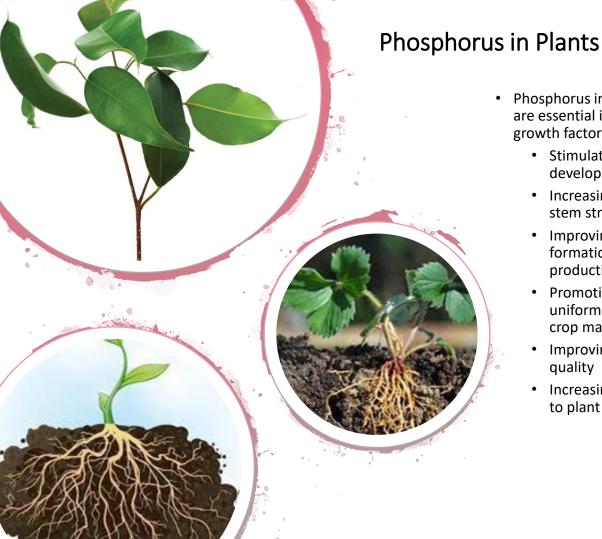


PHOSPHORUS IN WASTEWATER



Municipal wastewaters may contain from 5 to 20 mg/l of total phosphorous, of which 1-5 mg/l is organic and the rest in inorganic.

The individual contribution tends to increase, because phosphorous is one of the main constituent of synthetic detergents.

Phosphorus is also a component of phosphate, a commonly used base for corrosion inhibitors used at water treatment facilities.

2021 Hawkins, Inc.

Phosphorus in fertilizers are essential in plant growth factors, including:

- Stimulating root development
- Increasing stalk and stem strength
- Improving flower formation and seed production
- Promoting more uniform and earlier crop maturity
- Improving crop quality
- Increasing resistance to plant diseases

WHY IS PHOSPHORUS REGULATED?

- TO PREVENT EUTROPHICATION.
 - EUTROPHICATION IS THE GRADUAL INCREASE IN THE CONCENTRATIONS OF:
 - PHOSPHORUS
 - NITROGEN
 - OTHER PLANT NUTRIENTS

CAUSES OF EUTROPHICATION

Nutrient Pollution

- Agricultural Runoff: Fertilizers (NPK)
- Wastewater Discharges: Untreated or partially treated sewage and industrial effluents often contain significant amounts of nutrients.
- Stormwater Runoff: Urban areas with impervious surfaces (like roads and pavements)
- Atmospheric Deposition: Nutrients, particularly nitrogen, can be deposited into water bodies from the atmosphere due to industrial emissions and vehicle exhaust.

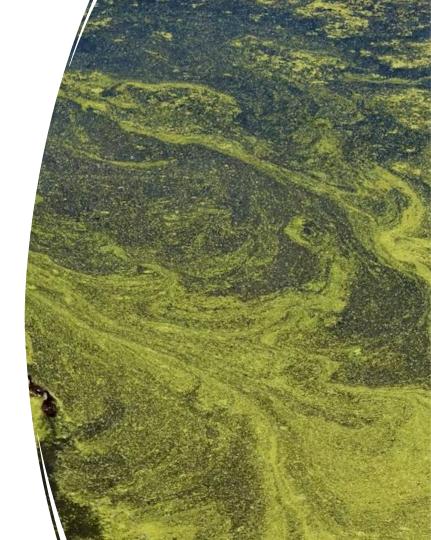
© 2021 Hawkins, Inc.

IMPACTS OF EUTROPHICATION

Ecological Impacts:

- Loss of Biodiversity: Sensitive species may decline or disappear, reducing overall biodiversity.
- Changes in Species Composition: Dominance of tolerant species (e.g., certain algae and bacteria) over sensitive species (e.g., fish and aquatic plants).
- Habitat Degradation: Loss of critical habitats like seagrass beds and coral reefs due to lack of light and oxygen.

Water Quality Impacts:


- Reduced Water Clarity: Algal blooms reduce water transparency, affecting the aesthetic and recreational value of water bodies.
- Odor and Taste Issues: Decomposing algae can produce foul odors and unpleasant tastes in drinking water.
- Toxin Production: Some algal species produce toxins (e.g., cyanotoxins) that can be harmful to humans and animals.

