Selective Dry Cow Therapy: Research and Practical Advice

Erin Royster, DVM, MS royster@umn.edu

University of Minnesota

Dry Cow Therapy (DCT)

- Blanket Approach all quarters of all cows treated with a long-acting intramammary antibiotic at dry off
 - Widely adopted as part of mastitis control plans since the 1960s (~80% of farms)
- Selective Approach antibiotic DCT is reserved for cows or quarters known or suspected of being infected at dry off
 - Cows/quarters that are unlikely to be infected don't get antibiotics! (~10% of farms)

Justification for Blanket DCT?

Historical

- Higher prevalence of contagious pathogens
 - Staph aureus, Strep agalactaie
- Higher prevalence of infection at dry off
- No validated tests to detect infection at dry off
- No way to protect against new infections over the dry period

Justification for Blanket DCT?

Historical

- Higher prevalence of contagious pathogens
 - Staph aureus, Strep agalactaie
- Higher prevalence of infection at dry off
- No validated tests to detect infection at dry off
- No way to protect against new infections over the dry period

Current

- Low prevalence of contagious pathogens
 - (in most herds)
- Low prevalence of infection at dry off (~19-35%)
- Regular DHIA testing and rapid culture
- Internal teat sealants highly effective at protecting against new infection
- Pressure to practice antibiotic stewardship!

Dry Cow Therapy (DCT)

- Blanket Approach all quarters of all cows treated with a long-acting intramammary antibiotic at dry off
 - Widely adopted as part of mastitis control plans since the 1960s (~80% of farms)
- Selective Approach antibiotic DCT is reserved for cows or quarters known or suspected of being infected at dry off
 - Cows/quarters that are unlikely to be infected don't get antibiotics! (~10% of farms)

Internal teat sealant is used in quarters that do not receive antibiotics!

Research Round Up

Research Team

- Sandra Godden, DVM, DVSc, UMN CVM
- Luciano Caixeta, DVM, PhD, UMN CVM
- Sam Rowe, BVSc MVM PhD Dipl. ABVP MANZCVS, The University of Sidney
- Jennifer Timmerman, Lab for Udder Health, UMN CVM
- Emily Leonard, DVM Candidate, UMN CVM
- Felipe Pena Mosca, DVM, MSc, PhD Candidate, UMN CVM
- Monika Dzuiba, DVM/MS Candidate, Michigan State University
- Many other students, participating farms, and industry sponsors!

UMN Selective Dry Cow Study 2018

#1 Blanket DCT vs. Culture- or Algorithm-guided SDCT

- (Rowe et al., JDS 2020)
- 1275 cows in 7 herds from 4 sites
 - Bulk milk SCC < 250,000
 - Control of contagious mastitis pathogens
 - Excellent infusion technique
 - Using an internal teat sealant

Cultureguided SDCT

Algorithm-guided SDCT

UMN Selective Dry Cow Study 2018

Results:

- Antibiotic use reduced by 55%
- No negative health impacts
 - Similar cures and new infections over the dry period, infections post-calving
- Similar SCC, clinical mastitis, milk yield, culling and death in next lactation
- Results consistent with other recent trials!
 - Kabera 2020, Vasquez 2018, Cameron 2014, 2015

Cultureguided SDCT

Algorithm-guided SDCT

 #2 Evaluation of rapid culture, a predictive algorithm, an esterase strip measuring SCC, and a cow-side LDH test to detect infection in cows at dry off

Results

- Algorithm, esterase SCC and LDH test had poor agreement with reference test (lab culture); rapid culture had fair agreement
- *Negative predictive values* were moderate to high (high % of negative tests were truly not infected)

 #3 Compare 4 cow-level algorithms to predict infection status at dry off, and estimate the effect if used in a SDCT program

Algorithm	Criteria for Low Risk Status (no antibiotic DCT)
Netherlands	Lact=1: SCC<150,00 last test. Lact≥2: SCC<50,00 last test. Last test within 6 weeks of dry off.
New Zealand	Lact=1:SCC<120,000 all tests. Lact≥2: SCC <150,000 all tests. No clinical mastitis whole lactation.
UK	SCC<200,000 last 3 tests. No clinical mastitis same period.
US	SCC<200,000 all tests, <2 cases clinical mastitis whole lactation.

 #3 Compare 4 cow-level algorithms to predict infection status at dry off, and estimate the effect if used in a SDCT program

Results:

- All algorithms have poor correlation to true infection status determined by culture; better for major pathogens
- High Negative Predictive Values = if the cow does not meet
 criteria for treatment, there's a good chance she's not infected
- Likely to work fine in a SDCT Program (assuming low prevalence of infection at dry off)!

Different algorithms?

