Raw Milk Quality Tests – Do They Predict Fluid Milk Shelf-life

or

Is it time for new tests?

Martin Wiedmann
Milk Quality Improvement Program
November 3, 2011

Fluid milk shelf life

- What defines shelf life
 - Microbiological criteria
 - Time until regulatory limit is reached: 20,000 CFU/ml
 - Sensory quality/consumer acceptance ("the ultimate shelf life test")
- What affects shelf life
 - Raw milk quality (presence of bacteria, enzymes, and off flavors that are not eliminated by pasteurization)
 - Post-pasteurization microbial contamination and chemical degradation
 - Post-pasteurization handling (e.g., temperature, kight exposure)

Microbial quality of raw milk

- Sources of bacteria in raw milk include:
 - Natural flora of healthy udder
 - Flora of mastitic cows
 - Exterior of cow
 - Dairy barn environment, air, water
 - Equipment milk contact surfaces
- Bacterial growth in raw milk influence by:
 - Milk residue on equipment
 - Prolonged milking time
 - Milk storage time/temperature

Raw Milk Quality Important Types of Bacteria in Raw Milk

Cause Spoilage

- fermentative/acid producers (LAB lactic acid bacteria; coliforms)
- proteolytic, lypolytic, etc, (breakdown proteins, fats, etc.)
- gas producers (coliform bacteria; some LAB)

Grow under refrigeration

- psychrotolerant (e.g., Pseudomonas)
- Survive pasteurization
 - thermoduric or thermo-tolerant
 - includes spore-formers, some psychrotolerant species and strains
- Cause mastitis infections in cows
 - Staphylococcus, Streptococcus, coliforms, others

Raw Milk Quality

- Traditional raw milk quality tests include:
 - Standard Plate Count (SPC)
 - Psychrotrophic Bacteria Count (PBC)
 - Coliform Count (CC)
 - Laboratory Pasteurization Count (LPC)
 - Preliminary Incubation Count (PI)
 - Somatic Cell Count (SCC)

Microbiological Tests Used as Indicators of Pasteurized Milk Shelf-Life

- Raw milk tests:
 - PI count
 - 13°C/18 h pre-incubation
 - Lab pasteurization count
 - 62.8°C/30 min pasteurization
 - HR3 test

- Pasteurized milk tests:
 - Moseley keeping quality
 - SPC obtained for fresh samples and samples stored at 7°C for 5 to 7 days
 - HR1, HR2 and HR3 test
 - PI count
 - 13°C/18 h incubation
 - MicroFoss

J. Dairy Sci. 94:1211-1222 doi:10.3168/jds.2010-3915

© American Dairy Science Association®, 2011.

Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk

N. H. Martin, M. L. Ranieri, S. C. Murphy, R. D. Ralyea, M. Wiedmann, and K. J. Boor¹ Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853

Study Goals

• Measure statistical correlations between raw milk microbiological tests and pasteurized milk shelf life as defined by both sensory evaluation and microbiological evaluation

Study Design

 Raw milk and corresponding 2% pasteurized milk samples were collected once a month for 12 months from four NYS processors (with the exception of plant C, which closed after month 7)

Study Design

- Raw milk was evaluated using the following tests:
 - Prior to PI incubation:
 - Somatic Cell Count (SCC),
 - Psychrotrophic Bacteria Count (PBC)
 - Ropy Milk Test
 - Spore Pasteurization (SP) (80°C/12min)
 - Both before and after PI incubation:
 - SPC.
 - Coliform
 - Laboratory Pasteurization (LP 63°C/30min)
 - Vogel-Johnson medium (Staphylococci)
 - Edwards medium (Streptococci)
 - Crystal Violet Tetrazolium agar (CVTA) (Gram Negatives)
- Bacterial isolates were collected from SP, PBC, LP (from both before and after PI incubation), and SPC (before and after incubation)

Raw Milk Study Design

- Corresponding 2% pasteurized milk from processors were evaluated as follows:
 - SPC and coliform testing performed on days initial, 7,
 10, 14, 17 and 21 post-pasteurization and storage at 6C
 - Sensory evaluation performed on days initial, 10, 14 and 17 post-pasteurization
 - Isolates collected either when the milk sample reached the PMO limit for pasteurized milk (20,000 cfu/mL) or on the last day of the study (21 d post-pasteurization)
 - Data were used to identify post-pasteurization contamination (PPC)

Raw Milk Study Plant Processing Parameters

	Processing Parameters					
Plant	Temperature (°F)	Time (sec)				
Α	170	25				
В	176.5	33				
С	176	30				
D	171.7	30				

Results—average quality parameters by plant

Results – correlation between day 17 SPC and PI count____

Results – correlation between day 17 sensory score and PI count

Results – correlation between day 17 and day 21 LPC and PI count

Study Results – Summary of all tests

	R ² Values							
Raw milk tests	D17 SPC	D17 SPC (w/o PPC)	D21 SPC	D21 SPC (w/o PPC)	D17 Sensory Score	D17 Sensory Score (w/o PPC)	D17 LP	D21 LP
SCC	0.0221	0.0005	0.0235	0.0016	0.1132	0.1571*	0.0014	0.0092
SP	0.0031	0.0001	0.0000	0.0058	0.0301	0.0223	0.0002	0.0140
Edwards	0.0092	0.2637	0.0002	0.2186	0.0283	0.0212	0.0109	0.0180
VJ	0.0011	0.0950	0.0003	0.1274	0.0145	0.0229	0.0569	0.0266
LP	0.0299	0.1009	0.0365	0.1122	0.0004	0.0060	0.0882	0.0509
Raw SPC	0.0544	0.2095	0.0463	0.1877	0.0000	0.0000	0.0896	0.0523
PBC	0.1280	0.2173	0.0876	0.1228	0.0097	0.0038	0.0601	0.0798*
CVTA	0.1238	0.4169*	0.1125	0.3681*	0.0003	0.0092	0.0907*	0.0678
Coliform	0.1301	0.2641	0.1471	0.2413	0.0565	0.0461	0.0399	0.0064
PI	0.2416*	0.1973	0.2211*	0.1874	0.1060	0.0725	0.0003	0.0003
ΔΡΙ	0.1807	0.1524	0.1554	0.1291	0.1314*	0.0628	0.0436	0.0270

