MAXPARTITIONS 256
COMPRESS NO
LOCKSIZE ROW
MAXROWS 255
CCSID EBCDIC
NUMPARTS 1;

Before exploiting IMPLICITLY defined objects – and even EXPLICILTLY defined objects
where you don’t specify all the attributes, it might be worth to understand your
ZPARM DEFAULT settings.

7

SET CURRENT RULES = ‘xxx’

• DB2 is the default
• Will eliminate many of the Implicit Object definitions

• STD
• Will enable more Implicit Object definitions

(will be covered in detail later using a PBR use case with a CLOB)

DB2 is the default value and has been around for quite a while.
Using STD will open the doors for more objects to be created IMPLICITLY and we will
cover these later.

8

Use Case 1 : The Simple Scenario

9

Most simple use case where implicit
objects can be introduced (1)
• Table created in 4 different ways:

• DB and TS Explicit (1) and DB and/or TS Implicit (2+3+4)

CREATE TABLE RASST02.IDUGEU23TB1
(DEPTNO CHARACTER(3) FOR SBCS DATA NOT NULL

,CONSTRAINT DEPTNO PRIMARY KEY
(DEPTNO)) IN IDUGEU24.IDUGEUTS;

==
CREATE TABLE RASST02.IDUGEU23TB2

(DEPTNO CHARACTER(3) FOR SBCS DATA NOT NULL
,CONSTRAINT DEPTNO PRIMARY KEY
(DEPTNO)) IN DATABASE IDUGEU24;

==
CREATE TABLE RASST02.IDUGEU23TB3

(DEPTNO CHARACTER(3) FOR SBCS DATA NOT NULL
,CONSTRAINT DEPTNO PRIMARY KEY
(DEPTNO)) ;

==
SET CURRENT RULES = 'STD' ;

CREATE TABLE RASST02.IDUGEU23TB4
(DEPTNO CHARACTER(3) FOR SBCS DATA NOT NULL

,CONSTRAINT DEPTNO PRIMARY KEY
(DEPTNO)) ;

The final
results on
next page

There are basically four different ways to create a table – meaning the syntax.

1) The database and tablespace are explicitly referenced.
2) The tablespace name isn’t specified – only the database.
3) Neither the tablespace or database names are specified.
4) Same as option 3) but using CURRENT RULES=‘STD’

10

Most simple use case where implicit
objects can be introduced (2)
• Explicit DB.TS requires Explicit Unique Index.

• DB or TS Implicitly created - Unique Index Implicitly created
• CURRENT RULES no impact

Necessary
to explicitly

create
UNIQUE
INDEX

TABLE NAME SCHEMA DEPENDENT TS/IX SCHEMA/DB

1) When the database and tablespace is specified explicitly, it is necessary to
explicitly create the UNIQUE index for the constraint.

2) When the tablespace is omitted it is implicitly created in the specified database –
at least the database name can be controlled. In this case the tablespace name is
a substring of the tablename but it is a coincident. The UNIQUE index is implicitly
created – maybe you don’t like the name but that’s what it is.

3) The third scenario, an IMPLICIT database is provided = DSN01572. This can be a
challenge if the tablespace/table has to be dropped/recreated since you probably
won’t get the same names.

4) Using CURRENT RULES in this use case makes no difference.

11

Now include CLOB (1)

• Let’s look at another object type and implicit create options.

Next use case is very similar but instead of a PRIMARY KEY we now have a LOB
column.
Otherwise the four methods are identical to the previous scenario.

12

Now include CLOB (2)
• Only using Implicit tablespace (but Explicit DB) – at least all

objects are in the same DB (think LISTDEF, SQL etc.)

