
Db2 HADR Performance Tuning -
How to make it fly

Dale McInnis

IBM Canada Ltd.

@IDUGDb2
#IDUG_NA24

Session Code: RAS3| Platform: LUW

Agenda

• What is HADR
• How to configure HADR for optimal performance
• Monitoring options
• Best Practices

3

HADR Implementation

Logs
Old

Logs

Log Writer Log Reader

Tables

Indexes
Logs

Old

Logs

Log Reader

Tables

Indexes

TCPIP

DB2 Engine DB2 EnginePRIMARY SERVER STANDBY SERVER

Log Writer

HADR Shredder Replay Master

Redo workersRedo workersRedo workersReplay Workers

Log Pages

Log Pages

Log Pages

Log Records
Log Pages

Log

Records

HADR

What's replicated, what’s not?
• Logged operations are replicated

• Example: DDL, DML, table space and buffer pool
creation/deletion.

• Not logged operations are not replicated.
• Example: database configuration parameter. not logged initially

table, UDF libraries.

• Index pages are not replicated unless LOGINDEXBUILD is enabled
• Ensure logsecond is maxed out as index rebuild is a single transaction

• How do I prevent non-logged operations?
• Enable BLOCKNONLOGGED db cfg parameter

4

Tools available to measure HADR related performance

• Check out
https://ibm.github.io/db2-hadr-wiki/hadrPerf.html

• HADR Simulator to measure network and disk speed
https://ibm.github.io/db2-hadr-wiki/hadrSimulator.html

• DB2 Log Scanner to analyze database workload
https://ibm.github.io/db2-hadr-wiki/db2logscan.html

• HADR Calculator to estimate performance of various HADR sync
modes

https://ibm.github.io/db2-hadr-wiki/db2logscan.html#HADR_Calculator

5

Agenda

• What is HADR
• How to configure HADR for optimal performance
• Monitoring options
• Best practices

6

HADR replicate changes from the primary to the standby
• Transactions generate log records on the primary
• Primary sends log pages to the standby
• Standby receives log pages
• Standby writes received log pages to disk and sends Acks
• Standby replays written log pages

Delay in the operations on the critical path can impact transactions on the primary

Logs

Log Writer

Logs

Log pages

PRIMARY SERVER STANDBY SERVER

HADR Replay MasterHADR

Ack

TCP/IP

7

8

Performance Overhead varies with sync mode

• HADR overhead on primary database logging varies depending on the
synchronization mode

• Stronger sync mode provides more HA and DR protection
• Weaker sync mode has less impact on the primary database

superasync

async

near sync

sync

Pe
rf

or
m

an
ce

Protection

Performance vs protection

Synchronization Modes

• SYNC mode:
• Logs are first written to the primary and are only then sent to standby (Serially)
• Two on-disk copies of the log data are required for transaction commit
• Total log write time = primary log write + log send + standby log write + ack

message
• Best data protection
• But the cost of replication is higher than all other modes

Logs

Log Writer

Logs

Log pages

PRIMARY SERVER STANDBY SERVER

HADR

HADR

Ack

9

Synchronization Modes
• NEARSYNC mode:

• Writing logs on the primary and sending logs to standby are done in parallel
• Standby sends ack message as soon as it receives the logs
• On a fast network, log replication results in little or no overhead to primary
• Total log write time = Max (primary log write, log send + ack message)
• Exposure to the relatively rare ‘double failure’ scenario

• primary fails and the standby fails before it has a chance to write received logs to disk
• Good choice for many applications
• providing near synch protection at lower performance cost

Logs

Log Writer

Logs

Log pages

PRIMARY SERVER STANDBY SERVER

HADR

HADR

Ack

10

Ack

Synchronization Modes
• ASYNC mode

• Writing logs on the primary and sending logs to standby are done in parallel
• Does not wait for ack messages from the standby

