

Automatic Milk Installations for Management Benefits

Rick Watters, PhD

Quality Milk Production Services

Western Laboratory Director

rdw32@cornell.edu

Cornell University College of Veterinary Medicine

QMPS is a program within the Animal Health Diagnostic Center, a partnership between the NYS Department of Agriculture and Markets and the College of Veterinary Medicine at Cornell University.

Objectives

- Understand importance of monitoring robot function – routine maintenance and monitoring
- Understand importance of monitoring records at least twice daily
- Use the technology at your fingertips to reduce the risk of spreading mastitis causing organisms via the robot

Outline

- Robotic history to current status
- Why robotics
- Robot management
- Milk quality

Current status

- 1992 first installation in Netherlands
- 1999 first robot in Canada
- 1999 first robot in US (on-farm) Wisconsin
- > 25,000 robots world wide
- > 10,000 farms worldwide
- ~ 3,000 robots in North America
- 2013 US
 - 578 farms
 - 1415 robots
 - 2.45 robots/farm
 - o 75,000 cows

Robotic trends

- Larger robotic installations
 - Western US starting to see larger robotic installations
 - ~20 installations slatted for install with 12 or more robots
 - $_{\circ}$ Is this the future?
 - Even seeing economic analysis of large robotic dairies being completed by lenders
 - Large robotic dairies is where the labor savings are substantial
 - Largest in North America to be installed in MI 24 robots 2017
 - Largest in world in Chile 64 robots to milk 4,500 cows 2017
- Continue to see 2 4 robot installations as exit strategy for farm with no next generation to take over farm
 - Assumption is 40 50% salvage value of robot with this strategy
 - Price on used robots is \$45,000 \$70,000
 - 20 30% salvage value

Potential Contribution to Mastitis

3-ways to cause mastitis from a machine

- Irregular vac fluctuations liner slips: equipment
- Teat damage overmilking: equipment
- Transfer of contagious organisms: equipment/milking management

Milkings/robot

Which has more milkings/milking unit...?

milking 120 cows 3 times daily with 2 robots

 milking 4,500 cows 3 times daily with a 100 stall rotary

Mind-set for number of cows milked at each unit

- How does the number of milkings/robot compare to milkings per milking unit on a large dairy?
 - 120 cows 2 robots 3 milkings/day = 180 milkings/robot or per milking unit
 - 120 cows 2 robots 2.7 milkings/day = 162 milkings/robot or per milking unit
 - 100 cows 2 robots 2.7 milkings/day = 135 milkings/robot or per milking unit
 - 100 stall rotary milking 4,500 cows 3x = 135 milkings/unit
 - 80 stall rotary milking 3,200 cows 3x = 120 milkings/unit
 - D-20 parlor milking 1,200 cows 3x = 90 milkings/unit
 - 80 cows tie stall with 6 units milking 2x = 27 milkings/unit
- Minimize risk of robot being vector for transfer of mastitis causing organisms

Goal of milking with robot

- Harvest high quality milk in a clean and efficient manner while minimizing risks to the cow during the harvest of milk
- Minimize human to cow interaction for milking cows
- Maximize number of cows through a robot or pounds of milk harvested through a robot
- Read reports to identify cows at risk for health disorders
- Use technology within the robot to minimize the risk of spreading disease causing organisms within your herd

Why do producers choose robotics?

- Flexibility in schedule
 - Improved quality of life more family time
 - Number one reason to switch to robotics
- Labor efficiency
 - Ability to work on other areas of the farm
 - Most robot farms have 2 robots or less so reducing labor may not be an option
 - If its family labor then even less of impact on reducing labor
 - Refocusing labor on reproduction, crops, calves or heifer management can be profitable
 - Labor efficiency/savings is real on large robotic dairies
- Information
 - Technology, cow management
 - Ability to manage cow sooner
 - Repro, metabolic, milk quality

Labor efficiency

Economist or financial institution

- 70 80% reduction in labor costs
- Labor costs
 - \$1.81 1.93/cwt conventional
 - \$0.35 \$0.54/cwt with robot
- Labor savings are seen when there are 4 or more robots
 - If you are milking 240 cows and they are 4 employees...
 - 2 family and 2 non-family
 - Can you complete all daily farm related tasks with 3 employees?
 - Feeding, cleaning, calves, repro, maintenance, accounting, etc..