TABLE NAME TABLE/INDEX SCHEMA/DB TYPE
IDUGNA24TB1 IDUGNA24TB1 RASST02 TABLE

* TABLE SPACE 1
IDUGNATS IDUGNA24 TABLE SPACE

IDUGNA24TB2 IDUGNA24TB2 RASST02 TABLE
* TABLE SPACE 2
* TABLE 1
* INDEX 1
IDUGNA24 IDUGNA24 TABLE SPACE
L0NRFSDJ IDUGNA24 TABLE SPACE
IDUGNLOBDA0NRFVHWL RASST02 TABLE
IIDUGNLOBDA0NRFWS1 RASST02 INDEX

IDUGNA24TB3 IDUGNA24TB3 RASST02 TABLE
* TABLE SPACE 2
* TABLE 1
* INDEX 1
IDUGNA24 DSN01574 TABLE SPACE
L0MLQQY5 DSN01574 TABLE SPACE
IDUGNLOBDA0MLQUIC2 RASST02 TABLE
IIDUGNLOBDA0MLQUQK RASST02 INDEX

IDUGNA24TB4 IDUGNA24TB4 RASST02 TABLE
* TABLE SPACE 2
* TABLE 1
* INDEX 1
IDUGNA24 DSN01575 TABLE SPACE
L0MLQ5EI DSN01575 TABLE SPACE
IDUGNLOBDA0MLQ9P3X RASST02 TABLE
IIDUGNLOBDA0MLQXZI RASST02 INDEX

• Explicitly referenced
DB.TS incomplete until
all AUX objects created
explicitly.

• All other use cases are
complete – downside is
the provided object
names.

The outcome is the same as the previous scenario – when tablespace and database is
specified explicitly, you will have to manually create the AUX objects. Not a big deal
for a PBG table.

13

Use Case 2 : Things Can Get Messy

14

Things can get messy (1)

• Object details
• PBG MAXPARTITIONS 2 NUMPARTS 2
• Two CLOB columns
• Explicitly defined :

• 1 DB
• 1 PBG TS
• 4 LOB TS (2 LOBS x 2 PARTITIONS)
• 1 BASE TB (and potentially base indexes)
• 4 AUX tables
• 4 AUX indexes
• (Lots of typing – but naming convention maintained – so far …….)

In this use case we have a four partitioned PBG.
Since we define two partitions and the table has 2 LOB columns, we need 4 AUX
tablespaces/tables and indexes.

This is a lot of typing to make sure all objects are created so Db2 considers the object
(table) in a COMPLETE status and operational.

The good news is the desired naming convention can be maintained since everything
created explicitly.

15

Things can get messy (2)

• Next step is to ADD a PBG partition (ALTER TABLE ADD PART)
• ALTER MAXPARTITIONS from 2 -> 3
• This will cause 2 LOB tablespaces to be added IMPLICITLY
• Naming convention goes South

• Next ADD CLOB column to the base table
• Explicitly definition:
• 3 LOB tablespaces (3 partitions)
• 3 AUX tables
• 3 AUX indexes

• IMPLICITLY or EXPLICITLY defined depends on SET CURRENT RULES

Next task is to add a PBG partition due to growth, so MAXPARTITIONS altered to 3.
This means we need two additional AUX tablespaces – these are created implicitly by
Db2 – and our beautiful naming convention is lost.

Then we need to add a new LOB column, so we have to choose between EXPLICIT /
IMPLICIT objects.
If EXPLICIT is the choice, we need 9 additional objects to be created.

If CURRENT RULES=‘STD’ is used, we will save some typing to do.

16

Things can get messy (3)
• Status after initial create (naming convention maintained) :

CMD NAME CREATOR DNAME DCREATOR TYPE
________ IDUGEU23 RASST02 IDUGEU23 RASST02 DATA BASE

* TABLE SPACE 5
* TABLE 5
* INDEX 5

________ BASELOBA IDUGEU23 TABLE SPACE
________ BASELOBB IDUGEU23 TABLE SPACE
________ BASELOBC IDUGEU23 TABLE SPACE
________ BASELOBD IDUGEU23 TABLE SPACE
________ BASEPBG IDUGEU23 TABLE SPACE
________ BASELOBA_PART1_CLO> RASST02 TABLE
________ BASELOBB_PART2_CLO> RASST02 TABLE
________ BASELOBC_PART1_CLO> RASST02 TABLE
________ BASELOBD_PART2_CLO> RASST02 TABLE
________ BASEPBG_TAB RASST02 TABLE
________ BASELOBA_PART1_IX1 RASST02 INDEX
________ BASELOBA_PART2_IX1 RASST02 INDEX
________ BASELOBC_PART1_IX2 RASST02 INDEX
________ BASELOBC_PART2_IX2 RASST02 INDEX
________ BASEPBG_TAB_IX RASST02 INDEX

******************************* BOTTOM OF DATA ********************

17

Things can get messy (4)
• Status after ADD CLOB column.

