Part 1 of 3

Kennedy/Jenks Consultants

Engineers & Scientists

Water Use Efficiency Report for California League of Food Processors

11 February 2015

Prepared by

Kennedy/Jenks Consultants and Brown & Caldwell

Prepared for

California League of Food Processors 2485 Natomas Park Drive, Suite 550 Sacramento, CA 95883

Table of Contents

List of Tables		ii
List of Figures.	S	ii
List of Append	lices	ii
Section 1:	Background and Introduction	1
	 1.1 Introduction 1.2 Objectives 1.3 California League of Food Processors 	1
Section 2:	Research Scope and Design	2
	 2.1 Literature Survey	2 3 4 4 4 5 6 6 6 6
Section 3:	Quantitative Findings	10
	 3.1 Summary	10 11 12 12 14 15 16
Section 4:	Best Management Practices	17
	 4.1 Recycle/Reuse 4.2 Alternative BMPs 4.3 Compendium, Guidebooks, and Plan–Do–Check–Act 	18
Section 5:	Recommendations and Next Steps	21

List of Tables

Table 1 - Historical Overview of Best Management Practices	4
Table 2 - Number of Respondents to 2011 and 2014 CLFP Surveys	
Table 3 - Percent Water Consumption by Internal Process	7
Table 4 - Description of Selected Metrics	
Table 5 - Intake Process Water per Ton of Raw Product (gal per ton)	
Table 6 - Internal Recycling/Reuse as a Percentage of Fresh Intake Water	14
Table 7 - Discharge Percentage of Intake	15

List of Figures

Figure 1 - Water Conservation Improvements in Place	8
Figure 2 - Number of Conservation Improvements Implemented	
Figure 3 - Limiting Factors for Additional Conservation	
Figure 4 - Normalized Total Water Intake by Facility (Average of All Respondents)	12
Figure 5 - Normalized Unit Water Intake Over Time - Average of All Respondents	13
Figure 6 - Unit Water Usage Trend vs. Conservation Improvements Implemented	13
Figure 7 - Water Usage Trends vs. Number of Conservation Improvements Implemented	14

List of Appendices

- A References
- B Most Useful References for Metric Data
- C Data Tables from Literature Survey
- D CLFP Surveys
- E Possible BMPs (table index)
- F BMPs from Literature Review

1.1 Introduction

This report prepared on behalf of the California League of Food Processors (CLFP) documents the California food processing industry's progress towards improving its overall water footprint. This document compiles industry information from multiple sources with a goal to identify water use efficiency over time. Appropriate water use metrics are identified and baseline years are referenced. Additionally, this document identifies possible measures for individual food processing facilities to consider for implementation so that there is continued improvement in water use efficiency.

This Water Use Efficiency Study also responds to SBX7-7 and the recent release of the Commercial, Industrial, and Institutional Task Force Water Use Best Management Practices Report to Legislature (CII Task Force Report, October 2013).

1.2 **Objectives**

This study's primary goal is to document the California food processing industry's water efficiency over time by identifying appropriate metrics and baseline values. This study also provides an evaluation of water use in food processing facilities and an assessment of whether usage has become more efficient over time and what has possibly led to the increase in efficiency. Conservation measures, practices and technologies are compiled and presented for consideration. In addition, the study also provides an assessment of whether past changes in water policies or laws may have had an impact on total industry water use.

1.3 California League of Food Processors

Established in 1905, the CLFP represents the business interests of California's food processing industry. CLFP member companies are primarily canners, freezers, dryers, and dehydrators of fruits and vegetables. Additional processor members include snack foods, juice bottlers, and specialty processors of a variety of food products. Members operate over 150 processing plants located throughout the State of California. In addition to the active company membership, over 250 affiliate members - industry suppliers - are participants in CLFP.

CLFP furthers the interests of the food processing industry before the State Legislature and regulatory agencies, and is also a major representative for the California industry at the Federal level. CLFP's purpose is to foster a favorable environment for the growth and strength of the industry within the state. In doing so, California processors can continue to provide consumers with safe and wholesome food produced in an environmentally sound and responsible manner.

A literature survey and a survey of CLFP member companies were conducted. This section describes how information and data collected from these surveys were compiled and evaluated in order to identify and propose selection of the appropriate water use metrics for food processors. The surveys were also used to identify and compile best management practices (BMPs) for water use efficiency.

2.1 Literature Survey

A literature survey was conducted to identify publications that address water use and BMPs by food processors. In all, 60 documents spanning six decades were reviewed with the goal of compiling information on food processors' water use, metrics, and baseline water use as well as BMPs. Appendix A provides a bibliography of the references reviewed. The results of the literature survey are described below.

2.1.1 Metrics and Water Use Data

Food processors' water use information has been collected and published since the mid-twentieth century. Publications from the 1960s to the early 1980s contain significant metric and water use data that were collected by government agencies through extensive surveys of food processors. In these decades, manufacturers shared their water use data with the US Environmental Protection Agency (EPA) and the CA Department of Water Resources (DWR).

By the 1980s, this type of public agency-led research appears to have tapered off and industry sponsored surveys became more prevalent in the 1990s. Because information collected by industry typically remains privately-held, more recent publications seem to continue to rely on early work. For example, the 2007 version of the Water Encyclopedia continued to rely on water use data from Kollar's work (AWWA, 1980). Today, industry associations continue to take the lead, such as this study, in collecting water use information from food processors.

Publications by conservation specialists (e.g., Pacific Institute, CII Task Force, etc.) seem to rely on more recent data. It appears looking any earlier than the previous five years for information was not relevant for this work. As an example, the references in Section 5 (Water Use Metrics and Data Collection) of the CII task force document, the section on providing an approach to establish metrics for evaluating water use efficiency, are dated 2007 to 2011. The use of more recent reference material in the CII document may also be because the authors were more focused on Best Management Practices (BMPs) than on water usage statistics.

The literature review showed a progression from an abundance of publically available data in the 1960s to much less available data in the twenty-first century. As a result, only ten out of 60 of the resources reviewed proved relevant to this study. These ten references are listed in Appendix B. The relevant data table from these publications are re-printed in Appendix C.

