On-Farm Water How much and from where?

Joe Zulovich
Extension Agricultural Engineer
Commercial Agriculture Program

Total Water System Overview

No direct path from need/source to distribution.

Total Water System Overview

Water Need and Source

What is the quantity and quality of water by use and where are possible sources?

Water Quality

Does water quality from the available source meet the need? If not, water treatment?

Water Quantity

- Supply sizing
- Daily use requirement
- Peak demand determination

Water Distribution

- Pipe and pump system design
- Intermediate water storage
- Water treatment incorporation

Extension

Water Need

- Daily water need for dairy herd, equipment cleaning and cooling
- Estimate peak water demand and simultaneous use
 - Water flow rate for drinking water
 - Water flow rate for washing equipment, parlor, etc.
 - Water flow rate for sprinkler cooling
- Water desired for pasture irrigation

Primary Water Uses and Quantities for Dairy Operations

	Drinking Water (gallons/head/day)	Supplemental Cooling Water (gallons/head/day)	Parlor Wash Water (gallons/cow/day)
Calves	6 to 10		
Heifers	10 to 15		
Dry Cows	20 to 30	8 to 12	
Milk Cows	35 to 50	10 to 15	10 to 50

Irrigation Water — about 27,154 gallons per acre-inch
 of water {acre-inch = 1 inch of water applied on 1 acre of pasture}

Table 1. Estimated daily water consumption for a 1,500-pound lactating cow producing 40 to 100 pounds of milk daily^a.

Milk Production (lbs/day)	Estimated DM Intake	Weekly Mean Minimum Temperature ^b					
	(lbs/day)	40°F	50°F	60°F	70°F	80°F	
		gallons per day ^c					
40	42	18.4	20.2	22.0	23.7	25.5	
60	48	21.8	23.5	25.3	27.1	28.9	
80	54	25.1	26.9	28.7	30.4	32.2	
100	60	28.5	30.3	32.1	33.8	35.6	

Sodium intake = 0.18% of DM intake.

From: "Water for Dairy Cattle" Oklahoma Cooperative Extension Service, ANSI-4275

^bMean minimum temperature is typically 10 to 15∞F lower than the mean daytime temperature

^{°1} gallon of water weighs 8.32 pounds.

Water Conservation Opportunities

- Appropriate management of sprinkler cooling system or evaporative pad system
- Reuse water in milking center
 - Capture and store equipment wash water for parlor cow platform washing
 - Plate cooler water can be used for drinking water or parlor cow platform wash water

Water Quality

- What is the quality of water required for the use?
- What is the water quality available from the water source?
- Does the quality of the source exceed the quality of the need?
- If not, can a different source with higher quality be located or is water treatment required?

Water Quantity - General

- Estimate daily water need based on use values
- Estimate peak water need based on use values and behavior of animals
 - Single animal water drinking rate 5 to 6 gpm per cow
 - Number of animals drinking at one time
 - Additional water uses when animals are drinking
 - Irrigation water demand

Potential Water Sources

- Ground water accessed by using well
- Surface water impoundment
- Streams and rivers
- Public water
- Water Use Law at Farm Location
 - Riparian Law (Water on site can be used)
 - Use Law (Must obtain 'permission' to use water)

Water Source - Wells

- Determine if well can deliver daily demand
- If daily demand not met, additional wells or water sources must be located or size of operation downsized.
- Can well supply peak water use demand?
- If peak demand not met, intermediate water storage and booster pump is required.

Well System Capacity

- Well system capacity needs to be large enough to supply daily water need in 10 to 12 hours. Some designers assume 5 to 8 hours to supply daily need.
- Maximum pump size needs to be slightly smaller than maximum well yield capability.
- Can a well system be constructed to meet water need for location?

Well Water Delivery

- If well can supply peak water need, pump in well supplies water to operation.
- If well can deliver daily need but not meet peak demand, then an intermediate water storage system needs to be designed and installed.
- If well system can not provide daily need, reevaluate operation's goals or find additional water supply capability.

Intermediate Storage

Water Source - Impoundments

- Size pump and pipe system to supply peak demand.
- Water impoundment should be large enough to store at least one year and better - two year water supply.
- Ensure enough watershed area draining runoff is large enough to refill impoundment within a normal year.
- Are other surface water sources needed to refill impoundment?

Estimating Surface Water Storage Requirements in Missouri

- 1. Estimate daily water usage in gallons per day
- 2. Annual estimated water usage = Step 1 * 365
- 3. Annual acre-feet usage = Step 2 divided by 325,828.8
- 4. For two year supply multiply step 3 by 4 (2 year supply and 50% loss)
- Estimate watershed area multiply step 4 by 2.4 to get watershed area to refill pond in one average year

Water Source – Rivers & Streams In Missouri or Riparian Water Locations

- Ensure that you have ownership of land connected to the water source where pump to be located
- Estimate volume of water to be pumped each year
- Consider pumping to an intermediate storage impoundment – especially for low flow sources
- Best to use a floating intake (minimize stream bank and channel impacts)
- Do not adversely impact a downstream owner or downstream fish habitat

Water Source – Public Supplies

- Do not assume water for dairy operation can come from public water system. Experience has indicated any one of the following responses can be given to a prospective dairy operation
 - 1. Connect and use as much as desired (not typical)
 - 2. Connect and use a limited amount or for emergency purposes only (typical response)
 - Do not connect. (a more common response for systems having trouble meeting current demand for water).

Water Distribution System

- Know water supply capability and location
- Know water flow rate both daily and peak
- Know if water treatment required

 Once all above are known, a water distribution system can be designed

QUESTIONS?

Joseph M. Zulovich, Ph.D., P.E.

Extension Agricultural Engineer Commercial Agriculture Program University of Missouri

231 Agricultural Engineering Building 1406 E. Rollins Street University of Missouri Columbia, MO 65211-5200

Office Phone: (573) 882-0868

FAX: (573) 884-5650

Email: ZulovichJ@missouri.edu