• Just the ack that the message has been sent
• If the primary database fails, there is a higher chance that logs in transit are lost
• Total log write time = Max (Primary log write rate, Submit log for sending)
• Well suited for WAN application since network transmission delay does not impact

performance

Logs

Log Writer

Logs

Log pages

PRIMARY SERVER STANDBY SERVER

HADR

HADR

11

Synchronization Modes
• SUPERASYNC mode

• Log writing and log shipping are completely independent
• HADR remains in remote catchup state and never enters peer state
• Zero impact on Log writing: Total log write time = Primary log write
• But the log gap between the primary and the standby can grow

• In a failover, data in the gap will be lost.
• This mode has the least impact on primary, at the cost of the lowest data protection

Logs

Log Writer

Logs

Log pages

PRIMARY SERVER STANDBY SERVER

HADR

HADR

Ack

12

Which Sync Mode to Use?

• Use SYNC or NEARSYNC mode:
• Intended for HA
• On a faster network
• When you need the highest

protection

• Use ASYNC or SUPERASYNC :
• Intended for DR
• On a slower network

13

Network Tuning
• TCP performance is critical for HADR performance

• Slow TCP performance can slow down HADR log shipping
• Slow log shipping slows the DB2 logger
• Slow logger impacts transactions throughput

• A properly configured network is a happy network!

• The TCP socket buffer size can be set in one of two way:
1. At the operating system level

• the settings is applicable across all TCP connections on the server

2. At the HADR level
• Using the DB2 registry variables: DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
• Allows tuning TCP window size for HADR connection without impacting other TCP connections
• First available in V8fp17, V91fp5 and V95fp2

• Best Practice:
• Use the same value for DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
• Use the same value on the standby and the primary
• Use a dedicate NIC card for HADR traffic

14

Optimal Send Buffer Size – DB2_HADR_SOSNDBUF
• Sending an HADR message on TCP:

• Sender sends data onto the network
• Data to arrives at the receiver
• Receiver sends back an Ack message
• Ack message arrives at the original sender
• Sender releases buffer holding the Data

• While HADR is waiting for the Ack message, it needs to keep sending more data

• BEST PRACTICES:
• The send buffer size should be send_rate * round_trip_time
• Send rate is the amount of data that is sent over the network

• Assume max bandwidth utilization
• Or find the exact bandwidth utilization using the HADR Simulator

• Round trip time is the amount of time required for sending a message and
receive an acknowledgement

• Assume maximal send rate and worst round trip time

Log pagesPRIMARY
SERVER

STANDBY
SERVER

HADR

Ack

HADR

15

Using a larger send buffer to mask a network hiccup
• For ASYNC mode, when there is intermittent network hiccup where the primary is

unable to send out log data, a larger send buffer may help

• For example:
• Assuming a work load generating 3MB/sec of logs
• Set the sending buffer to 30MB, rather than 3MB
• This will buffer 10 seconds of work load
• A hiccup shorter than 10 seconds will not block primary logging

• This setup does not help SYNC and NEARSYNC mode
• Primary is blocked until the standby receives and acknowledge

• The drawback:
• During a crash, any data in the buffer which has not been sent, will be lost
• A larger buffer increases the amount of potential data loss in a failure

16

Log flushing and send buffer size
• In peer mode, flushing a log page to disk triggers log shipping to

the standby

• In remote catchup state, HADR reads log pages from disk and
sends to the standby using 64KB packets

• The socket buffer size should there be
• In Sync, Nearsync, Async: Max (64KB, log writer flush size)
• In Superasync: at least 64KB

• You can get the log flush size using the db2 Log Scanner and the
HADR Calculator

• scan log files using DB2 Log Scanner
• run the scanner output through the HADR Calculator

17

Monitoring TCP buffer size
• Look for the following fields in db2pd -hadr or MON_GET_HADR table function:

• SOCK_SEND_BUF_REQUESTED
• SOCK_RECV_BUF_REQUESTED
• SOCK_SEND_BUF_ACTUAL
• SOCK_RECV_BUF_ACTUAL

• The host machine may round up or down the requested size to certain sizes
• Like power of two or multiple of network packet size
• Or cap the requested size at system limit without returning an error

