

AUTOMATIC MILKING: FDA Issues

Douglas J. Reinemann, Ph.D.

University of Wisconsin

Milking Research and Instruction Lab

Madison, Wisconsin, USA

Appendix Q to the Pasteurized Milk Ordinance (PMO)

- AMI for the Production of Grade "A" Raw Milk approved in 2003
 - AMI shall identify and discard milk with abnormalities.
 - opoints of contact with abnormal milk will be cleaned and sanitized after milking such an animal
 - 6 box shall be kept as clean as any milking and equipment cleaning area.
 - All ventilation air must come from outside the cattle housing area.

The Issue

- Allowing cleaning of tank valve and tpiece connection assembly and bleed valve (pick up or outer valve).
 - Screened outlet to prevent contamination is difficult to verify automatically - outlet could be plugged by operator or failure
- Supply specific proof that milk in the tank is not at risk of product contamination (public health) with single-seal separation (inner valve).

Inner milk tank shutoff BLOCK Valve against milk in storage (IN) Tank T-Plece close coupled connection for Block-Bleed-Block valve assembly

incoming Milk

Line to tank valve (TV) <u>Block Valve</u> controls milk line from VMS, light off-& stem out-open

CIP Recirculate

Cleaning Valve (CV) CIP back to VMS, light ON & stem IN-closed

Pinch Valve Drain (DV) Normally-open low point drain for line & valves outside tank T-Piece, closed during recirculation (PV) Pick-Up / Outer BLEED Valve drains and vents T-Piece connection in Block-Bleed-Block operation Perforated drain / vent cover when in automatic operation

Lely Configuration Horizontal

'A future that makes sense'

On the right are the block bleed block valves on the milk transfer line for protection from waste milk.

Proposal accepted in 2009 NCIMS

- Un-link the raw milk language in Appendix Q Item 14R with pasteurized / processing Item 15P(b) as requirement basis of safety separation
- Deviation from pasteurized / processing Block+Bleed required only for robotic milking
- Providing protection equivalent to blok+bleed as defined in PMO 15P(b)

The Situation

- FDA is asking the industry to present a proposal to NCIMS addressing equivalency
- Steve Sims
 - each manufacturer might make their own proposal
 - Better to get a consensus proposal
 - Method to test and confirm

Challenges

- Proposal for non-traditional Block+Bleed should be supported by data
 - historic data based on stem operated dairy plant compression valves
- AMS industry is using 2 single-seat valves in combination
 - equivalent in terms of safety and sanitation?
 - O dead-leg distance requirement considered

Lely configuration Vertical

Questions from Harrisburg FDA meeting

- Can single-seat valves in a block+bleed meet the intent of 15P(b)?
 - O Challenge pressures when valves are nearly closed or just becoming open? ("Water hammer" over-pressure)
 - 1 Cleaning flow during tank cleaning
 - 10 Valve/seal impingement/pressure concern
 - What is the proof of equivalency claim?
 - O Differences between compression valves versus non-traditional (15P(b): butterfly, disc, ball) valves?

Suggestions from Harrisburg FDA Meeting

- Substitute "seat lift" with "seat pulsing" to deliver a specific pressure
 - Ifting the seat is interpreted as "out-of-position"

Manufacturers Response

- Seat pulsing duration or displacement (distance) tests did not produce uniform cleaning volume or pressure
 - 1 Difficult to adjust and verify
- Can evidence (data) with a proprietary valve assembly be used as proof of concept for other configurations?

FDA Feedback

- Industry consensus on generic construction and operation
- manufacturers individually responsible for validating their construction and operation method.
- consider the history of the non-mix, double-seat, double-lift valves
 - Shows there can be "ratcheting" progress upwards towards compliance

Tank Block-Bleed-Block Flow Control Cooling (FCC)

- 1. Milk Tank in cooling mode
- 2. Milk Station in cleaning mode
 - Milk tank in separation mode
 - B-B-B valves in 'fail-safe' position
- 3. Identify valves and their position
- 4. Identify testing override switches
- 5. FAILURE MODE TEST
 - VMS milks tation cleaning stops, opens alld rains, milkpump and vacuum stop
 - VMS milk station 'touch screen' displays STOP alarm: "TANK VALVE IN WRONG POSITION"

FDA Feedback

- Validation of a method is a 3-legged stool
 - 1 Design Criteria
 - 1 Performance Criteria
 - 1 Testing Criteria
- Individual "Scope of Proposal" should also include the separations at milking stations

Other Issues

- Jeter and teat cup protection
 - 1 In process component
 - 10 Cover, Shielding, Location, Self cleaning

Other Issues

Well Water backflow prevention

- 1 Central point well protection
- Cross contamination between AMS units
- Hot/Cold separation within AMS unit

Cover for AMS stall when not in dedicated milking area

- Positive pressure ventilation requirement

Conversion from EU standard components to US FDA approved

Teatcups / jetters must be covered during the prep procedure.

- Douglas J. Reinemann, Ph.D.
- University of Wisconsin
- Milking Research and Instruction Lab
- Madison, Wisconsin, USA