Although these ten documents had some useful information, it remains difficult to compare data across publications and year. For example, the DWR Bulletin 124 focuses on the supply water into facilities while the EPA publications concentrate on process wastewater, with limited

information on water supply. The difference in focus is attributed to EPA needing to establish wastewater discharge limits (the Clean Water Act was promulgated in 1972) and the DWR managing California's water supply resources.

Another issue that makes comparisons between publications difficult is that researchers normalized the water use data differently. Some publications have metrics that normalize water use (or wastewater flow) to units of raw product processed (EPA 1977, EPA 1983, and FEIC 1996); some to units of finished production (Kollar 1980, Water Encyclopedia 1983, Kreith 1993); while DWR Bulletin 124 compares water use to square-foot of water using area and to average-employee-day.

Of the publications listed in Appendix B, the following were selected to evaluate the water use efficiency of food processors over time: EPA (1977), DWR (1979), Kollar (1980), EPA (1983), Water Encyclopedia (1983). These sources are supplemented by data collected through 2011 and 2014 surveys of CLFP member companies as discussed below in Section 2.2.

2.1.2 Best Practices in Water Efficiency

The literature was also reviewed to identify best practices for water use within food processing facilities. As with the metrics data, when reviewing 50 years of documents, historical trends become apparent.

Water conservation activities in the pre-1990 publications focused almost exclusively on water reuse and recirculation. Many publications distinguished between "high efficiency" plants and conventional plants. In the 1990s, literature was addressing other forms of water efficiency in manufacturing plants such low flow nozzles, clean-up procedures, and improved controls. Also, in the 1990s, there were a number of pilot tests evaluating the effectiveness of membrane applications to increase the ability to reuse water between processes. Since the 1990s, advances in membrane technologies, including reverse osmosis and nanofiltration, have allowed these technologies to play a larger role in water use efficiency.

In the first decade of the twenty-first century, there was a significant change in approach. BMPs were incorporated into, and considered part of, a process of self-improvement. Examples include Queensland Eco-Efficiency Toolkit (2004) and EBMUD's Water Smart Guidebook (2008), Comprehensive Guide to Sustainable Management of Winery Water (2008).

BMPs continue to evolve. The Commercial, Industrial, and Institutional Task Force Water Use Best Management Practices Report to Legislature (CII Task Force Report, October 2013) has a few pages dedicated to the specific best practices for food processing. This section of the CII Report has only one reference. However, other sections of the CII Report have extensive references.

Researches such as Gour Choudury, PhD are developing technologies to replace and improve existing water using processes. For example, Dr. Choudury and his team has developed, piloted, and patented a new lye-peeling system that significantly reduces water use in fruit processing. The new system employs a fluid mixture of liquid and gas to remove skin from the fruit. However, the high cost of converting a facility over to the new system is a challenge. Dr. Choudury continues to test concepts that reduce water use in other phases of fruit processing. This includes improved cleaning and sanitation processes that reduce water use and reduce salts in the process wastewater streams.

This historical perspective of Water Conservation BMPs within the food processing industry is summarized in Table 1.

Timeframe	Best Management Practice
1960s - 1980s	 BMPs focused on opportunities to reuse water within specific processes.^(a)
1990s	 BMPs started to include tools and practices like nozzles, clean-up procedures, and improved controls.
	 Pilot studies in the 1990s focused on testing membrane technology in process water streams to be able to increase water reuse, to reduce effluent, and to conserve water.^(b)
2000 - 2010	 BMPs are incorporated into, and considered part of, a process of self-improvement.
2014	 The CII Task Force Report provides a compendium of BMPs.
	• Gour Choudhury's recent work that pushes beyond typical tools.

Notes:

(a) Recycling typically refers to reusing water within the same process.

(b) Reusing water typically indicates capturing water from one process for reuse in another process.

2.2 CLFP Member Survey

CLFP member companies participated in two water use surveys. The fist was distributed in April of 2011 and the second in May of 2014. These surveys are discussed below and Appendix D contains copies of both.

2.2.1 2011 CLFP survey

2.2.1.1 2011 Survey Design and Methodology

CLFP distributed a Water Use Survey to its member companies in 2011 in response to Senate Bill X7-7 (SBX7-7). SBX7-7 was enacted in 2009 and requires a statewide 20% reduction in water use by 2020. As part of the legislation, a task force was formed to develop BMPs for the CII sector and to determine the potential water savings from those BMPs. Through the 2011 survey CLFP was hoping to gather information on member companies' water usage and conservation effort. Table 2 shows the rate of response among the member companies.

	2011	2014			
Tomato Processors	13	11			
Dairy Processors	2	1			
Dehydrators	3	10			
Olive Processors	2	2			
Fruit Processors	4	4			
Vegetable Processors	4	0			
Soup Processors	1	0			
Nut Processors	0	1			
Total Respondents	29	29			
Number of respondents who participated in both surveys = 16					

Table 2 - Number of Respondents to 2011 and 2014 CLFP Surveys

2.2.1.2 2011 Survey Results

Overall, the 2011 responses from CLFP members mirrored information gleaned from the literature – there is a high rate of water reuse among the respondents, water conservation is important to most, and the majority of the facilities had implemented low flow nozzles, written clean-up procedures, and improved controls since 2006. As in the literature review (Table 1, above), the survey responses shows that recycling (i.e., reusing water within the same process) and reuse (i.e., capturing water for reuse in another process) have been important factors in overall water use efficiency for decades. The CLFP surveys do not distinguish between recycling and reuse. Rather, the surveys try to determine if respondents use water more than once within their facilities.

Most of the respondents use water on-site at least twice. Question number 23 on the 2011 survey asks "what percentage of your total process water did you reuse on-site for processing activities." A summary of the responses to this question is as follows:

- Fifteen respondents identified the percentage of water reuse at their facility.
- Eleven respondents indicated that there was some reuse at their plant, but because it was unmetered, they could not provide an estimate.
- Only three of the 29 respondents indicated no reuse within the plant.
- All the tomato processors responding to the survey indicated some reuse within the plant.
- Many reuse the water for irrigation of crops.