• Therefore actual size does not always match requested size
• DB2 does not fail HADR startup if actual size is smaller than requested size
• Verify the actual size against the requested size

• Some OS may assign a buffer size on socket creation, then adjust the size upon connection
• The data returned before connection reflect the initial size on socket creation
• The data returned after connection will reflect the adjusted size

18

Monitoring other Standby elements
STANDBY_RECV_BUF_PERCENT

• receive buffer full (100% used) will cause standby log receive to be blocked and primary log writing and
transactions will eventually be blocked. As replay progresses, part of the buffer will be released and log receive will
resume. If spooling is enabled, 100% buffer use does not indicate a bad condition. HADR will release the buffer for
new incoming data if it needs to, even if log data in the buffer has not been replayed.

STANDBY_RECV_BLOCKED

• flag from the HADR_FLAGS field directly indicates that the standby log receiving is blocked. Primary log send and
transactions will eventually be blocked if the condition persists. There are multiple scenarios of this condition:

• When log spooling is disabled (or not supported), standby receive buffer is full
(STANDBY_RECV_BUF_PERCENT is 100%).

• When log spooling is enabled, spooling has reached configured spool limit (STANDBY_SPOOL_PERCENT is
100%).

• The standby logging device is full (STANDBY_LOG_DEVICE_FULL flag from HADR_FLAGS field is set), regardless
of whether spooling is enabled or not.

STANDBY_LOG_DEVICE_FULL

• Flag from HADR_FLAGS reports that standby log device is full. The STANDBY_RECV_BLOCKED flag will also be
turned on when log device is full. The device full flag allows you to identify the cause of the blocked receiving.

19

Best practices for HADR TCP buffer size
• Use HADR simulator to find out TCP requirement

• Test new size with HADR simulator before you apply it to database

• Use a minimum of 64KB

• Monitor actual size to verify that the requested size is indeed being used

• Consider larger size to mask network hiccup if you are using ASYNC mode

• Use the same value for the send and receive buffer sizes

• Use same values on the primary and the standby
20

HADR Log Spooling –
a remedy for a slow standby

• A slow standby can fall behind playing log records sent by the primary

• The primary in the meantime is blocked waiting for an acknowledgment

• Log spooling decouples a slow standby log replay from a primary log shipping

• Log spooling allows log shipping regardless of log replay position on the standby

• Sync mode is with respect to LOG RECEIVE not LOG REPLAY

• When this feature is enabled, log data sent by the primary is spooled, or written, to disk on
the standby, and that log data is later read by log replay

• In pureScale, spooling allows log shipping on a fast stream to continue even if log merge is
blocked on a slower stream

• Configured via the HADR_SPOOL_LIMIT database configuration parameter.
• The default is AUTOMATIC which is (LOGPRIMARY + LOGSECOND) log files, computed at HADR

startup
• A value of -2 allows for space up to the limit of the filesystem

21

HADR Log Spooling

• Monitoring the spool usage via the database monitor

• The STANDBY_SPOOL_PERCENT monitoring field returns percent of spool space used

• Performance benefit:
• Log spooling will absorb load spikes in logging from the primary
• Primary will no longer be affected by standby replay performance

• Potential draw backs are:
• Takeover may take longer since the spool must be processed
• Requires more disk space

22

Logger Performance
• Log records contain changes to the data in the database and are used during:

• Rollback – reverse changes made by a statement/transaction
• Crash recovery – redo/undo work to make database consistent
• Rollforward – apply changes after a restore is performed

• HADR – keep the standby in sync with the primary

• Replication – reconstitute the SQL statements

• Write ahead logging - Log records must be flushed before affected pages are written to
disk, to ensure that changes can be undone in the case of a crash

• Log records are written into log files
• First two pages of each log file are reserved for metadata
• Remaining pages are for data
• Number of pages (4096 bytes per page) in a log file is (LOGFILSIZ + 2)

23

Logger Performance con’t
• Multiple agents generate log records for different transactions concurrently into a single log

stream
• The buffer size is set using the database configuration parameter LOGBUFSZ
• Monitor the NUM_LOG_BUFFER_FULL monitor element to see if you ever encounter a full buffer