© 2021 Hawkins, Inc. 7

PHOSPHORUS IS A NUTRIENT FOR ALGAE

ALGAE (BLOOMS) WILL CONSUME PHOSPHORUS AS FOOD THEN RELEASE EXCESS PHOSPHORUS AS IT BREAKS DOWN THROUGH PHOTOSYNTHESIS.

IMPACT OF ALGAE BLOOMS ON PLANT EFFLUENT

CBOD5 (CHEMICAL BIOLOGICAL OXYGEN DEMAND) LIMITS MAY BECOME UNACHIEVABLE.

(<25 MG/L)

TSS (TOTAL SUSPENDED SOLIDS)
CAN EXCEED LIMTS

(<45 MG/L)

POTENTIAL FOR INEFFECTIVE UV LIGHT TRANSMITTANCE

HEAVY ALGAL MATTING CAN DIMINISH UV LIGHT TRANSMITTANCE.

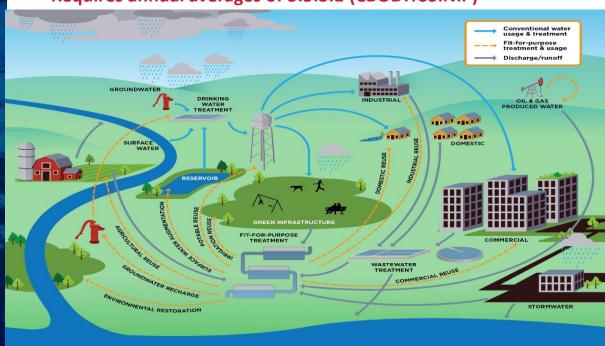
COMMON ALGAE CONTROL METHODS

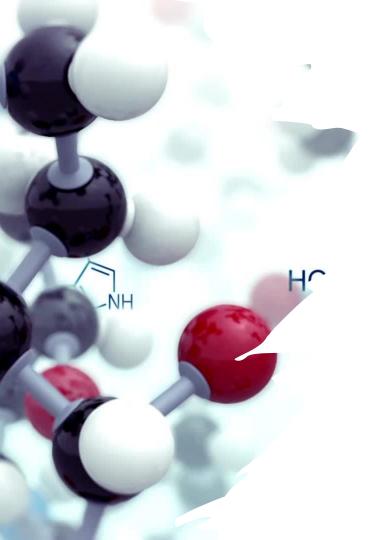
- COPPER SULFATE
 - DRY OR LIQUID FORM
- SODIUM PERMANGANATE
 - 20% ACTIVE
- POTASSIUM PERMANGANATE
 - 2 4% ACTIVE
- SODIUM PERCARBONATE
 - 32.5% ACTIVE
- BIOAUGMENTATION

PHOSPHORUS LIMITS

MOST STATES ENFORCE

- 1 MG/L AS PHOSPHORUS
 "P"
- An effluent limitation equal to 1 mg/L total phosphorus as a monthly average shall apply in cases where the discharge of wastewater from all outfalls of a facility other than those subject to change.





ADVANCED WASTEWATER TREATMENT (AWT)

- Nutrient standards set for contaminants in effluent discharge
- Requires annual averages of 5:5:3:1 (CBOD:TSS:N:P)

TESTING FOR PHOSPHORUS

- PHOSPHORUS IS ONE OF THE PRIMARY COMPONENTS OF THE PHOSPHATE (PO4) MOLECULE.
- THE PHOSPHATE MOLECULE CONTAINS ON AVERAGE 32% PHOSPHORUS.
- CONVERSION OF PHOSPHATE (PO4) TO PHOSPHORUS (P):
- (PO4) X (0.326) = "P"

COMMON PHOSPHORUS REMOVAL TECHNIQUES

CHEMICAL COAGULATION

ALUM SALTS

FERRIC SALTS

PACs

ACHs

BLENDS (EPIAMINE/DADMAC)