A key point raised in the 2011 survey is that many of the dairy and tomato processors extract a portion of their water supply from the raw product. The general public is likely unaware of this opportunity to recover water from processing of tomatoes and milk. With the appropriate treatment, this water can be extracted and put to use within the plant. However, the water treatment can have high capital and operating costs depending upon the ultimate use.

Most (90%) respondents indicated their facility had water conservation programs and within the previous five years many had taken some steps to improve water use efficiency: 76% had

replaced high volume hoses with high pressure; half had improved clean-up procedures, a third had installed low-volume cleaning systems, and almost a third converted cleaning and sanitizing systems to ozone.

Just over half of respondents rated water conservation as a high priority and had set water efficiency improvement goals ranging from 5% to 20%. However, only a quarter of the facilities conducted a comprehensive facility water usage assessment.

2.2.2 2014 CLFP Survey

A follow-up survey was developed and distributed to CLFP member companies in 2014. A copy of the survey is provided in Appendix D and Table 2 (above) shows the rate of responses. Combined, the two surveys provide water use and facility data for the period spanning 2006 to 2013.

2.2.2.1 2014 Survey Design and Methodology

The 2011 Survey was used as a base to develop the 2014 survey questionnaire. Some questions were slightly altered, some new questions were added, and other questions remain unchanged. Based on the insights gained in the literature survey and from the 2011 CLFP survey, it was apparent that the new survey should continue to request information on water reuse within the facility, water sourced from raw materials and other water efficiency practices. Thus, the 2014 Survey was developed to collect the following information:

- Facility general information
- Water use, products processed, discharge for 2009 2013
- Water supply, metering, costs
- Water use breakdown by area
- BMPs, recycling
- Future conservation
- Plans, factors, needs

The survey included direct questions, data entry tables, check boxes, and relative rankings.

2.2.2.2 2014 Survey Results

The 2014 survey responses confirm and augment findings from the literature survey and the 2011 CLFP survey. Responses indicated a high rate of water reuse and a desire to increase the water reuse opportunities within the plant (i.e., using water more than once via recycling, recirculation or reuse). Additionally, most had not only identified water conservation as a priority, but also identified several "next steps" for increasing water use efficiency.

As with the 2011 survey, the 2014 survey responses indicated widespread in-plant recycling and reuse to minimize fresh water intake. Examples include:

- Cooling water for sanitation, cleaning spray, flume make-up
- Flumes to other flumes
- Cooling tower to flumes, condensers, vacuum pumps
- Steam condensate to boilers
- Cooler to cooling tower

- Retort to cooling tower
- Facility to irrigation

In all, 18 respondents identified some form of in-plant recycling, including all eleven tomato processors. The lower rate of reuse among the 2014 survey respondents compared to the 2011 survey (62% of respondents versus 90%) is due to fewer tomato processors, fruit processors, and vegetable processors participating in the 2014 survey and the increased participation by dehydrators. See Table 2, above, for participants by category.

The 2014 survey also confirmed that tomato processors are using water extracted from raw products. Tomato-sourced water is used by the respondents for the following processes:

- Process condensate to flume
- Evaporate condensate to rotary screen cleaning sprays
- Condensate to boilers

Question 12 of the 2014 survey asked companies to estimate the percentage of process water consumed for nine different water using activities. Based on the responses shown in Table 3, the percentage used for each activity varies significantly from facility to facility. The variation is due: (a) to different rates of reuse/re-circulation among facilities; and (b) differing abilities to extract water from the raw product for use. Also, the eleven tomato processors responding to the survey produce different finished products – some make pastes while other are canning. It is also suspected that, without submeters, many respondents were estimating the percentage allocation among processes.

		Tomato	
	Water Using Process	Processors	Dehydrators
		(% range of pro	cess water used)
1.	Flume	8-30%	0%
2.	Wash raw product	2-40%	50-94%
3.	Boiler feed water	1-32%	0-5%
4.	Boiler make up water	1-18%	0-3%
5.	Plant Sanitation	3-30%	5-50%
6.	One pass Cooling	0-25%	0%
7.	Recirculation Cooling Make-up	2-22%	0%
8.	Product Cooling and Heating	2-15%	0%
9.	Other Ancillary Utility Use	1-20%	0-1%
10.	Other Uses	1-10%	0%

Table 3 - Percent Water Consumption by Internal Process

Question 11 in the 2014 survey asked if facilities had implemented specific water conservation improvements in the last ten years. These water conservation BMPs, are *in addition* to the reuse opportunities discussed above. Figure 1 shows the number of facilities that have implemented the specified improvements.

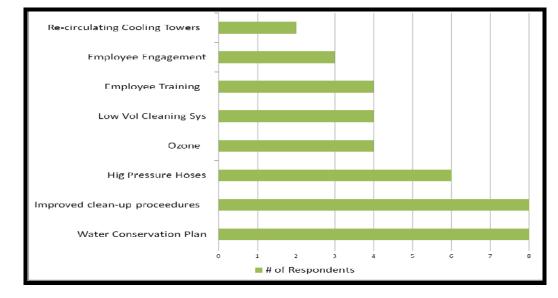


Figure 1 - Water Conservation Improvements in Place

Figure 2 looks at the responses slightly differently and show that the majority of the respondents have implemented at least three water conservation improvements. However, eight of the respondents have not implemented any of the specified water conservation BMPs. Of these eight, most were dehydrators (prunes) and these specified improvements may not apply. As shown above in Table 3, half the dehydrators' water use is attributed to washing raw product and the other half to sanitation.

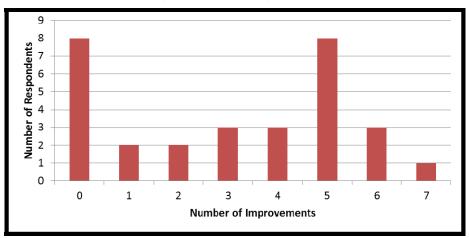


Figure 2 - Number of Conservation Improvements Implemented

There are a few contradictions in the facilities' responses about water conservation targets and conservation plans:

- 17 respondents identified a water conservation target.
- 13 facilities had conducted a "water usage assessment".
- 8 facilities have a water conservation plan in place.
- Only 4 facilities train their employees in water conservation.
- Only 3 facilities have some form of employee engagement.