Study Conclusions

- None of the tests commonly used for raw milk screening have the ability to predict the bacterial or sensory quality of pasteurized milk
- Processing plant factors, such as postpasteurization contamination and processing parameters (e.g., temperature) play a large role in pasteurized fluid milk quality
- New approaches are needed
 - Cold-growing spore-forming organisms, such as Paenibacillus, that are known to limit the shelf life of pasteurized milk are a logical target to pursue

Paenibacillus spp.

- Gram-positive, aerobic or facultatively anaerobic, rod-shaped sporeforming bacteria
- Paenibacillus only recently recognized as distinct genera from Bacillus (Paeni translates to 'almost')
- Spores can survive multiple stresses including: broad ranges of pH, temperature and water activities
- Commonly isolated by heat treatment (80°C for 12 min) to destroy non-spore forming microbes and stimulate spore germination
- Found in soil, rhizosphere, and insect larvae
- Used in a broad range of industrial applications for:
 - Production of extracellular degrading enzymes
 - Antimicrobial and antifungals
 - Biofertilizers and biopesticides of root pathogens
- Genome of *P. vortex* sequenced to better understand social behavior

Paenibacillus vortex

Diversity of Microbes in Milk

throughout shelf life					888
Bacterial isolate	initial day	day 7	day 14	day 17	Total
Paenibacillus	1	11	33	30	75
amylolyticus	0	3	6	5	14
spp	1	8	27	25	61
Bacillus	26	15	14	8	63
cereus	6	7	4	1	18
licheniformis	11	5	0	0	16
mycoides	1	0	3	4	8
stearothermophilus	3	1	0	0	4
pumilus	3	0	0	0	3
lentus	1	1	0	0	2
circulans	0	0	2	0	2
subtilis	1	0	0	0	1
spp	0	1	5	3	9
Microbacterium lacticun	16	10	1	0	27
Micrococcus varians	4	5	0	0	9
Gram-negatives	1	1	0	6	8
Unidentifiable	1	2	1	3	7
TOTAL	49	44	49	47	189

Bacillus and Paenibacillus spp. predominate in fluid milk when postpasteurization contamination is controlled

Sporeformer life-cycle

Product Spoilage

Class "Bacilli"

Many endospore forming bacteria

Genetic diversity allows survival in wide range of environments

Ludwig et al., 2009

DNA Sequence Based Characterization

Representative colony morphologies picked from plate

3. Prepare lysate

4. Genetic target amplified with polymerase chain reaction (PCR), then sequenced

DNA Sequence Based Subtyping

5. Sequences are aligned and compared

Isolate 1 CAACGTAATGGTAAAACTGTA

Isolate 4 CAGCGTAATGGTAAGACTGTA

Isolate 5 CAGCGTAATGGTAAGACTGTA

- Traditional sequence based identification targets 16S rDNA
- Sequences can be compared to databases to identify sporeforming or other bacteria
- Sequence based identification is more reliable and faster than traditional phenotypic (biochemical) characterization
- Results for a single culture generally reported by percent similarity to top matches:
 - Example: 99.79% *Bacillus vallismortis*, 99.71% *Bacillus atrophaeus*, 99.48% *Bacillus amylolquefaciens*

DNA Sequence Based Subtyping

- Comparison of sequences can allow for discrimination between spoilage organisms
- Level of discrimination dependent on nucleotide differences
 - 16S rDNA is good for genus identification, but may not discriminate between *Bacillus* species
 - rpoB provides appropriate number of polymorphisms (unique bases for a single nucleotide site) for discrimination beyond genus level

rpoB Sequence Comparison

Paenibacillus Assay – Raw Milk Screening Tool

Overview of Quantitative Paenibacillus Assay

1. Raw Milk Sample Collection 2. Raw milk spore-shock: 80°C for 12 minutes to kill vegetative cells and induce spore germination 3. Enrichment (incubation) at 13°C for 48 hours sample

5. TaqMan PCR

Visual output of Pb target amplification

Evaluation of raw milk quality

Assay predicts spoilage in 4/5 samples with *Paenibacillus* growth to over 1 x 10⁶ cfu/mL

3 samples approached 1 x 10⁶ cfu/mL but were not detected Spoilage determined to be *B. weihenstephanensis* (2 samples) and *Paenibacillus* (1 sample)

16 of 16 raw milk samples with low bacterial growth (< 20,000 cfu/mL) were not detected with assay (no false positives)

Conclusions

- Spores are an important hurdle to the extension of shelf-life and quality of dairy products
 - Only some sporeformers can grow at refrigeration temperatures
- With a high quality raw milk supply traditional raw milk tests have limited value
- There is a need for new tests in the dairy industry for both raw milk and shelf life prediction of finished products