Survey of dairy operations

- \$2.22/cwt conventional
- \$1.60/cwt robot
 - 28% reduction in labor costs

Robot management

- Barn design
 - Determined during design phase and fixed component
- Cow traffic
 - Determined during design phase
 - Physical layout is a fixed component
 - Impacted by human-to-cow interaction
- Robot settings
 - Number of milkings allowed, interval between milkings, maximum box time, etc..
- Daily monitoring
 - Cow reports
 - Robot Equipment
- Proactive management

Management

- Manage mechanics of robot routine tasks
 - Daily, weekly, monthly routine service
 - Pulsation, vacuum, camera, laser, greasing, manual cleaning, calibrating, etc..
 - Automation does not mean less manual tasks
 - Automated equipment require daily monthly maintenance
- Manage records or reports
 - Cow and equipment
 - Monitor reports 2 3 times daily
- Manage the risk of the robot being a vector for the movement of mastitis causing organisms
 - Use the technology of the robot to minimize risks
 - Block animals with a known mastitis/aerobic culture history from milking on all robots
 - Allow them to milk at specified times
 - Multiple pens move all high risk cows to one pen
 - Include an extra backflush, rinse after an at risk cow milks

Equipment monitoring

- Robot will inform you if there is a mechanical issue
- Robots will inform you of when you should change wear items
 - Liners and other rubber goods
- Robot reports
 - Daily milking reports can be a useful tool to monitor the mechanics of the robot
 - Box time, treatment time, compare milking time of front teats to front teats and rear teats to rear teats

Туре	Extra	Attention		Info .	
A4 -			Liner Attention	13709 Milkings	
A4			Sleeve Attention	30069 Milkings	
Feed	Pellets		Attention Level	Aug 11 2016 4:17AM Storage Attention	

Attention List						
Device	Туре	Extra	Attention	Info	View	
<u>101</u>	A4	LR	Increased milktime	+22 sec	View	

Robot maintenance

- 8 hours/week
 - Daily, Weekly, Bi-weekly and Monthly tasks
- Cleaning lenses and area around laser
- Check that each liner is pulsating
 - Finger in liner open and close
- Monitor for tears
 - Liners, hoses, gaskets
- Ocular irritation of liner from backflushing chemicals and steam
- Greasing, checking fluids, cylinders, air filters, gaskets, etc..
- Monthly pulsators and claw vacuum
- Maintenance cost per robot cost \$7,000 \$12,000 annually
 - \$600/month to \$1000/month
 - Hygiene and service = cost of ownership
- Service/repairs annually cost \$2,000/robot

Equipment monitoring

- Monitor robot reports for equipment function
 - Front teats as compared to front teas should not differ by more than 20 seconds for milking time
 - Rear teats as compared to rear teas should not differ by more than 20 seconds for milking time
 - Multiple robots in same pen should have similar box times
- Teat in liner low or fluctuating vacuum
- Pulsation less B-phase, pulsator not pulsing at all, tear in pulsation hose, dirty air

Failed or incomplete milkings

- Failed or incomplete milking occur for what reason?
 - Equipment failure
 - Cow fresh animal kicks unit off, can't attach teatcups because of udder hygiene, etc..
- Failed/incomplete milkings at one robot when there are multiple robots is an indication of a mechanical issue
- How much time does a failed/incomplete milking take up?
 - 4 5 minutes or more
 - Reduce failed or incomplete milkings by 2 per milking shift (between cleanings) and there is an extra 30 minutes of milking time each day
 - This doesn't include additional time required to fetch a cow if fetching is required after a failed milking

Cameras for monitoring

- Cameras, cameras, cameras
 - Install cameras to monitor....
 - Traffic patterns
 - Bottlenecks
 - Time of day, dominant cow, etc..
- Natural movement without human influence

- Why are cows bunching at entrance/exit area of robot?
 - Cooling, flies, etc..

Cornell University

Fetch and dominant cows

- What can you do to get fetch cows milked with limited human interaction?
 - Move fetch cows at the same time that stalls are cleaned each day
 - Multiple cow interaction tasks completed at once

Fetch and dominant cows

- Subordinate cows may need to be fetched
 - Fetch cow moved to pen and dominant cow is ready to load next
- Separate pens or you may have to move subordinate cow directly into robot not ideal

Milking time parameters/robot – 60 cows

Item	Target	Action
Milk Yield/milking (lbs.)	30	25
Milkings/robot/day	180	165
Milkings/cow/day	3	2.7
Yield/robot/day (lbs.)	5,000	4,500
Percent of cows fetched (%)	≤ 2%	≥ 5%
Total cows fetched	2	≥ 3
Percent time robot is milking (%)	85	80
Percent time robot is idle (%)	10	15
Time robot is cleaning (minutes)	80	> 120

Milk quality

- How do we determine if a cow has mastitis when milking in a tie stall barn or parlor?
 - Clots/flakes abnormal milk
 - Bloody or watery milk abnormal milk
 - Swollen or hard quarter inflammation
 - Decreased milk production
 - Down cow systemic mastitis
 - o CMT
- Don't out guess the biology of the cow because there is robotic technology involved