A water usage assessment typically informs a facility as to the level of conservation possible and where to best focus resources. The water usage assessment collects information that is used to develop a conservation target and to develop an action plan. Further, conservation plans usually include employees in the process. It appears that several of the facilities would benefit by using the plan–do–check–act of self-improvement described in the Queensland Eco-Efficiency Toolkit (2004), EBMUD's Water Smart Guidebook (2008), and Comprehensive Guide to Sustainable Management of Winery Water (2008).

The survey also asked respondents what prevented further conservation efforts. As shown in Figure 3, the facilities feel constrained most by product quality and sanitation issues, followed by the costs to undertake additional water conservation activities. There is pressure on processors to improve food safety and water is critical for plant sanitation. Often, regulations and stringent safety standards drive a facility's decisions for process improvements and equipment upgrades. Potable water, cooling water, steam and ice must be safe and it must be available in sufficient quantities, at suitable pressures and temperatures, to meet operational requirements.

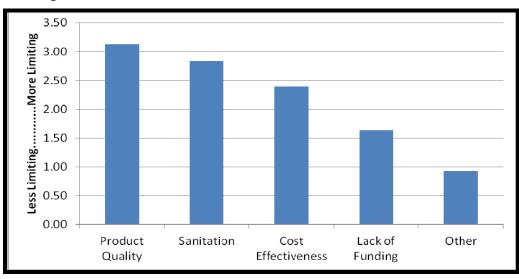


Figure 3 - Limiting Factors for Additional Conservation

Finally, the respondents listed future water savings measures that they are considering for implementation. These are included in Section 4 (Best Management Practices), below.

2.2.3 Facility Interviews

Following the distribution of the 2014 CLFP survey, on-site interviews were conducted with four CLFP members. The purpose of these interviews was to confirm survey results and gather additional information on BMPs. Details on site-specific BMPs that were in place or under consideration were collected .The site visits included different BMPs as well as discussion around what facilities considered when identifying and implementing water efficiency projects. In deference to CLFP member's request for confidentiality, information from these interviews is interwoven throughout this report.

3.1 Summary

Based on the most useful and consistent metrics applied to producer category, the average CLFP survey respondent's water usage is substantially below historical values given in references. This study also evaluates the trends in absolute and unit water usage by individual facilities to demonstrate water conservation progress. The trend of total water usage has been down for CLFP survey respondents over the 2006 to 2013 period. The trend has also been slightly down for unit water use per ton of product produced over the 2006 to 2013 period.

3.2 Metric Selection

Metrics provide a quantity of water use during a period of time as well as a normalizing factor that may be an indicator of efficiency or productivity of water. Baseline values are the first year metrics, to which all future years are compared.

The metrics selected for this study are shown in Table 4 along with their description. Water use tends to be a function of the individual food processing facility and the tonnage of product processed. Therefore *intake process water per ton of raw product processed* was selected as the primary metric for this study. The other metrics selected were useful indicators of measures taken to increase overall water use efficiency that were available in the literature and 2011 CLFP survey. The 2014 CLFP survey was designed to augment information that was collected during the literature survey and the 2011 CLFP survey.

Metric	Description	Purpose
Intake process water per ton of product	Volume of fresh water used to process each ton of raw product.	 To show if volume of fresh water used to process a unit of product is improving.
Internal recycling/reuse percentage	Percent of fresh water used more than once within a facility	 To determine if the fresh water is used efficiently overtime. The higher the percentage of recycling, the higher the efficiency. This metric should increase as the intake process water metric decreases
Discharge % of intake	Percent of freshwater leaving the facility as process wastewater	 This ratio can capture those processors that extract process water from raw materials.
External reuse % of discharge	Percent of process wastewater that is put to beneficial use for irrigation	 This is also water being used in lieu of freshwater for irrigation.

Table 4 - Description of Selected Metrics

3.3 Baseline Values

A goal of this project was to develop a baseline year as early as possible. Initially, it was anticipated that historical reference metric values from the literature survey would be used as baselines for comparisons with the 2014 CLFP survey results. As discussed in Section 2.1, 60 publications dating back to the 1960s were reviewed and only ten of these (Appendix B) contain relevant information. Of these ten documents, five publications were selected to evaluate water use efficiency: EPA (1977), DWR (1979), Kollar (1980), EPA (1983), Water Encyclopedia (1983) over time.

Table 5 shows the difficulties in comparing data across publications and year for the historical references reviewed and in providing baseline values for water intake per unit of raw product processed. This was also addressed in Section 2.1.

Product Category	EPA ^(a) (1977)	Kollar (1980; Produced Product)	EPA WW Dev. Doc. (1983; Calc.)	FEIC (1993)	CLFP Survey (2014)
Tomato Paste				920	351
Canned Fruit	3,000	9,400	2,763	4,174	1,538
Canned Tomato	1,700	9,400	1,036	920	773
Canned Olives			6,276		4,475
Dehydrated Onions			3,410	1,000	1,035
Dehydrated Fruit			829 ^(b)		80
Frozen Fruit & Vegeta	bles	14,100	1,097 ^(c)		2,490

Table 5 - Intake Process Water per Ton of Raw Product (gal per ton)

Notes:

(a) EPA values were for wastewater generation. These were converted to equivalent intake water values using average ratios of wastewater to intake water from the CLFP 2014 survey.

(b) Plums

(c) Peaches

Alternative approaches to establishing baseline values were therefore considered, including using values from the 2011 CLFP survey (whether 2006 values or averages of several years). Unfortunately, there were a number of facilities that participated in the 2014 survey that were not part of the 2011 survey. In some cases, the new participants had unit water use rates that were substantially different than the water use rate values of respondents to both surveys. Thus, using data from the 2011 survey for establishing baseline values would make comparisons with 2014 survey data potentially misleading.