• Writing to the log files is managed by the db2loggw thread
• threads can be listed via "db2pd -edus" command.
• The logger writes the log records to disk in pages (1 Page = 4096 bytes)

• Log writing can be a bottleneck in high volume systems, especially OLTP systems
• High performance devices are recommended for logging

• Agents write log records to the log buffer while concurrently the logger thread write pages to
disk

• During commit, an agent waits for the logger to flush the its log record to disk before it can
continue

• With HADR peer mode, the logger also initiate shipping the pages to the standby
• If the logger is slow, an agent may block waiting for the logger
• This is why logger performance is critical - Especially in OLTP systems

24

Logging Best Practices
• Log buffer should be multiple times the size of the max number of log pages

flushed

• Use a dedicated device for the log path
• Do not share devices between table spaces and log path

• A high-performance device is recommended as log device
• Log stream writing can easily become a bottleneck, even when HADR is not enabled
• This is particularly important for OLTP systems

• DB2 Log Scanner can be used to analyze logger behavior

• Tune log replay
• db2set DB2BPVARS=$HOME/mybpvars.cfg
• where the contents of files has below settings to speed up the rollforward .
• PREC_NUM_AGENTS=13
• PREC_NUM_QSETSIZE=8

25

Self Tuning Memory Manager
Best Practices

• Self Tuning Memory Manager (STMM) only runs on the primary

• After a standby turns into a primary via takeover, the STMM thread
may not start until the first client connects

• To speed log replay and reads on the standby manually configure
the standby using values set by STMM on the primary

• All the changes made by STMM are logged in two places:
1. db2diag.log – viewable via the db2diag tool
2. STMM log files – viewable via parseStmmLogFile.pl tool

26

HADR Timeout

• While connected, the Primary and Standby exchange heartbeat messages

• The user can configure a timeout value using the database configuration
parameter HADR_TIMEOUT

• If no message is received for the duration of HADR_TIMEOUT seconds, the
TCP connection will be closed

• A standby will then attempt to re-establish the connection by sending a handshake
message to the primary

• A primary will send a redirection message to the standby to probe it to start the
handshake protocol

• Heartbeat interval is the minimum of the following:
• 1/4 of HADR_TIMEOUT
• 1/4 of HADR_PEER_WINDOW
• 30 seconds
• Find the exact heartbeat interval using the monitor element HEARTBEAT_INTERVAL

27

HADR Timeout
• If HADR_TIMEOUT is too long, it will slow detection of a lost connection

or a failed standby
• This may end up blocking transactions on primary

• It HADR_TIMEOUT is too short, HADR may get too many false alarms
• Resulting in breaking the connection more often than necessary

• BEST PRACTICES:
• The recommended HADR_TIMEOUT is at least 30 seconds
• The default is 120 seconds
• Some customers set HADR_TIMEOUT to very low values in order to avoid ever

blocking the primary, at the cost of a disconnection every time the network
hiccups

28

HADR_PEER_WINDOW
• Required when automating HADR Takeover

• The hadr_peer_window configuration parameter determines whether the
database goes into disconnected peer state after the connection is lost, and
how long the database should remain in that state.

• HADR will break the connection as soon as a network error is detected during
send, receive, or poll on the TCP socket. HADR polls the socket every 100
milliseconds.

• This allows it to respond quickly to network errors detected by the OS. Only in
the worst case, HADR will wait until timeout to break a bad connection.

