Antibiotics and Antibiotic Resistance: Risk Assessment Challenges for Human Health

Felicia Wu, PhD

John A. Hannah Distinguished Professor
Department of Food Science & Human Nutrition
Department of Agricultural, Food, & Resource Economics
Michigan State University

Dairy Practices Council 47th Meeting, 10 November 2016

Presentation outline

- A (very) brief history of antibiotics
- Antibiotic resistance
- Antibiotic resistance risk assessment: Why it is so difficult
- Steps forward

Top 10 causes of death in US were caused much more by bacteria in 1900 than in 2010 (CDC National Vital Statistics Report 2010)

In US, infectious disease death risk has dropped dramatically since 1900.

Aiello AE, Larson EL (2002). Lancet Infectious Dis. 2:103-110.

Antibiotics

Compounds that kill bacteria or slow their growth

- 1928: Alexander Fleming's staphylococcus cultures in lab
 - Penicillium in one dish destroyed bacteria
- "Mould juice" (penicillin) found to be effective against scarlet fever, pneumonia, meningitis, diphtheria, gonorrhea, syphilis, etc.

Today: >150 antibiotics developed for humans & animals

- Before antibiotics, infections caused
 >33% all deaths in US
- >200M lives saved by penicillin (Roberts & Ingram 2001)

Risks of overuse

- Adverse gastrointestinal effects, including life-threatening *C. difficile*
- Antibiotic-resistant bacteria

Antibiotic resistance recognized as national and global threat

- US government (PCAST), CDC and WHO have identified antibiotic resistance as one of greatest public health threats today
 - http://www.cdc.gov/narms/
 - http://www.who.int/mediacentre/factsheets/fs194/en/
- Although clinical use/misuse is identified as the major cause, uses in animal agriculture may play role

How bacteria evolve resistance to antibiotics, & consequences

- Strong selection pressure in environment
 - Environment is reservoir for antibiotic resistance genes
 - Hospitals, soil, lagoons, etc.
 - As our practices put more and more antibiotics into environment, bacteria face pressure to evolve resistance, or die
 - Mechanisms:
 - Exclusion of antibiotic from cell
 - Antibiotic degradation or structural modification (Topp 2015)
- à Loss of antibiotic efficacy in vet & human medicine, IV vs. oral treatment, greater health care costs, greater risk to medical procedures once thought routine

How could antibiotic use in animal/dairy production affect humans? Risk assessment

WE NEED TO ASSESS RISKS OF 3 THINGS

- Antibiotics
- Antibiotic-resistant bacteria
- Antibiotic resistance genes
 - In all cases, dose & exposure matter

WHAT WE STILL DON'T KNOW

- To what extent does antibiotic use in dairy production affect antibiotic resistance in humans?
 - B/c of careful stewardship over decades, antibiotic use in dairy has not led to widespread pathogen resistance; however, does contribute to antimicrobial resistance (Oliver et al. 2011)
- Can bacteria evolve resistance to multiple antibiotics at once?
 - If so, then it wouldn't matter that vet medicine uses different antibiotics than human medicine
- What is the time scale of evolving resistance?

Steps forward

- Continue careful stewardship of antibiotic use in vet & human medicine
- Monitor for emerging antibiotic-resistant pathogens
- Continue research on whether bacteria develop cross-resistance or co-evolution to antibiotics across vet-human medicine
- Consider alternatives to antibiotics that are as safe and effective