

Valve & Hydrant Group

THREE COMPANIES = ONE TEAM

FIRE HYDRANT PRESSURE MONITORING BASIC TRAINING

Company Confidential

History

17th – 18th centuries (larger cities)

Society required more advanced fire protection systems

Piping systems put in place

- Hollowed out wooden logs
- Dug down, split the wood, repaired with a "fire plug"

Canvas cisterns were used to fuel bucket brigades

Cast iron replaces wood pipes

New need for foundries

More permanent connection sites are required

- Tees
- Standpipes
- Valves
- Pumps

Ball Hydrant — patented 1850s

A ball is moved downward, which allows for the flow of water

FIRE HYDRANT DAMAGE ALMOST ALWAYS STARTS WITH THE MAIN SEAT RUBBER!

Fire Hydrant Components

Operating nutHose ifWeather shieldBreakThrust nutLowerTravel stop nut (optional)Shoe/Bonnet (cover)BreakNozzle sectionBreakPumper nozzle & cap

Hose nozzles & caps Break flanges Lower barrel/standpipe Shoe/Boot/Bottom Break (traffic) coupling Break-away/solid bolts

Pressure Monitors (The Past)

Pressure Monitors (The Future)

Why Pressure Management?

Maintaining pressure within an optimal range within the entire water distribution system.

Effective pressure management can...

Reduce Energy Costs by 20-40% Reduce Water Loss by 40% Reduce New Breaks by 53% Reduce risk of water contamination Reduce consumer disruptions

PSI	Water Loss in Gallons		
120	1,241,100		
90	1,049,516		
60	814,000		
Water loss relate	d to Pressure		

an ar and

A A A

R

14

S.Same

When Pressure is too high...

Increases stress on water pipes, reducing lifespan of infrastructure

Increases main breaks, new leaks

When Pressure is too low...

Risk meeting state mandates for fire fighting

Customer Complaints

Risk compromising water quality

How does Pressure affect water quality?

Figure 4. Leaky water pipe laid next to a sewer pipe (Source: Opflow 1999)

EPA boil advisory <20 psi over an hour

What affects pressure?

In just 9 months with four pressure and temperature monitors

Over 3.5 million pressure samples
4,210 pressure alarm events
725 alarm events over 200 PSI
432 alarm events below 30 PSI

System Optimization

- Actuators
- Pressure Reducing Valves (PRVs)
- Pump Optimization
- Control Valves
- Variable Frequency Drives

Benefits of Real Time Pressure data

Contractor/Accidental Damage

C

Monitor Remote transmission lines End Date: 07/30/2021 12:24 AM 07/26/2021 12:24 PM Update chart with revised date Hide Custom Dates Pressure and Temperature Chart \equiv Select area to zoom. Use the Navigator below the chart to Reset Zoom and Reset selection 07/27, 08:00pm 07/28, 12:00am 07/28, 04:00am 07/28, 08:00am 07/28, 12:00pm 07/28, 04:00pm 07/28, 08:00pm 07/29, 12:00am 07/29, 04:00am

Pressure Reducing Valve Failure

Variable Frequency Drive Malfunction

Pressure and Temperature Chart

Start Date: 10/01/2020 05:57 PM

End Date:

10/05/2020 05:57 PM

Hide Cu Update chart with revised date

Pressure and Temperature Chart

Select area to zoom. Use the Navigator below the chart to Reset Zoom and Reset selection

Identify unknown issues

Compare Hydrant Pressures

Lift and shift

• Devices that require digging or tapping a pipe

Communication

 Interferes with normal hydrant operation

Water loss recovery

In Hydrant Pressure Monitoring IS the FUTURE, but this will necessitate the need to approach repairs with more knowledge.

Delicate Components

Polycarbonate Covers

Electronics & Batteries

Internal Wiring & Cables

Sensors & Unique Parts

