Precision Dairy Farming: Opportunities, Challenges, and Solutions

The Dairy Practices Council 40th Annual Conference

Jeffrey Bewley, PhD, PAS

With Special Thanks to Dr. Mike Schutz

UK SEE DUE.

in the College of Ag

Where are We Going?

- Introduction to Precision Dairy Farming
- Potential Benefits
- Example Technologies
- Potential Limitations
- Economics
- Sociological Factors

Oe

Technological Marvels

- Tremendous technological progress in dairy farming (i.e. genetics, nutrition, reproduction, facilities, disease control)
- Modern dairy farms have been described as "technological marvels" (Philpot, 2003)
- The next "technological marvel" in the dairy industry may be in Precision Dairy Farming

W_e

Changing Dairy Landscape

- Fewer, larger dairy operations
- Narrow profit margins
- Increased feed and labor costs
- Cows are managed by fewer skilled workers

Consumer-Centric Approach

- · Continuous quality assurance
- · "Natural" or "organic" foods
- Pathogen-free food
- Zoonotic disease transmission
- · Reducing the use of medical treatments
- Increased emphasis on animal well-being

W_a

Information Era

- Unlimited on-farm data storage
- Faster computers allow for more sophisticated on-farm data mining
- Technologies adopted in larger industries (i.e. automobile or personal computing industries) reduce costs for applications in smaller industries

Farmer Brown shows off his flat screen cow

- Using technologies to measure physiological, behavioral, and production indicators
- Precision Dairy Farming is inherently an interdisciplinary field incorporating concepts of informatics, biostatistics, ethology, economics, animal breeding, animal husbandry, animal nutrition and process engineering

W_e

PDF Objectives

- Supplement the observational activities of skilled herdspersons
- Focus on health and performance at the cow level
- Optimize economic, social, and environmental farm performance
- · Make more timely and informed decisions
- Minimize medication (namely antibiotics) through preventive health

PDF Benefits

- Increased efficiency
- · Reduced costs
- · Improved product quality
- Minimized adverse environmental impacts
- Improved animal health and well-being
- · Risk analysis and risk management
- More objective (less observer bias and influence)

Ideal PDF Technology

- · Explains an underlying biological process
- · Can be translated to a meaningful action
- Low-cost
- · Flexible, robust, reliable
- · Information readily available to farmer
- Farmer involved as a co-developer at all stages of development, not just beta-testing (Eastwood, 2008)
- · Commercial demonstrations
- · Continuous improvement and feedback loops

PDF Examples

- · Precision (individual) feeding
- Regular milk recording (yield and components)
- Pedometers
- · Milk conductivity indicators
- Automatic estrus detection
- · Body weight
- Temperature

Recent or Future Technologies

- Lying behavior
- Ruminal pH
- · Heart rate
- · Global positioning systems
- Feeding behavior
- Blood analyses
- · Respiration rates
- Rumination time
- · Locomotion scoring using image analysis

- Recounter (pedometer)
- Taxatron (body weight)
- Milk weights
- PediCurX
- DairyPlan software

AfiMilk

- · Afilab-milk anlayzer
 - Fat, protein, lactose, SCC, blood
- Pedometer + (lying behavior)
- Fat protein ratios-ketosis and SARA ID
- · Heat detection
- · Mastitis detection
- · Calving time prediction

Milk measurements

- Progesterone
 - Heat detection
 - Pregnancy detection
- · LDH enzyme
 - Early mastitis detection
- BHBA
 - Indicator of subclinical ketosis
- Urea
 - Protein status

Monitor	Parameter Measured
3-D acceleration/movement	Behavior
Electromyogram	Muscle activity
Skin potential	Vegetative-nervous reaction
Skin resistance	Vegetative-emotional reaction
Skin temperature/Environmental temperature	Thermoregulation

Body Condition Scoring

100% of predicted BCS were within 0.50 points of actual BCS.
 93% were within 0.25 points of actual BCS.