Due to the difficulties in using the historical data, general comparisons of survey metric values with historical reference values were determined to provide the most useful conclusions along

with evaluating trends within the data from the two CLFP surveys. Averages from the 2014 CLFP survey can be used to provide baseline values for future comparisons.

3.4 Metrics - Survey Results

This section discusses the results of the four selected metrics described in Table 4, above.

3.4.1 Intake Water per Unit of Raw Product

Values from historical references are shown in Table 5. For those historical reference documents that specified wastewater volume instead of water intake, the wastewater volumes were multiplied by the average ratios of intake process water over wastewater volume from the 2014 CLFP survey for each product category to give equivalent values in intake process water per ton of product shown in the table. Overall, the 2014 CLFP survey results compare very favorably with the water usage given in the historical references.

Comparisons of water use trends for product category averages between the 2011 and 2014 survey results were difficult because some of the new respondents in the 2014 survey had very different unit water use rates than the prior respondents, and would skew a straightforward trend comparison. Therefore, total water intake and unit water intake over time were normalized for each survey respondent (i.e., each year's value was divided by the average value for all years for that facility).

The average *normalized total water intake over time* for all facilities is shown in Figure 4. This shows that, on average, normalized total water intake over time was in a downtrend over the 2006 to 2013 period.

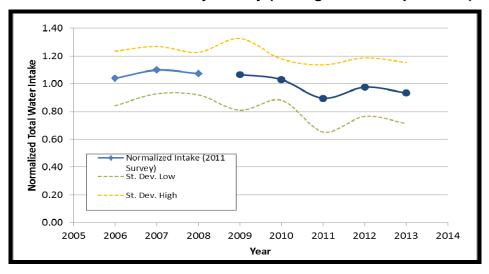


Figure 4 - Normalized Total Water Intake by Facility (Average of All Respondents)

The average *normalized unit water intake over time* for all facilities is shown in Figure 5. The trend for unit water intake (i.e. water use per ton of raw product) is slightly downward over the period, but less so than the trend for total water intake.

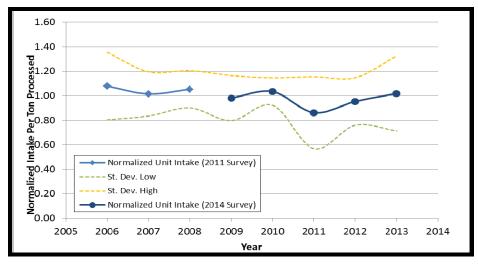
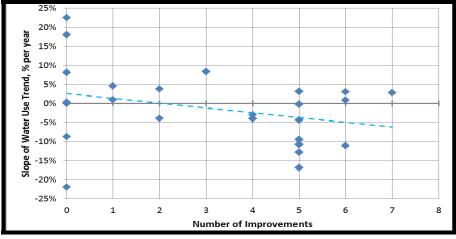



Figure 5 - Normalized Unit Water Intake Over Time - Average of All Respondents

Another interesting comparison for water usage is to compare intake unit water usage with the number of conservation improvements implemented (shown previously in Figure 3). As can be seen in Figure 6, although there is a large amount of variability, there is a general downward trend in water usage per ton of product processed as the number of conservation measures implemented increased for the respondents to the survey.

Figure 6 - Unit Water Usage Trend vs. Conservation Improvements Implemented

Note: Water use trend is for normalized intake gallons per ton processed per year.

The water usage trends versus number of conservation improvements implemented is further broken down by processor category in Figure 7. As can be seen in the figure, the strongest correlation between numbers of improvements and water use improvement trend was for the tomato paste processors.

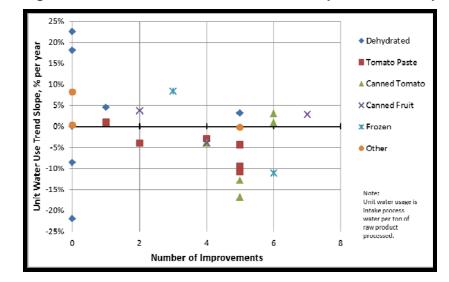


Figure 7 - Water Usage Trends vs. Number of Conservation Improvements Implemented

3.4.2 Recycling/Reuse Percentage

As stated in Section 2.1.2, recycling and reuse have historically been considered to be important factors in overall water use efficiency. *Percentage of intake water recycled/reused* was selected as a good indicator of the main indicator of water conservation progress for facilities. The values from historical references and the 2014 CLFP survey are shown below in Table 6.

	Internal Recycling/Reuse as a % of Fresh Intake Water			
Product Category	DWR (1979)	Kollar (1980)	Water Encyclopedia (1983)	CLFP Survey (2014) ^(a)
Tomato Paste				10.8%
Canned Fruit	138%	110%	166%	11.0%
Canned Tomato Products				26.6%
Dehydrated Onions				45.0%
Dehydrated Fruit				0.0%
Nuts				0.8%
Frozen Fruit and Vegetables		60%	76%	na
Dairy	95%	64%	50%	11.5%

Note:

(a) The survey asks if water is used more than once within a facility and does not distinguish between recycling (i.e., reusing water within the same process) and reuse (i.e., capturing water for reuse in another process). Recycling/reuse in the CLFP survey results was very low compared to the historical references. This was surprising given that *unit intake water usage per mass of product produced* was generally much lower in the CLFP survey than in the historical reference literature. Most of the historical reference studies had obtained values for gross water use by all processes in a facility, then derived values for recycling based on the difference between gross water use and fresh intake water. The CLFP surveys asked directly for the amount of intake water recycled within or between processes.

One possible explanation between the CLFP surveys and the historical references is that the CLFP survey respondents may have inadvertently underestimated their recycling/reuse amounts. More detailed measurements or estimates of gross water use for each process could provide a better basis for calculation of recycling amounts in any future surveys.

3.4.3 Discharge Percentage and Total External Reuse

Some facilities recover and use the water within raw products in lieu of fresh water. *Discharge as a percentage of intake* is a metric that gives an indication of how much product water is utilized and can be calculated from some of the historical references as well as from the 2014 CLFP survey data. The values by category are shown in Table 7 below.