• You can control the EXPLICIT/IMPLICIT (via CURRENT RULES)
• The cost is sacrificing the naming convention – but a lot easier (think

about 100 partitions)
DNAME DCREATOR TYPE
DAVETCOL05SEOEGCFT BLADA08 TABLE
DAVETCOL07SEOES8Y1 BLADA08 TABLE
DAVETS1_TAB BLADA08 TABLE
DAVETS1A_PART1_CLO> BLADA08 TABLE
DAVETS1A_PART2_CLO> BLADA08 TABLE
DAVETS1B_PART1_CLO> BLADA08 TABLE
DAVETS1B_PART2_CLO> BLADA08 TABLE
DAVETS1C_PART1_CLO> BLADA08 TABLE
DAVETS2C_PART2_CLO> BLADA08 TABLE
DAVETS3C_PART3_CLO> BLADA08 TABLE
DAVETS1_TAB_IX BLADA08 INDEX
DAVETS1A_PART1_IX1 BLADA08 INDEX
DAVETS1A_PART2_IX1 BLADA08 INDEX
DAVETS1B_PART1_IX2 BLADA08 INDEX
DAVETS1B_PART2_IX2 BLADA08 INDEX
DAVETS1C_PART1_IX3 BLADA08 INDEX
DAVETS1C_PART2_IX3 BLADA08 INDEX
DAVETS1C_PART3_IX3 BLADA08 INDEX
IDAVETCOL05SEOEGB8 BLADA08 INDEX
IDAVETCOL07SEOESWT BLADA08 INDEX

DNAME DCREATOR TYPE
BASELOBA_PART1_CLO> RASST02 TABLE
BASELOBB_PART2_CLO> RASST02 TABLE
BASELOBC_PART1_CLO> RASST02 TABLE
BASELOBD_PART2_CLO> RASST02 TABLE
BASEPBG_TAB RASST02 TABLE
BASEPCOL050HIMIBKY RASST02 TABLE
BASEPCOL070HIMQ8AD RASST02 TABLE
BASEPCOL080HINJRGD RASST02 TABLE
BASEPCOL080HINRZBY RASST02 TABLE
BASEPCOL080HINYG6N RASST02 TABLE
BASELOBA_PART1_IX1 RASST02 INDEX
BASELOBA_PART2_IX1 RASST02 INDEX
BASELOBC_PART1_IX2 RASST02 INDEX
BASELOBC_PART2_IX2 RASST02 INDEX
BASEPBG_TAB_IX RASST02 INDEX
IBASEPCOL050HIMI8T RASST02 INDEX
IBASEPCOL070HIMQ6C RASST02 INDEX
IBASEPCOL080HINJGU RASST02 INDEX
IBASEPCOL080HINR9N RASST02 INDEX
IBASEPCOL080HINZXS RASST02 INDEX

The LEFT side is without using CURRENT RULES so everything is explicitly defined.
The two IMPLICITLY defined AUX tables/indexes are from ALTER MAXPARTITIONS
from 2 to 3, so since we had two LOB columns, Db2 creates these objects implicitly so
the object is operational.

The RIGHT hand side is when RULES=‘STD” was used to ADD the new LOB column as
well as altering the MAXPARTITIONS. Everything handled by Db2 automatically – but
we lost the naming convention.

18

STD
add
lob
col

DB2
max
part
2->3

Use Case 3 : Things Can Also Be Easy
– Looking at PBR’s

19

Things can also be easy (1)

• PBR table with one LOB and 6 partitions.
• Implicit DB and TS created (violating our naming convention

(DSN05572.HSBCIMP1) chosen by Db2).
• All AUX objects created – object creation complete and ready to use.