CHEMICAL PRECIPITATION

HYDRATED LIME CLC/RARE EARTH

BIOLOGICAL

CERTAIN STRAINS OF BACTERIA WILL FEED ON THE PHOSPHORUS AND TAKE IT UP WITHIN THEIR CELL STRUCTURE

TRADITIONAL SALTS VS PAC/ACH & BLENDS

ALUMS & FERRICS

HIGHER DOSAGE RATES
CONSUMES ALKALINITY
CONSUMES PH
CAN BE CORROSIVE
PRODUCE MORE SLUDGE
STAINING ISSUES WITH FERRIC

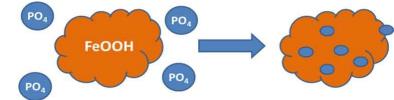
PACs, ACHs & BLENDS

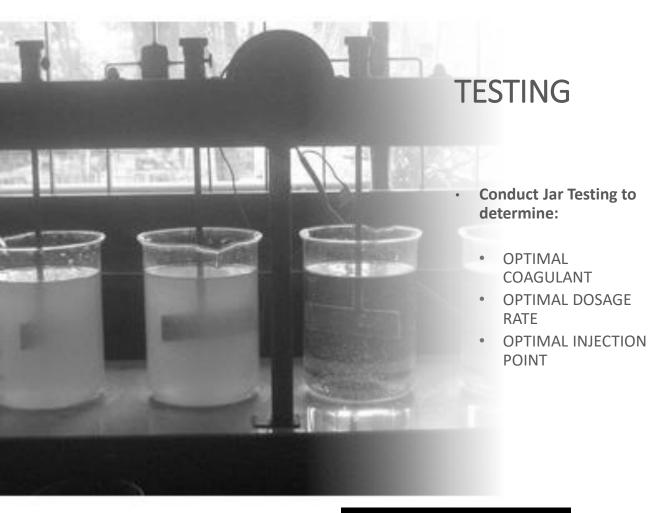
TYPICALLY, LOWER DOSAGE RATES√

CONSUME LESS ALKALINITY✓

LOW IMPACT ON AVAILABLE PH√

NON-CORROSIVE ✓
LESS SLUDGE PRODUCED ✓





CERIUM LANTHANUM CHLORIDE (CLC)

- Commonly referred to as "Rare Earth" coagulants (RE)
- Extremely effective at low dose (1:1) when compared to traditional coagulants (~2.5:1)
- Straightforward metal phosphate precipitation, as opposed to adsorption of phosphate onto metal oxide surface
- More efficient than Al/Fe when little P present

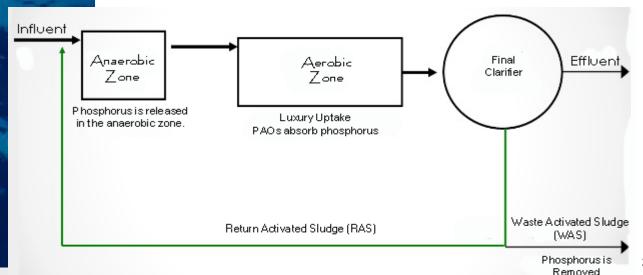
EVALUATION

2021 Hawkins, Inc. 20

COAGULANT APPLICATION POINTS

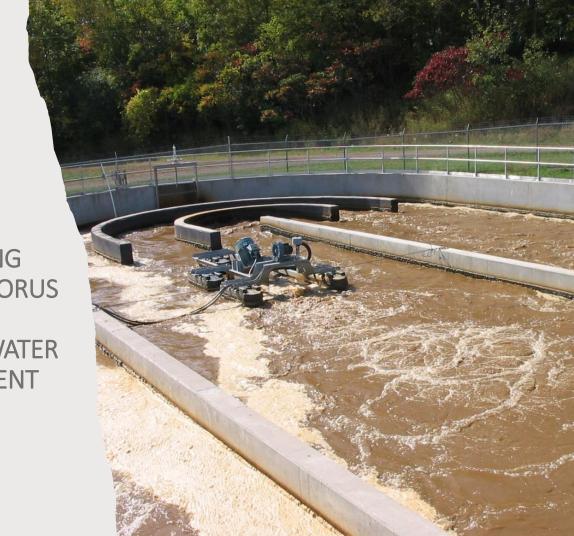
PRIMARY CLARIFIER(S)

SECONDARY CLARIFIER(S)



BIOLOGICAL PHOSPHOROUS REMOVAL

- PAOs (Polyphosphate accumulating organisms)
- P release under anaerobic conditions
- Luxury uptake under aerobic conditions
- Bioaugmentation/Biological supplementation



WASTEWATER LAGOONS

REDUCING **PHOSPHORUS** FROM LAGOONS

REDUCING PHOSPHORUS AT WASTEWATER TREATMENT PLANTS

Thank you!