	Discharge % of Intake ^(a)				
Product Category	DWR (1979)	Kollar (1980)	Water Encyclopedia (1983)	CLFP Survey (2014)	CLFP Survey – Irrigation % of Discharge ^(b)
Tomato Paste				126.7%	76.9%
Canned Fruit	89.7%	91.0%	86.0%	90.0%	95.0%
Canned Tomato Products	89.7%		86.0%	106.2%	99.3%
Dehydrated Onions				96.8%	
Dehydrated Fruit				123.3%	
Nuts				92.5%	
Frozen Fruit & Vegetables		98.0%	97.0%	90.5%	
Dairy	112.0%	93.0%	91.0%	66.5%	

Table 7 - Discharge Percentage of Intake

Notes:

(a) Higher percentages indicate higher amount of water being recovered from raw products.

(b) Percentage of discharged water put to beneficial use outside the facility.

The *discharge as a percentage of intake* is notably higher for the tomato processors in the CLFP survey compared to the historical references and is also greater than 100%. This indicates that tomato processors are likely recovering more of the product water than had typically been recovered during the times of the historical reference surveys.

Total external reuse provides a measure of how much discharged water is put to beneficial use outside the facility. Often this is in the form of irrigation reuse. The far right column of Table 7 (above) shows the irrigation percentage of discharge. Most of the major respondents reuse their discharge water for irrigation, offsetting what otherwise would have been localized fresh irrigation water demand in the area.

3.5 Conclusions

The survey results indicate a much better *average water use efficiency per ton of product processed* compared to historical literature reference values. The survey results also show slightly decreasing trends for unit water use over the 2006 to 2014 period. There was a substantial amount of variability between some of the respondents in each category, indicating the potential for improved water use efficiency in some facilities.

Reported *water recycling and reuse as a percentage of intake* was low for the 2014 survey respondents compared to the historical reference values, but some of that discrepancy may be due to survey and reporting methodology. The *discharge as a percentage of unit intake water* was generally similar for the 2014 survey respondents and historical reference values. The exception was for tomato processors, who seem to be recovering more water contained in the raw product than the industry has historically. Much of the discharge water is further reused for irrigation.

A historical overview of best management practices in the food processing industry is provided in Section 2 (above) and summarized in Table1. This historical perspective shows that food processing facilities have reused and recirculated water within their processes since the 1950s. Alternative BMPs, beyond recycling and reuse, have evolved over the past 25 years to include tools (i.e., low flow nozzles) and improved procedures. And, within the last ten years, guidebooks have emerged that encourage facilities to incorporated BMPs into a process of plan–do–check–act. Implied in this process is that every facility or process is unique and that appropriate BMPs will be site specific.

4.1 Recycle/Reuse

The practice of reuse and recycling continues to the present day with food processors looking for cost effective measures to expand in-plant water reuse. An increased piloting of membrane technology began in the 1990s (Table 1). These pilot studies looked to increase water reuse between processes to reduce process water discharges and to conserve water. Since the 1990s, advances in membrane technologies, including reverse osmosis and nanofiltration, have allowed these technologies to play a larger role in water use efficiency at better pricing.

Several respondents to the 2014 CLFP identified plans for future reuse/recycling projects. In addition, four on-site interviews were conducted to identify BMPs that were in place or under consideration. Recycling/reuse BMPs identified by facilities include:

- Improved recycling/re-circulation to reduce fresh water uses.
- Reuse cooling tower overflow for grounds sanitation.
- Reuse cooling water.
- Reuse process condensate in place of fresh water in areas of production.
- Re-circulate seal water.
- Eliminate one pass cooling.
- Reuse process water for irrigation.
- Because cooling towers are grouped, could recirculate water from the last (third cell) back to the first cooling tower resulting in several hundred thousand gallons per day of water savings.
- Lye concentrators recover and reuse caustic. Less lye in process water so savings in chemicals.
- Directed cooling tower return water to flumes.

- Fruit washing first with 'recycled' water and then with freshwater. Capture the last rinse water for to become the first ('recycled') rinse water.
- Defrost water reused for irrigation.
- Also reusing defrost water for nightly cleaning and sanitation of the belts.
- Increased ability to source water from raw materials (i.e., incoming tomato or milk) by adding treatment.
- Reject water from RO units is collected and reused.
- Looking at ways to prevent water from touching the ground so they can increase recycle or reuse opportunities.

4.2 Alternative BMPs

The CLFP surveys queried member companies if specific BMPs, beyond recycling/reuse, that are currently in place. Respondents also wrote-in future conservation improvements that are in the planning stages. During the facility interviews additional proposed or planned BMPs were identified: BMPs identified by facilities include:

- Employee engagement
- Employee training
- Water conservation plan
- Low volume high pressure cleaning systems
- High pressure hoses
- Nozzles over time have gone from unrestricted hoses, to restricted flow hoses, to hoses with shut-offs
- Nozzles on every hose
- Reduction in high flow hoses
- Improved clean-up procedures
- Improve cleaning, sanitation, and conveying procedures
- Spill control in flumes
- Processing techniques to reduce water and dilute chemicals
- Lower the pressure of high pressure pumps
- Ozone system or improve ozone system

- Use of ozone on belt sprays to reduce potable water sprays and cleaning chemical use.
- Eliminate ozone water overspray by retrofitting belts with a roller system.
- Water saving sprays
- Reduce product spillage to reduce sanitation water
- Rent meters and monitor points of interest
- Install submeters
- Leak control
- Install meter/ball valve to regulate blowdown at cookers
- Peeling selectively using both steam and caustic (potassium hydroxide). Mostly caustic since steam is pricey and caustic does a good job. Steam used for "organics."
- Peeling High pressure air following sodium hydroxide (2.5%) application for peeling. Potential to minimize or eliminate recycle rinse and freshwater rinse. Trial.
- Eliminate troughs that take defective fruit out of the system. By expanding the conveyer and widening the pulley, conserve water.
- Appoint/hire "water manager" who looks for trends and blips and ways to improve efficiency.
- Challenge chemical supplier on reducing water/chemicals needed for cleaning and sanitation. Rely less on third party chemical supplier and rely on internal process and "validation study."
- Evaluate: CIP processes chemicals, timing, water use; the need to rinse to neutral; and added staff, including a sanitizer coordinator, in each production area.
- Reduce chemical use via substitution and increased efficiency.
- Employees success breeds success. As employees see that conservation is possible, they are now behind it.

