Chemical Removal of H₂S: *Iron Sponge*

- Chemical reaction bonds sulfur to iron oxide
- Reaction occurs at ambient temperatures
- Must be in alkaline conditions, pH > 7.5 w/ 8-10 preferred; caustic soda added as needed
- Temperature < 110F

Chemical Removal of H₂S: *Iron Sponge* (con't)

Each pound of Fe₂0₃ can remove 0.56 lbs.
sulfide

Iron oxide is impregnate in wood bark: 15 lbs. Fe₂0₃ per bushel of bark (1 bushel in-place = 1 cu. ft.)

$$3H_2S + Fe_2O_3 + H_2O \rightarrow 4H_2O + Fe_2O_3$$

 $[H_2S]_{in} = 1k \text{ to}$ 4k ppm

 Δp : 2 - 3" wc initially

8 - 10" over time

Iron Sponge – MSU AD System

Two Tank System for Biogas Clean-up

Iron Sponge Scrubbers – Janesville WWTP, Janesville, WI

Chemical Removal of H₂S: *Iron Sponge* (con't)

- Iron oxide can be regenerated by adding air (0₂)
 - > prolong life by 3 to 4x
 - > sulfide is changed to elemental sulfur

$$2Fe_2S_3 + 30_2 + 2H_2O \rightarrow 2Fe_2O_3 + 2H_2O + 6S + Heat$$

Spent iron sponge (no longer when H₂S is removed and/or when bark has deteriorated into fine particles) can be burned (caution: can self combust), land filled, or spread on ag. land.

Chemical Removal of H₂S: *Activated Carbon*

- Activated carbon impregnated with potassium iodine or sulfuric acid
- Air injected into biogas to promote carbon adsorption of H₂S
- Carbon also regenerated with injected air
- H₂S → elemental S

Microbial Removal of H₂S *Biological Fixation*

Sulfur oxidizing bacteria $H_2S + 2O_2 + 2OH \rightarrow SO_4^{2-} + 2H_2O$

Requires ~2% oxygen injection, ~10% air so some dilution, $[H_2S] < 100 \text{ ppm}$

Step 1: $H_2S + 0.5 O_2 \rightarrow S + H_2O$ Step 2: $S + 1.5 O_2 + H_2O \rightarrow SO_4^{2-} + H^+$

Microbial Removal of Biogas H₂S *Biological Fixation*

Two Possible Locations (Strategies):

Digester Biogas Head Space (In situ)

Separate Vessel (Biotrickling Filter (BTF))

In situ H₂S removal

Should be part of original design

 Sulfur accumulation, flocs into AD vessel, though cleaning may be required

Biotrickling Filters

Other BTFs

Biofouling in BTF vessels

Biogas Cleanup – Level 3 of 3

CO₂ Reduction/Removal

- Regenerative Water Wash
- Regenerative Amine Wash (Amine)
- 3. Pressure Swing Adsorption (PSA)
- 4. Membrane Separation

Chemical Removal of CO₂: Regenerative <u>Water</u> Wash

- Based on the principle of that CO₂ is more dissolvable in pressurized water than CH₄
- Important to remove H₂S (also soluble in water) prior to regenerative water wash system since it will foul pipes
- Purified biogas harvested from the top of the pressure vessel and CO₂ and dissolved CH₄ removed from wash water in a flash tank were water pressure is reduced

Chemical Removal of CO₂: Regenerative Water Wash

 Wash water system can result in more water vapor in the processed biogas than in the raw biogas

Electrical energy use ~ 6.2 kWh per ft³ of cleaned gas

Process is ~ 98.5 percent efficient

 Used wash water requires proper handling

Chemical Removal of CO₂: Regenerative Amine Wash

- Similar to the regenerative water wash system but Amine is used to adsorb CO₂
- Amine chemicals are very affective of CO₂ removal resulting in almost pure *biomethane* and little loss in tailgas
- Amine chemicals are toxic to humans and the environment
- Process is high in parasitic power needed for regeneration
- Biogas moisture contaminates amine chemicals reducing efficiency

Biogas Clean Up – Amine System

Amine System – Pilot Plant Schwandorf, Germany; 7,100 ft³/hr