- Choose an algorithm that meets farm goals!
 - Maximize reduction in antibiotics few false positives
 - For example, higher SCC thresholds, limited time frame
 - Minimize risk of missing an infection few false negatives
 - For example, lower SCC thresholds, longer time frame

 Consider the risk level. Work with a veterinarian to select an appropriate algorithm.

- #4 Does success of culture or algorithm SDCT vary by milk production level at dry off?
 - Combined data from UMN study and Canadian study (Kabera et al, 2020) – 1,484 cows
 - Cows classified as low (<23.7kg), mid (23.7-30.4kg), or high (>30.4kg) producing at dry off
- Results
 - Measures of udder health were not different in SDCT vs. Blanket across all production categories
 - *SDCT can be successfully implemented in cows of all production levels*

- #5 Partial budget analysis of culture and algorithm SDCT
- Results: Likely to be cost-effective in the average herd (Rowe 2020)
 - Algorithm > Culture
 - Most advantageous in herds that:
 - Use relatively expensive DCT products
 - Substantially reduce antibiotic use with SDCT
 - Implement SDCT without causing udder health problems
- Cost calculator:
 - https://dairyknow.umn.edu/research/udder-health/selective-drycow-therapy-cost-calculator/

Ave savings per cow dried off: \$7.85 algorithm, \$2.85 culture

Selective Dry Cow Therapy Cost Calculator

Enter your information below to compare the cost of dry cow therapy strategies in your herd

Cost (\$) of each dry cow therapy approach

Culture SDCT

Culture-guided selective DCT will cost \$2.30 LESS per dry-off than blanket DCT. The estimated annual cash impact on your farm is +\$0.00

Algorithm SDCT

Algorithm-guided selective DCT will cost \$7.82 LESS per dry-off than blanket DCT. The estimated annual cash impact on your farm is +\$0.00

UMN Pilot Study – Refining Culture-Guided SDCT⁶

- Previous SDCT programs do not differentiate between infections
 - Not all mastitis benefits from antibiotic therapy
- Common dry period mastitis pathogens:
 - Coliforms: rare in late lactation (<2%), high spontaneous cure rate¹⁻³
 - Non-aureus Staph. (NAS): transient, high spontaneous cure rate¹⁻⁴
 - Other Gram-Positives: low frequency, many do not respond to antibiotic therapy¹⁻³
 - Staph. aureus: rare (<1%), well managed by bulk tank surveillance or routine culture of clinical and chronic cases¹⁻³
 - Strep. spp or Strep.-like organisms (SSLO): affect 2-8% of quarters, cause significant losses during lactation, do benefit from antibiotic therapy¹⁻⁵

UMN Pilot Study – Refining Culture-Guided SDCT⁶

- Previous SDCT programs do not differentiate between infections
 - Not all mastitis benefits from antibiotic therapy
- Common dry period mastitis pathogens:
 - Coliforms: rare in late lactation (<2%), high spontaneous cure rate¹⁻³
 - Non-aureus Staph. (NAS): transient, high spontaneous cure rate¹⁻⁴
 - Other Gram-Positives: Our target: any do not respond to antibiotic therapy¹⁻³
 - Staph. aureus: rare (<1%), well managed by bulk tank surveillance or routine culture of clinical and chronic cases¹⁻³
 - Strep. spp or Strep.-like organisms (SSLO): affect 2-8% of quarters, cause significant losses during lactation, do benefit from antibiotic therapy¹⁻⁵

Conclusions

- Spontaneous cure rates for non-SSLO infections were high during the dry period
- Culture-guided SDCT program targeting SSLO (vs BDCT):
 - Similar or better **IMI dynamics** during the dry period
 - Similar **future health and performance** in early lactation
 - Reduced **antibiotic use** at dry-off by **83%**

Proves to be an **effective way to further enhance antimicrobial stewardship** on dairy farms

Do we even need DCT?

- Another study! Blanket DCT vs. No DCT
 - 1 SD herd, 2,439 multiparous cows followed to 200DIM
- Results
 - No DCT = higher risk of culling during the dry period, higher risk of clinical mastitis in first 200d lactation
 - No differences between parity groups, previous mastitis history, dry period length

Key points from the research

- DCT is still a good idea
- SDCT is good antibiotic stewardship
 - Reduce antibiotic DCT by 20-47% at cow level; 70-80% at quarter level
 - No negative impact on udder health or performance in next lactation
- Multiple approaches
 - Culture- or Algorithm-guided (multiple algorithms)
 - Possibly other cow-side tests
- Profitable for most dairies

Practical Advice & Implementation

Herd-level criteria for SDCT

- Low prevalence of infection at dry off (BTSCC < 250,000 cells/ml)
- Control of contagious pathogens
- Proper use of teat sealant
- Well-trained personnel to perform cow selection and dry off procedures (CLEAN)
- Ability to monitor outcomes