CREATE TABLE RASST02.HSBCIMP1
(COUNTRY VARCHAR(50)
,CITY VARCHAR(30)
,ZIPCODE CHARACTER(10)
,RESIDENTS INTEGER
,LOBDATA CLOB(2M) INLINE LENGTH 0
,LOB_ROWID ROWID GENERATED ALWAYS)

PARTITION BY RANGE
(COUNTRY NULLS LAST ASC)
(PARTITION 1 ENDING ('G‘) INCLUSIVE
, PARTITION 2 ENDING ('J') INCLUSIVE
, PARTITION 3 ENDING ('M') INCLUSIVE
, PARTITION 4 ENDING ('ST') INCLUSIVE
, PARTITION 5 ENDING ('T') INCLUSIVE
, PARTITION 6 ENDING ('ZZZ') INCLUSIVE);

Let’s add a little complexity to illustrate how helpful RULES = ‘STD’ can be – meaning
letting Db2 implicitly define/create the objects.

20

Things can also be easy (2)
• If we really like to obtain DB.TS naming convention

• Explicitly create HSBCDB.HSBCIMP2 (no SET CURRENT RULES, so DB2
used)

• We now have some work to do

CREATE TABLE RASST02.HSBCIMP2
(COUNTRY VARCHAR(50)
,CITY VARCHAR(30)
,ZIPCODE CHARACTER(10)
,RESIDENTS INTEGER
,LOBDATA CLOB(2M) INLINE LENGTH 0
,LOB_ROWID ROWID GENERATED ALWAYS)

PARTITION BY RANGE
(COUNTRY NULLS LAST ASC)
(PARTITION 1 ENDING ('G‘) INCLUSIVE
, PARTITION 2 ENDING ('J') INCLUSIVE
, PARTITION 3 ENDING ('M') INCLUSIVE
, PARTITION 4 ENDING ('ST') INCLUSIVE
, PARTITION 5 ENDING ('T') INCLUSIVE
, PARTITION 6 ENDING ('ZZZ') INCLUSIVE)

IN HSBCDB.HSBCIMP2;

All AUX objects are missing – 18
CREATE statements to do …..

As mentioned earlier, we can maintain our desired naming convention by explicitly
creating everything, so if the table is created in an explicit database and tablespace
we need to manually/explicitly create 18 objects (6 partitions each having an AUX
tablespace, table and index).

21

Things can also be easy (3)

• Same scenario (explicit DB.TS) but using CURRENT RULES=‘STD’

SET CURRENT RULES = ‘STD’;
CREATE TABLE RASST02.HSBCIMP3

(COUNTRY VARCHAR(50)
,CITY VARCHAR(30)
,ZIPCODE CHARACTER(10)
,RESIDENTS INTEGER
,LOBDATA CLOB(2M) INLINE LENGTH 0
,LOB_ROWID ROWID GENERATED ALWAYS)

PARTITION BY RANGE
(COUNTRY NULLS LAST ASC)
(PARTITION 1 ENDING ('G‘) INCLUSIVE
, PARTITION 2 ENDING ('J') INCLUSIVE
, PARTITION 3 ENDING ('M') INCLUSIVE
, PARTITION 4 ENDING ('ST') INCLUSIVE
, PARTITION 5 ENDING ('T') INCLUSIVE
, PARTITION 6 ENDING ('ZZZ') INCLUSIVE)

IN HSBCDB.HSBCIMP3;

Same scenario with a 6-partitioned PBR and one LOB column – but tablespace and
database created explicitly.

The only difference is we’re using CURRENT RULES = ‘STD’

22

Things can also be easy (4)
• Naming convention maintained for DB and base TS (no DSNnnnnn)

• Object status considered COMPLETE by Db2

A lot less typing and naming convention partial maintained : Since the PBR table was
created in an explicit database/tablespace, all the AUX objects remain in the same
database.