4.3 Compendium, Guidebooks, and Plan–Do–Check–Act

Appendix E provides a compendium of BMPs collected during the literature survey. This includes those in the CII Task Force Report as well as publications from the United Kingdom, New Zealand, Australia, and throughout the United States. The CII Task Force Report recognizes that "…every facility is unique and what may work at one vegetable processing plant may not be applicable at another." Thus, it is up to the CII entity to determine which alternative BMPs are the most appropriate for their situation.

Thus, Appendix E presents possible BMP options. However, the identification, screening, and implementations of BMPs at a particular facility should be part of a larger, integrated process. The BMPs in Appendix E are sorted into the following categories:

- Food and Beverage specific
- Cleaning Activities
- Pipes and Equipment
- Thermodynamic Processes
- Reuse Opportunities
- Water Treatment Systems
- Alternate Water Sources.

Although few BMPs specific to food processors were identified in the literature, there are several operations that are common across industrial entities. This includes boilers, cooling towers, and source water treatment. Note that, the literature contains a great deal of information on water efficiency measures for restrooms, kitchens, landscaping, and other ancillary facilities. However, Appendix E and this document focus on water uses directly involved in food processing.

One of the objectives of this study is to assess whether past changes in water policies or laws have had an impact on total industry water use. It appears that there has been an effort among food processors for over a half a century to be water efficient without the influence of water conservation policy or legislation. As examples:

- It is assumed that plants implemented water reuse strategies, not in response to public policy, but to be cost effective and to potentially reduce stress on local public works.
- Many of the facilities responding to the CLFP survey and who participated in facility interviews mentioned corporate initiatives for water conservation. These internal programs have had varying levels of success but were implemented without the influence of public policy.
- The legislation that has had the largest impact on water use in the food industry is the Clean Water Act and those associated with food safety. Many facilities have site-specific discharge limits that require greater water efficiency or reducing the volume of water used at the facility. For those who discharge to publically owned treatment works (POTWs), there are benefits to reducing wastewater volumes including reducing costs and time associated with wastewater treatment and handling

Another objective of this study is to assess whether water usage by the food processing industry has become more efficient over time and what has led to the increase in efficiency. As described throughout this report, consistent water usage data was not available. But, based on the information in Section 3, it appears that the industry has become more efficient. To ensure consistent data are available in the future, the following are recommended:

- Document in-plant recycling, recirculation and reuse Ensure the general public is aware that water recycling and reuse have been common practice within the industry for over half a century.
- Document water sourced from raw materials Remind the public and legislature that food processors extract plant processing water from raw materials and reuse as a means to address both water supply and process wastewater generation.
- Expand industry adoption of sub-metering Although most facilities have a generally good idea of which activities required the most water, there is some uncertainty. And, the survey results discussed in Section 3 indicate a need to better understand the volume of water currently being reused with some facilities. Sub metering is a relatively inexpensive way to gather more precise information to ensure that facilities focus limited resources wisely. For example, sub metering will help confirm if new water conservation improvements were successful. Additionally, sub metering data will help quantify the volume of water recycled or reused within the plant, and within the industry. The State, through the water and energy utilities, could do more to provide financial incentives to help firms change equipment or provide training similar to what is done with energy conservation and efficiency programs.

• *Regular reporting to CLFP* – Continue to solicit water use data every 3 to 5 years from CLFP member companies. Continue to review and develop metrics (gallons/year; gallons/ton of product, gallon/tax dollar generated; gallon/product moved; etc.).

Identifying possible BMPs for food processors was also an objective of this study (see Section 4). However, it appeared that some facilities are implementing water conservation programs without having performed an audit, without involving employees, and without follow up to determine the success of the BMPs. Further, every facility is unique and BMPs should be site specific. Thus, it is recommended that facilities undertake a process of plan–do–check–act to identify, implement, and monitor appropriate BMPs. Suggested avenues for CLFP to continue to assist with an industry wide program include:

- *Facility Audits* Assist selected facilities in self-auditing. During this process, CLFP can continue to collect data that will bolster and confirm the data in this study. In addition, these representative facilities can become case studies on how to self-audit, identify water efficiency measures, develop benchmarks, and apply metrics.
- *Hotspot Identification* Determine those processes that account for largest percentage of water consumption (becomes focus area) and what measures are being used to address.
- Self-Audit Framework Based on pilot site water audits, develop a procedure for facilities to self-audit. This framework will focus on those processes that represent the majority of water consumption. Facilities can then identify BMPs that address the large water using activities.
- *Guidebook* Develop a practical manual and tool for CLFP members to benchmark water use at their faculties, document their efficiencies, set water conservation targets, and develop action plans to further goals. By doing so, facilities will be participating in a process of plan–do–check–act.
- *Employee engagement* employees can make a significant difference in water conservation.
- *Expand Industry Adoption of sub-metering* as discussed above.

Section 4 and Appendix E includes possible of BMPs collected during the literature and CLFP member company surveys. But, most are not specific to the food processing industry. Thus, another recommendation includes:

- Develop Best Practices and Innovative Technologies Using the practical knowledge gained from work at the pilot sites and hotspot identification; develop practices and technologies that address hotspots specific to food processors. These practices and technologies may not currently be in use and will need to be formulated.
- Alternative Water Supplies Appendix E identifies potential opportunities to substitute alternative water supplies such as recycled water, rainwater, stormwater, air conditioner condensate, filter and membrane reject water, foundation drain water, etc. These should be further explored to determine their applicability for various uses at food processing facilities.

• Non Process Water BMPs – Develop reference list or material for non-process water (restrooms, kitchens, landscaping, HVAC, visitor centers, administration, etc.) including volumes, metrics, and best practices.