BCS	2.50
Predicted BCS	2.63
Posterior Hook Angle	150.0°
Hook Angle	116.6°

BCS	3.50
Predicted BCS	3.32
Posterior Hook Angle	172.1°
Hook Angle	153.5°

IceTag Activity Monitor

- On-farm evaluation of lying time:
 - Identification of cows requiring attention (lameness, illness, estrus)
 - Assessment of facility functionality/cow comfort
 - Research exploring lying time x milk yield interaction
 - Potential metric to assess animal well-being

The Role of Temperature

- Potential for measuring and managing
 - Illness
 - Mastitis
 - Estrus
 - Pregnancy
 - Heat stress
 - · Onset of calving

MaGiiX/Bella Health Cattle Temperature Monitoring System

- RFID rumen bolus collects temperature
- Passive bolus read each time the cow passes a reader panel

Possible PDF Technologies

- Stress levels (direct or indirect)
- Pregnancy
- Environment gas levels (i.e. methane)
- · Air born pathogen levels
- Pollutants
- Zoonoses
- Image analysis for anatomical measurements

Potential Limitations

- · Slow adoption rates
- · Animal ID read errors
- · Equipment failure
- Data transfer errors/bottlenecks
- · Sensor drift?
- Quality control

- Maybe not be #1 priority for commercial dairy producers (yet)
- · Many technologies are in infancy stage
- Not all technologies are good investments
- · Economics must be examined
- · Sociological factors must be considered

Purdue/Kentucky Investment Model

- Investment decisions for PDF technologies
- · Flexible, partial-budget, farm-specific
- · Stochastically simulates dairy for 10 years
- Includes hundreds of random values
- Benefits from improvements in productivity, animal health, and reproduction
- · Models both biology and economics

Automatic BCS Investment

- Benefits
 - Reduced ketosis, milk fever, and metritis
 - Improved conception rate at first service
 - Improved efficiency from minimizing BCS loss
- Costs
 - Investment
 - Variable costs
- Management level
- 1000 simulations

Net Present Value (NPV) Simulation Results 13.40% Positive NPV Negative NPV

- •Results from 1000 simulations
- •Positive NPV="go" decision/make investment

		The same	
Reasons for Slow PDF Adoption			
Reason	%	#	
Not familiar with technologies that are available	54.89%	10	
Undesirable cost to benefit ratio	41.85%	7	
Too much information provided without knowing			
what to do with it	35.87%	6	
Not enough time to spend on technology	30.43%	5	
Lack of perceived economic value	29.89%	5	
Too difficult or complex to use	28.80%	5	
Poor technical support/training	28.26%	5	
Better alternatives/easier to accomplish manually	23.37%	4	
Failure in fitting with farmer patterns of work	21.74%	4	
Fear of technology/computer illiteracy	21.20%	3	
Not reliable or flexible enough	17.93%	3	

Russell and Bewley, 2009

Sociological Factors

- Labor savings and potential quality of life improvements affect investment decisions (Cantin, 2008)
- · Insufficient market research
- Farmers overwhelmed by too many options (Banhazi and Black, 2009)
 - Which technology should I adopt?
 - End up adopting those that are interesting or where they have an expertise
 - Not necessarily the most profitable ones

Technology Pitfalls

- "Plug and play," "Plug and pray," or "Plug and pay"
- Technologies go to market too guickly
 - not fully-developed
 - software not user-friendly
- Developed independently without consideration of integration with other technologies and farmer work patterns

Technology Pitfalls

- Too many single measurement systems
- Lack of large-scale commercial field trials and demonstrations
- Technology marketed without adequate interpretation of biological significance of data
- Information provided with no clear action plan

Australian Case Study

- R&D tends to focus on the device rather than the management system within which the device will be used
- "Return on investment is only achieved through subsequent improvement in the farming system and it is here that people are key"
- Not enough focus on farmer adaptation and learning
- Need more formal and informal user networks

Eastwood, 2008

Conclusions

- · New era in dairy management
- Exciting technologies available and in development
- Technologies may change the way we manage dairy businesses
- Investment profitability depends heavily on management after purchase
- Adoption rates affected by sociological factors and technology development strategies