23

LISTDEF Processing
Considerations

24

LISTDEF Processing(1)

• Syntax from IBM Db2 Utility Guide – focus on two keywords.

25

LISTDEF Processing(2)

• Partial wildcarding on Tablespace name can be challenging – no
control of Implicit Tablespace names

EXPLICIT
AUX DEFINE

YES

IMPLICIT AUX
DEFINE NO

and new part

TEN TABLESPACES :

PBG start = 2 parts.
2 LOBs = 4 pagesets.
ADD part = 1 pageset.
ADD LOB for 3 PBG
parts = 3 pagesets.

Initially PBG 2-PART
and 2x2 AUX explicitly
created.

Depending on how you want to utilize LISTDEF – wildcarding can be difficult if done
on the tablespace level due to the naming convention.
In this case the DB.TS was specified EXPLICITLY so not a huge challenge compared to
these objects being created implicitly.
Also pay attention to the mix of DEFINE YES/NO tablespaces.

TABLE NAME TBLSPACE
BASELOBA_PART1_CL> BASELOBA
BASELOBB_PART2_CL> BASELOBB
BASELOBC_PART1_CL> BASELOBC
BASELOBD_PART2_CL> BASELOBD
BASEPBG_TAB BASEPBG
BASEPCOL050HIMIBKY L0HIMDZT
BASEPCOL070HIMQ8AD L0HIMML4
BASEPCOL080HINJRGD L0HINFZA
BASEPCOL080HINRZBY L0HINNXU
BASEPCOL080HINYG6N L0HINV69

26

LISTDEF Processing(3)
• Why do we have TEN tablespaces ?

• PBG NUMPARTS 2 = 1 base tablespace
• 2 LOB cols and 2 partitions = 4 AUX tablespaces
• ADD PART – since 2 LOBs = 2 AUX tablespaces
• ADD LOB col – since 3 partitions = 3 AUX tablespaces

27

LISTDEF Processing(4)
• Only DEFINED objects picked up

• In this use case only explicitly and defined included in LISTDEF
• Two LOB columns in this two part PBG are the only explicitly defined and

DEFINE YES

Even though we wildcard on the tablespace level – including all tablespaces in the
DATABASE, only the EXPLICITLY defined tablespaces already instantiated are picked
up.
So basically we’re missing 5 tablespaces – let’s see how to handle these……

28

LISTDEF Processing(5)

• LISTDEF with keyword DEFINED NO illustrates this
• Here instantiated pagesets NOT picked up

If we INCLUDE tablespaces NOT DEFINED – then we don’t get the instantiated and
implicitly defined tablespaces.

29

LISTDEF Processing(6)

• Combining LOB & DEFINED ALL
• Will process all AUX objects – but not BASE PBG

This is cool – if we specify both LOB and DEFINED ALL, we get everything but the
BASE TABLESPACE – next page to get the syntax picking up everything – if that’s what
you need.

30

LISTDEF Processing(7)
• Two options to include everything:

• You have to use ALL instead of LOB – then only one LISTDEF needed
• OR use two INCLUDEs as below

You have basically two options:

Either have two INCLUDES – one for the BASE objects and one for the LOB’s whether
these are instantiated or not using DEFINED ALL.

If you want everything, use ALL instead of LOB and DEFINED ALL

31

Challenges to Consider When
Extracting DDL from the Catalog –
Understand Your Tooling of choice

32

Extract / Generate DDL from the Catalog(1)

• Not an issue when
everything explicitly defined.

• Challenge when implicitly or
mixed implicitly/explicitly.

• IDUGEU23TB3 table was created
without IN DB / IN DB.TS

• Not possible to “use the same object
names”

• Tooling (incl. your own) have to
“THINK” – comment out implicit
objects.

• Depending on your environment –
might be necessary to modify prior
to execution.