• In this case, a database application that is running at the time of failure can be
blocked for a period of time equal to the sum of the hadr_timeout and
hadr_peer_window database configuration parameters

29

HADR Recommendations

• Enabling HADR on an existing OLTP database could result in
poor performance

• Ensure you test the network response

• While HADR does provide higher resiliency it does come at a
close of performance

• Depending on the sync mode used up to 30% overhead could be added

• Avoid the use of the LOAD utility
• Use the INGEST utility wherever possible as a replacement for LOAD

30

Agenda

• What is HADR
• How to configure HADR for optimal performance
• Monitoring options
• Best practices

31

Monitoring HADR Performance
• Two interfaces:

• MON_GET_HADR table function
• Available on the primary
• Available on the standby when reads on standby is enabled

• db2pd –hadr
• Available on both the primary and the standby

• The older snapshot interface has been deprecated

• Information for a remote database can be slightly out of date
• Standy DBs only have information about themselves
• Primary DB has information on themselves and ALL standbys, but the data could be

stale
• Query each individual DB for the most accurate status

32

33

Db2mon – shipped in all current Db2 releases

 All SQL and shell scripts are
under
 ~/sqllib/samples/perf

 For most tasks, collect activity
for 30 seconds
 ./db2mon.sh 30

 For a busy database, we
recommend up to 5 minutes
collection time only

33

34

Data capture and reporting

• Db2mon (db2mon.sh) performs the following processing
• configure a separate bufferpool / tablespace to limit impact on running system

• capture data at start - record in-flight statements

• capture data at end - record in-flight statements

• calculate differences between data captures

• generate report

• remove separate bufferpool / tablespace

35

Prereqs

• monitoring must be enabled at the database level with the following
database configuration parameters: MON_ACT_METRICS must be set at
least to BASE, which is the default value.

• MON_REQ_METRICS must be set at least to BASE. Its default value is
EXTENDED, which gives full monitor information on tables and indexes,
and is an ideal setting for db2mon.

36

What about the rest of the scripts?

• Db2mon can be run in a number of different ways
• Full report mode for a Ɵme period→ db2mon.sh

• both data collection and analysis are done on the original host

• Offline mode → db2mon_export.sql
• data collection is done on the production system
• all data is exported to IXF files → copy and analyze elsewhere
• db2mon_import.sql and db2mon_report.pl

37

FAQ

Can I run db2mon from a remote client?

 if you can connect to the database
using CLP, then Yes

 either of:

 CATALOG TCPIP NODE, etc.

 db2dsdriver.cfg

 works for pureScale and MPP
clusters too!

 collects data on all hosts in
cluster

How much performance impact does
db2mon have?

 collection is lightweight – typically
not noticeable

 analysis is slightly more intensive

 if there are performance
concerns (i.e. existing server is
running near CPU capacity) then
use offline report generation

38

What if I want to monitor a specific task?

• Collecting data for N seconds will only
capture activities that complete within
the capture period
• ideal for monitoring activity of a busy

database

• tricky to capture one specific task or
statement

• Solution: sandwich your task between
the “Before” and “After” sections
• use the db2mon.sh script as a guide

scriptRoot=$H O M E/sqllib/sam ples/perf
export DB2O PTIO NS=”+c -tvf”
db2 $scriptRoot/db2m onBefore.sql
db2 $scriptRoot/yourScript.sql
db2 $scriptRoot/db2m onAfter.sql

39

Finding what you need in the db2mon report

• Four sections
• Monitoring sanity check

• Start Data capture

• End Data capture

• Analysis report

• Search strings for sections
• Checking db2mon

• start of capture

• end of capture

• Data collected

40

Start Data Capture

• Look under “REPORT STARTS HERE”
• CAPTURE_TIME for the first collection

• Three reports
• START#EXSQL: Currently executing SQL

at start of capture (non-zero metrics
only)

• START#LOCKW: Current lock waits at
start of capture

• START#EXUTL: Currently executing
utilities at start of capture

/* IBM _DB2M O N */ select m in(ts)
capture_tim e from
m on_current_sql_plus_start

CAPTURE_TIM E

2023-03-29-22.07.58.490334

1 record(s) selected.

Note: all DB2MON statements
have this comment

41

End Data Capture

• Three sections:
• END#EXSQL: Currently executing SQL at

end of capture (non-zero metrics only)

• END#LOCKW: Current lock waits at end
of capture

• END#EXUTL: Currently executing
utilities at end of capture

• Note: the two capture times are
more than 30 seconds apart

/* IBM _DB2M O N */ select m in(ts)
capture_tim e from
m on_current_sql_plus_end

CAPTURE_TIM E

2023-03-29-22.08.30.296941

1 record(s) selected.