Reduce infection, lower BTSCC

- Environment is #1
 - Bedding
 - Dry cow pen
- Chronic cows
- Milking parlor
- Milking equipment

Contagious mastitis control

- Herd biosecurity
- Testing strategy to find and eliminate infections
- Reduce risk of transmission within the herd

Screening strategies

- Bulk milk screening (culture or PCR)
 - Monthly, or at minimum, quarterly
- Regular diagnosis of clinical mastitis
 - Targets cows most likely to be infected
 - Dual benefit of informing treatment decisions
- Screening fresh cows
 - Convenience sample, whole herd tested ~yearly
 - Targets fresh heifers who may bring new pathogens in

Reduce Risk of Transmission

- Excellent milking-time hygiene
- Proper milking equipment function and maintenance
- Fly control
- Teat skin condition care and monitoring
- ID and eliminate, or at least segregate, contagious and chronic infections
- Good nutrition, strong immunity, low stress!

Excellence at dry-off

- Intramammary infusion technique must be excellent!
- Internal Teat Sealants protect untreated quarters from new infections over the dry period
 - Can introduce new infections if hygiene is not excellent!

Excellent dry-off personnel

- Who makes the dry-off decisions and does the drying off on your dairy?
 - Bought in to SDCT
 - Understands the importance of hygiene
 - Has the tools and training to do the job right
 - Accountable for outcomes

Challenge at dry-off: many cows are still producing a lot of milk

- The National Mastitis Council recommends milk production to be below 33 lb/d before dry-off.
- Increased milk production at dry-off is associated with the risk of environmental IMI at calving².
 - Delayed formation of teat-canal keratin plug; Leaking milk, increased intramammary pressure

Strategies to decrease milk production before dry-off

Decrease milking frequency

Decrease quantity or quality of feed

Use of acidogenic bolus at dry-off

What is an acidogenic bolus?

Maynou et al, JDS 2018 - demonstrated temporary decrease in urine pH, DMI, milk yield, and udder pressure and increased lying time.

↓ pain / improve cow

comfort

The Effect of BOVIKALC® DRY at Dry off on Udder Health, Early Lactation Health and Performance, and Economics in Dairy Cows

Cainan Florentino, Felipe Pena-Mosca, Elise Shepley, Megan Ruch, Sandra Godden, Whitney Knauer, Joleen Hadrich, Gerard Cramer, Luciano Caixeta

Conclusions: Benefits of administration of Bovikalc® Dry (BKD) at dry-off:

- Decreased new intramammary infection during dry period
- Lactation performance:
 - Reduced SCC score during the first 70 DIM
 - Reduced clinical mastitis incidence
 - No impact on milk production
- Improved welfare (comfort) after dry-off:
 - Decreased standing time for 7 days post dry-off
 - No impact on rumination activity
- Economic analysis: Increased profitability for BKD group varying according to herd and follow up period.

- How will you know if SDCT is successful?
- Data needed/recommended:
 - Consistent recording of clinical mastitis
 - DHIA SCC data
 - BTSCC and culture

- #1 Dry period
 - Clinical mastitis in early dry period? → Problem with dry-off procedures
 - Must observe cows in dry pen!
 - Dry period infection dynamics (SCC)
 - New, Cure, Clean, Chronic
 - Dry period length consistency

- #2 Early lactation
 - Clinical mastitis in early lactation
 - Detect and record cases!
 - ID, date (DIM), severity, treatment
 - SCC (subclinical mastitis) % cows with 1st test > 200,000

- #3 Herd level risk & contagious pathogens
 - BTSCC
 - Bulk milk culture to screen for contagious pathogens
 - Routine culturing of clinical mastitis throughout lactation

Start now so you can assess the impact of SDCT!

DairyComp305 SDCT Module

- Econ/SDCT
 - Cows grouped as high risk or low risk
 - Work with VAS and Vet of Record to set up parameters and assign dry off protocols for each group
 - Parameters:
 - DCC minimum threshold
 - SCC threshold
 - # SCC tests to consider
 - # of mastitis events
- Guide > SDCT for monitoring!
- For more info, VAS webinar:
 - https://vas.com/blog/2022/01/07/how-to-set-up-selective-dry-cow-therapy-with-dairycomp/

Modified DHI-370 Flex Report

- Eligible herds:
 - 8+ DHI tests in last 12 months
 - Annual Herd Average SCC <250,000
 - <3 DHI herd tests over 250,000</p>
- Eligible cows due to dry (green shaded):
 - SCC <200,000 at last test
 - Average SCC for last 3 tests <200,000</p>