-- CREATE DATABASE DSN01572
-- BUFFERPOOL BP1 INDEXBP BP2
-- STOGROUP SYSDEFLT;
--
-- CREATE TABLESPACE IDUGEU23
-- USING STOGROUP SYSDEFLT
-- PRIQTY -1 SECQTY -1
-- MAXPARTITIONS 256 NUMPARTS 1;

CREATE TABLE RASST02.IDUGEU23TB3
(DEPTNO CHARACTER(3) FOR SBCS DATA NOT NULL
,DEPTNAME VARCHAR(36) FOR SBCS DATA NOT NULL
,MGRNO CHARACTER(6) FOR SBCS DATA
,ADMRDEPT CHARACTER(3) FOR SBCS DATA NOT NULL
,LOCATION CHARACTER(16) FOR SBCS DATA
,SDEPTNO CHARACTER(4) FOR SBCS DATA
,CONSTRAINT DEPTNO PRIMARY KEY (DEPTNO));

--
-- CREATE UNIQUE INDEX RASST02.IDUGEU23_#_AXN
-- ON RASST02.IDUGEU23TB3
-- (DEPTNO ASC)
-- PIECESIZE 4194304K;

One topic to consider when IMPLICIT objects exist in your environment is how to
generate DDL – especially when we’re talking about migrating the DDL to other
environments (like from test to systems test and production etc.)

If the database and tablespace were created implicitly, you can’t really apply
meaningful object names matching your naming convention. Many Db2 sites are
using the same DB names and TS names in the various environments, but this will be
pure luck for implicit names.

You have to think about this from the tooling perspective as well – what are your
options and how do you want to handle these.
The tooling in this case COMMENTS OUT the IMPLICIT objects in order to “MIRROR”
the source environments, so you do have the option to remove the comments and
then manually modify the implicit names to match your naming convention – at least
you have ALL THE DDL so using CHANGE ALL might be a valid path.

33

Extract / Generate DDL from the Catalog(2)

• Think of the PBG tablespace used earlier
• Object details

• PBG MAXPARTITIONS 2 NUMPARTS 2
• Two CLOB columns
• Explicitly defined :

• 1 DB
• 1 PBG TS
• 4 LOB TS (2 LOBS x 2 PARTITIONS)
• 1 BASE TB (and potentially base indexes)
• 4 AUX tables
• 4 AUX indexes

• Then a PBG partition was added -> Two LOB tablespaces added IMPLICITLY.
• Nice mix of Implicit/Explicit objects ……….. (recommended solution next page)

One major “pain point” to consider is when you have a mix of IMPLICIT and EXPLICIT
objects – you might end up with INVALID DDL.
Let’s look at one of the previous use cases covered:

We started with a PBG with TWO partitions and two LOB columns. Everything was
explicitly defined.
We then added a third PBG partition resulting in two AUX tablespaces created
implicitly.

You can’t really create the TARGET DDL in the exact same way since the tablespaces
can’t be created from scratch using a mix – if you want the exact same look and feel –
you will have to follow the exact same steps taken earlier – not really a great idea.
Instead there’s a better way to handle this ………. Next page !

34

Extract / Generate DDL from the Catalog

• DDL is invalid if mixing IMPLICIT/EXPLICIT created objects.
• Don’t specify NUMPARTS -> one is defined at creation time.
• When LOAD/INSERT needs another partition – Db2 will grow

dynamically using implicit objects.

• Schema synchronization might be a challenge.
• Naming convention mapping can’t be done.
• Table’s tablespace mapping – you probably will have to live with different

names (often tablespace names are identical).

• Why not use “profile” to specify object names ?
• Maybe a promise from IBM at IDUG EMEA 2023 ………

My recommended approach is to OVERRIDE the NUMPARTS to be ONE.
You might not have sufficient storage/space to hold the data in case you are migrating
both DDL and DATA – BUT – once data is inserted or loaded, Db2 will dynamically
increase the PBG partitions – just make sure MAXPARTITIONS don’t mess up this
case.

35

Thank You

Any Additional Questions or
Comments ?

36

Please fill out your session evaluation!

Session Code SQL1

@IDUGDb2
#IDUG_NA24

Implicitly or Explicitly Defined Db2
Objects – the Good, the Bad and the
Ugly

Steen Rasmussen

steen.rasmussen@Broadcom.com

37