Note: all DB2MON statements
have this comment

42

Analysis Report

• Labelled by “scope” with “TAG#”:
• INS# - instance

• DB# - database

• CFG# - configuration

• TSP# - tablespace

• BPL# - bufferpool

• PAG# - page

• LTC# - latch

• BLU# - column-organized tables

• TBL# - table

• IDX# - index

• CON# - connection

• WLB# - workload balancing

• PKG# - package

• SQL# - SQL statements

• CF# - pureScale cluster caching facility

43

Queries, queries everywhere

• There are 77 separate queries
• 71 in the Analysis report

• Top down investigations start from
• Database

• Bufferpool

• Indexes

• SQL

1BLU

9BPL

12CF

3CFG

3CON

16DB

4IDX

1INF

1INS

1LTC

2PAG

1PKG

7SQL

2TBL

7TSP

1WLB

44

DB Log Write Times

45

DB Log Read Times

46

Other HADR Log Stats

Check Sync disk Writes for
==

TSP#DSKIOSYNC: Disk read and write I/O times (synchronous)
==

47

Agenda

• What is HADR
• How to configure HADR for optimal performance
• Monitoring options
• Best practices

48

Most Common HADR Tuning Practices
LOGBUFSIZ

• Controls the amount of memory that DB2 uses to buffer I/O to its
recovery log files. This will get flushed to disk when any of the
following three considation are meet

1. A transaction issues a commit
2. A transaction issues a rollback
3. The memory buffer is full – worse case scenario for HADR as this will result

in multiple round trips between the primary and the standby
• Ensure NUM_LOG_BUFFER_FULL is zero

=====> Have there been any log buffer full conditions?
db2 "Select member, NUM_LOG_BUFFER_FULL from table(mon_get_transaction_log(-2)) with UR“
MEMBER NUM_LOG_BUFFER_FULL
------ --------------------

0 430664
In this case increase the LOGBUFSIZ parameter

49

Network Tuning
• TCP performance is critical for HADR performance

• Slow TCP performance can slow down HADR log shipping
• Slow log shipping slows the DB2 logger
• Slow logger impacts transactions throughput

• A properly configured network is a happy network!

• The TCP socket buffer size can be set in one of two way:
1. At the operating system level

• the settings is applicable across all TCP connections on the server

2. At the HADR level
• Using the DB2 registry variables: DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
• Allows tuning TCP window size for HADR connection without impacting other TCP connections

• Best Practice:
• Use the same value for DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
• Use the same value on the standby and the primary
• Use a dedicate NIC card for HADR traffic

50

51

Using the HADR simulator

• Below is actual result between IBM labs in Portland,
Oregon, and Silicon Valley, California

• The physical distance is about 1000km

• Buffer Throughput results:
64KB 1.554048 MBytes/sec
128KB 3.347476 MBytes/sec
256KB 4.734673 MBytes/sec
512KB 4.834047 MBytes/sec
1MB 4.821998 MBytes/sec

• Throughput peaks at 4.8 MB/sec with buffer size at
around 256KB

• Set DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
to 256K

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Socket buffer size (KB)

th
ro

ug
hp

ut
 (M

B/
se

c)

Best practices for HADR TCP buffer size

• Use HADR simulator to find out TCP requirement

• Test new size with HADR simulator before you apply it to database

• Use a minimum of 64KB

• Monitor actual size to verify that the requested size is indeed being used

• Consider larger size to mask network hiccup if you are using ASYNC mode

• Use the same value for the send and receive buffer sizes

• Use same values on the primary and the standby 52

Setting HADR Timeout
• If HADR_TIMEOUT is too long, it will slow detection of a lost

connection or a failed standby
• This may end up blocking transactions on primary

• It HADR_TIMEOUT is too short, HADR may get too many false alarms
• Resulting in breaking the connection more often than necessary