Milk quality - Robot

- How does a robot indicate if a cow may have mastitis?
 - Color sensor Bloody milk
 - Temperature of milk Swollen or hard quarter
 - Milk deviation Decreased milk production
 - Milking time short or long milking time at quarter level
 - Conductivity CMT
- Not much has changed in how we determine if there is mastitis
 - Still have to evaluate the cow to determine what caused the health alert/attention
 - Cow evaluation and/or treatment should not take place in robot
 - Evaluation/treatment in robot may be a negative experience for cow
 - Negative experience may lead to cow not willingly visiting robot

Cow as her control

- Real-time values at the level of the quarter with the cow as its control
 - Multiple repeated measurements at the level of the teat, within cow and multiple times/day
 - Monitor changes at the level of the teat within cow
 - Software compares the cow to itself when determining if she is at risk
 - Very sensitive method of indicating that something is wrong with the cow

What data can we get from a robot

- Quarter level milking
 - Milk yield
 - Average milk flow
 - Milking time
 - Conductivity
 - SCC
 - Color
- Quarter level mechanics
 - Teat position
 - Attachment attempts
 - Pre-milking prep time

- Udder Level
 - Milk yield
 - Fat
 - Protein
 - Lactose
 - Average milk flow
 - Milk temperature
- Cow level
 - Activity
 - Rumination
- Box level
 - Box time
 - Treatment time
 - Visit data

Proactive management

- Conductivity, color and temperature of milk are indicators of an immune response
 - Management is responding to an immune function
 - Gather data multiple times/day at the quarter level thus the sensitivity of the parameters is high
 - Small change may be indicative of an udder issue
- Proactive not preventive management
- Management comes in the form of rapid intervention
 - Provide supportive therapy to prevent mild case of mastitis from becoming a moderate or systemic case of mastitis
 - Aerobic culture of at risk quarter to identify organisms that is the cause of milk quality issue

Managing milk quality

- Managing milk quality is the same in a robot as it is in any other milking center
- Management requires managing the causative agent or organism
 - One cannot manage conductivity, color, temperature, etc.
 - Manage what causes changes in conductivity, color, temperature
 - Aerobic culture and treat or no treat
- Don't use robot to guess what organism caused the udder health alert
 - Robots cannot determine if the causative agent was E. coli,
 Staph aureus or Strep uberis
 - Acute change in conductivity, milking time or milk yield are not indicative of a mastitis causing organism
 - Aerobic culture is needed to management causative agent

Milk quality - robot

- Technology requires monitoring reports
- The key to milk quality in a robot is monitoring udder health reports at least twice daily
 - 12 hours apart
 - Cows monitored in AM also monitored again in PM
 - All cows on list monitored at least twice in 24 hour period even if cow did not show up on report 12 hours later

Key reports to monitor

- Milk deviation
- Abnormal milk, separated milk
 - SCC, color, conductivity
- Fetch/Collect cows
 - Long interval and low milkings/day
- Slow or long milking time
- Fetch cows or average milkings/day
- Failed milkings
- Activity
- Rumination

- Reports
 - Collect/Fetch Cows
 - Udder health Work
 - Failed/Incomplete milkings
 - Udder health report
 - Robot performance/daily milkings
 - Alerts from robot on main screen

Robot management failures

- Not performing routine maintenance/service on the robot
 - Daily to monthly tasks
 - Significant impact on box time
- Not monitoring reports two to three times daily
- Barn design
 - Design that requires unnecessary human-to-cow contact
 - Dirty cows
 - Don't cut corners when it comes to installing a robot
 - A retrofitted barn is not always the best decision
 - No matter what method of cow flow you use the idea is the cow freely chooses when to go to the robot
 - Tie stalls were not designed for free flow of cattle therefore retrofitting a tie stall for a robot is not suggested
 - Retrofitting a free stall can also be a challenge depending upon where the robots are installed
 - The main reason that people choose robots is for more free time
 - Collecting more fetch cows does not lead to more free time

Robot success

- Perform daily, weekly and monthly maintenance tasks as recommended by the manufacturer
- Monitoring reports at least 3 times daily
 - Cow level
 - Robot diagnostics (equipment)
- Cows will adapt quicker than people
 - Do not interfere with the flow of cattle to and from the robot
 - It's ok if a cow hasn't visited the robot in 10 hours
 - Give her a chance to visit on her own before getting her up and moving her to the robot
 - Go check her visually and if all looks well then give her a chance to move to the robot
 - Once you start moving cows to the robot it is hard to break the habit
- Evaluation/treatment area to monitor cow not in robot
- Observe cows with limited cow to human interaction
- Barn design
- Feed

Discussion?

Why hasn't Joe monitored reports today? I better fetch Joe!!!