MNDHIA Flex Report

FLEX REPORT

55-99-9999

CPM-AR

Test Date: 09-02-2020 Processed: 09-04-2020

DHI-370

HENRY SMITH

Cows to Dry in Next 60 Days

Test Type and Description Breed 31 DHI-AP НО

Date To Dry uses Due Date and your herd's setting of Days in Dry Period = 45 Candidates for no dry cow antibiotics (Log SCC & Avg SCC/3 tests) < 4.0 AND 0 or 1 case of clinical mastitis in the lactation (check your records)

Test Da	y Milk	Actual SCC		%	Cow	DryTrt	Date	act MID		Log	Lact	Avg	#>	#SCC	Prod	Total	
Actual	Exp	Last-3	Prev	Curr	Tank	Cow	(Y/N)	to Dry	DIIVI	۳	SCC	Curr	Prev	200K	Tests	Index	Solids
64	58	1600	1600	1493	2	1763		09-20-20	285	1	6.9	6.4		8	8	90	13.3
72	68	629	264	800	1	1586		09-21-20	352	2	6.0	4.8	1.9	8	11	110	14.2
60	65	83	132	66		1588		09-30-20	364	2	2.4	2.8	0.5	3	11	110	15.0
70	74	78	47	174		1693		09-30-20	395	1	3.8	1.6		1	11	117	13.8
70	90	46	54	23		1694		09-30-20	367	1	0.9	1.9		1	11	128	12.9
70	64	58	31	100		1574		10-06-20	312	2	3.0	1.2	2.9		10	97	14.7
72	67	281	283	123		1470		10-08-20	258	3	3.3	2.2	1.7	2	9	93	13.2
94	78	268	230	460	1	1491		10-12-20	261	3	5.2	2.5	2.6	3	9	94	12.8
78	89	99	100	107		1606		10-12-20	268	2	3.1	1.8	1.7		8	104	12.6
72	73	24	22	41		1501		10-15-20	286	3	1.7	0.5	2.0		9	113	14.0

Resources

- Nice overview of Partial Budget analysis by authors in Pro-Dairy: https://nyfvi.org/wp-content/uploads/2021/08/ProDairy.Cornell-JUNE2464_3pages.pdf
- UMN Extension SDCT educational materials https://extension.umn.edu/dairy-milking-cows/selective-dry-cow-therapy
- Moos Room Podcast (episode 36): <u>z.umn.edu/themoosroomapple</u> / <u>z.umn.edu/themoosroomgoogle</u> / <u>z.umn.edu/themoosroomiheartradio</u>
- AABP Have You Herd? Podcast Selective Dry Cow Therapy https://www.buzzsprout.com/814177/10109266

Questions?

Erin Royster

royster@umn.edu

Veterinary Population Medicine

Veterinary Diagnostic Laboratory, Lab for Udder Health

University of Minnesota College of Veterinary Medicine

Thank you!

Selected References

- Rowe, S., M. Dziuba, B. Boyum, S. Godden, E. Royster, and L. Caixeta. 2022. Negatively Controlled Trial Investigating the Effect of Dry Cow Therapy on Clinical Mastitis and Culling. Proc. 61th Annual meeting of the National Mastitis Council:262-263.
- Rowe, S., S. Godden, D. Nydam, P. Gorden, A. Lago, A. Vasquez, E. Royster, J. Timmerman, and M. Thomas. 2020a. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 103(7):6473-6492.
- Rowe, S., S. Godden, D. Nydam, P. Gorden, A. Lago, A. Vasquez, E. Royster, J. Timmerman, and M. Thomas. 2020b. Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in the subsequent lactation. J. Dairy Sci. 103(7):6493-6503.
- Rowe, S., S. Godden, D. V. Nydam, P. Gorden, A. Lago, A. Vasquez, E. Royster, J. Timmerman, and M. Thomas. 2020c. Evaluation of rapid culture, a predictive algorithm, esterase somatic cell count and lactate dehydrogenase to detect intramammary infection in quarters of dairy cows at dry-off. Prev. Vet. Med. 179:104982.
- Rowe, S., S. Godden, E. Royster, J. Timmerman, and M. Boyle. 2021a. Postcalving udder health and productivity in cows approaching dry-off with intramammary infections caused by non-aureus Staphylococcus, Aerococcus, Enterococcus, Lactococcus, and Streptococcus species. J. Dairy. Sci. 104(5):6061-6079.
- Rowe, S., D. Nydam, S. Godden, P. Gorden, A. Lago, A. Vasquez, E. Royster, J. Timmerman, M. Thomas, and R. Lynch. 2021b. Partial budget analysis of culture-and algorithm-guided selective dry cow therapy. J. Dairy. Sci. 104(5):5652-5664.
- Rowe, S. M., A. K. Vasquez, S. M. Godden, D. V. Nydam, E. Royster, J. Timmerman, and M. Boyle. 2021c. Evaluation of 4 predictive algorithms for intramammary infection status in late-lactation cows. J. Dairy. Sci. 104(10):11035-11046.

University of Minnesota

Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.