• BEST PRACTICES:
• The recommended HADR_TIMEOUT is at least 30 seconds
• The default is 120 seconds
• Some customers set HADR_TIMEOUT to very low values in order to avoid ever

blocking the primary, at the cost of a disconnection every time the network
hiccups

53

Logging Best Practices
• Log buffer should be multiple times the size of the max number

of log pages flushed

• Use a dedicated device for the log path
• Do not share devices between table spaces and log path

• A high-performance device is recommended as log device
• Log stream writing can easily become a bottleneck, even when HADR is

not enabled
• This is particularly important for OLTP systems

• DB2 Log Scanner can be used to analyze logger behavior

54

Validate storage devices used
Verify your disks are similar on all HADR nodes
• Ensure you are using the same class of disks on all nodes and identical

underlying infrastructure (# of spindles / SSDs)

• Preferably use SSD / NvME disk for transactions logs
• Do NOT mix SSD/NvME with Spinning Disk for active logs

• HADR Simulator will measure the performance of your disk
• write_time = per_write_overhead + data_amount / transfer_rate

• Little benefit to having multiple devices for the active logs as there will only be
a single thread writing to the active log at any one time.

55

Use of a NICs
Use a dedicated NIC for HADR traffic
• If possible, use a dedicated private NIC for HADR log transmission

between the nodes, including AIX standbys in a remote DC

• This will provide better performance as the NIC card will not get
flooded with both user and HADR traffic.

56

5757

Preferred DB2 HADR environment

eth0

DB2

HADR

Cluster

Manager

eth1

Primary Server

eth0

DB2

HADR

Cluster

Manager

eth1

Standby Server

Private network

HADR Replication

DB2 Instance DB2 Instance

DB2
Database

DB2
Database

Public network

Client Apps

Virt IP
eth0:0

Cluster
Heartbeat

DB2 Transactions

Switch

HADR replication via
a private network

Cluster
Heartbeat

57

5858

Alternate example of a DB2 HADR environment

eth0

DB2

HADR

Cluster

Manager

Primary Server

eth0

DB2

HADR

Cluster

Manager

Standby Server

HADR Replication

DB2 Instance DB2 Instance

DB2
Database

DB2
Database

Public network

Client Apps

Virt IP
eth0:0

Cluster
Heartbeat

DB2 Transactions

HADR replication via
the public network

58

Collect monitoring information
• To gather information for diagnostics, monitor HADR at regular intervals
• The information on the primary pertaining to the standby may be old, always execute db2pd on

each node.

• Example shell script:

while :
do

issue "db2pd -hadr" command on primary
record output
issue "db2pd -hadr" command on standby
record output
sleep 60

done

• db2pd is preferred over MON_GET_HADR because
• it is light weight
• can run on a standby without reads on standby enabled

59

Tuning a slow standby
• Hardware Utilization

• Check hardware bottleneck on standby using tools like vmstat
• It is recommended that primary and standby have the same hardware

• Number of Replay Threads
• Recovery is done in parallel using multiple worker threads, which defaults to the number of physical CPUs
• When there are a large number of CPUs, the default may be too high

• To check the number of threads used, look for lines like this in db2diag.log:
“Using parallel recovery with 6 agents 4 QSets 20 queues and 0 chunks”

• To tune down the number of threads, use DB2 registry variable DB2BPVARS:
db2set DB2BPVARS=<path to buffer pool config file>
In the config file, put this line:
PREC_NUM_AGENTS=<number of threads>

• Recent tests indicate PREC_NUM_AGENTS=13 PREC_NUM_QSETSIZE=8 provides the best replay speed
(approx. 45 MB/sec)

• Reads on Standby
• When reads on standby is enabled, read queries will compete against replay thread for resources
• Experiment with disabling reads on standby and gauge the impact

60

Agenda

• List Bulleted agenda items

Please fill out your session evaluation!

RAS3

@IDUGDb2
#IDUG_NA24

Db2 HADR Performance Tuning -
How to make it fly

Dale McInnis

dmcinnis@ca.ibm.com