Final recommendations that will be necessary as facilities become more water efficient include:

- Process Wastewater Quality As water use efficiency increases, the concentration of constituents in process wastewater will also increase. Thus, analyzing the unintended consequences of water conservation may include evaluating the use of loading rates for land application treatment (lbs/acre) versus concentrations (mg/l) in regulating process wastewater treatment and land application practices and protection of groundwater and surface water supplies.
- Synergies Analyze and support associated savings associated with increased water efficiencies. This may include energy, cost savings, wastewater treatment and disposal, chemical use, etc.

Appendix A

References

Appendix A: References

Alan Plummer Associates, Inc. State of Technology of Water Reuse. Final Report. August 2010. Prepared for the Texas Water Development Board.

Australia Food and Grocery Council, "Towards Sustainability 2007-2008".

Bamezai, A. (2011) "GPCD Weather Normalization Methodology" Western Policy Research for CA Urban Water Conservation Council, December 13, 2011.

BBC Research & Consulting, CH2M Hill, Inc, and Morningside Research and Consulting. Water Conservation Savings Quantification Study. Final Report. February 21, 2012. Prepared for Texas Water Development Board.

Beverage Industry Roundtable, "A Practical Perspective on Water Accounting in the Beverage Sector," December 2011.

Brewers Association. Water and Wastewater: Treatment/Volume Reduction Manual. (no date).

CA Department of Water Resources. 20x2020 Water Conservation Plan. February 2010.

CA DWR, Bulletin No. 124. "Water Use by Manufacturing Industries in California 1957-1959." April 1964.

CA DWR, Bulletin No. 124-2. "Water Use by Manufacturing Industries in California 1970." March 1977.

CA DWR. Bulletin No. 124-3. "Water use by Manufacturing Industries in California 1979." 1982.

Canadian Water Quality Guidelines, 1987; based on Tate, D.M., and Scharf, D.N., 1985. Water Use in Canadian Industry, 1981. Soc. Sci. Ser. No. 19. Environment Canada, Ottawa.

Carawan, R E; Merka, B. " Survey shows that poultry processors can save money by conserving water." *North Carolina Agricultural Extension Service* 23 (July 1988).

Carawan, R E; Waynick, J B CD. "Reducing water use and wastewater in food processing plants: how one company cut costs." *North Carolina Agricultural Extension Service* (35) (September 1991).

CII Task Force BMPs Report to Legislature, 2014.

Climatewise Information Bulletin. October 1996.

Department of Economic and Social Affairs, United Nations, 1969.

Dilek, Filiz B.; Yetis, Ulku; Gökçay, Celal F., "Water savings and sludge minimization in a beetsugar factory through re-design of the wastewater treatment facility" *Journal of Cleaner Production* (11.3) (Jan 1, 2003): 327-331.

Dupont, D; Renzetti, S. "Water use in the Canadian food processing industry." *Canadian Journal of Agricultural Economics* (46.1) (March 1998): 83-92.

Dziegielewski, B. and J. C. Kiefer. "Water Conservation Measurement Metrics, Guidance Report," AWWA, Water Conservation Division Subcommittee Report. January 2010.

East Bay Municipal Utility District. Watersmart Guidebook- A Water-Use Efficiency Plan-Review Guide for New Businesses. 2008.

Fernandez-Torres Isis, S. Safferman, and S. Miller, 2007, "Water and Wastewater Minimization Protocol for Food Processors". American Society of Agriculture and Biological Engineers (ASBE) Meeting Presentation Paper Number: 0760666.

Green, John and Kramer, Amihud. 1979. *Food Processing Waste Management.* AVI Publishing Company, Inc.

Graham, D D. "A poultry processing watershed." Poultry (9.2) (April 2001): 30, 32-34.

Hansen, C; White, R; Okos, M. "Optimization of water management and associated energy in the meat packing industry." *St. Joseph, Mich: American Society of Agricultural Engineers*, 1980.

Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze Aurich, Jochen. "Understanding the impact of crop and food production on the water environment—using sugar as a model." *Journal of the Science of Food and Agriculture* (94.1) (Jan 15, 2014): 2-8.

Hyde, Katherine1; Smith, Ann, Smith, Miranda, Henningsson, Stefan. "Challenge of waste minimization in the food and drink industry: A demonstration project in East Anglia, UK" Journal of *Cleaner Production* (9.1) (Jan 14, 2001): 57-64.

Jones, R H; Keough, D A. "Water use and wastewater flow reduction in the citrus processing industry." *Transactions of the Citrus Engineering Conference* (1994): 66-78.

Karapetian, A. "Waste not." Poultry (14.3) (June 2007): 30-32.

Katie Bromley-Challenor, Mark Kowalski, Richard Barnard, Stephen Lynn. "Water use in the UK food and drink industry. A review of water use in the food and drink industry in 2007 and 2010, by sub-sector and UK nations." For WRAP. July 2013.

Keener, Kevin M., Williams, Gregory D. "Operational practices in food processing plants" *American Society of Agricultural and Biological Engineers Annual International Meeting* 2008, by Keener, Kevin M., Williams, Gregory D., (2008) 5152-5168.

Kemp, Robert. AgResearch Ruakura. Presentation: "Energy and Water Benchmark Survey: Preliminary Summary of 12 Months" 11 September 2010.

Kennedy/Jenks Consultants. Energy Use in Wastewater Treatment in the Food and Beverage Industry. 15 October 2010. Prepared for Pacific Gas and Electric Company.

Kollar, K.L. and MacAuley, P., "Water Requirements for Industrial Development", *J. Am. Water Works Assoc.* (72) (1980). Copyright AWWA, Reprinted with permission.

Kreith, Marcia. "Water Inputs in California Food Production, Sacramento, Calif." Water Education Foundation. September 27, 1991. (Kreith 1991)

Mannapperuma, Jatal et. al. "Membrane Applications in Food Industry with Large Commercial Potential." Electric Power Research Institute. Presented at Fourteenth Annual Membrane Technology/Separations Planning Conference. October 28-30, 1996. (FEIC 1993)

Morales, A. M., James P. Heaney, Kenneth R. Friedman, and Jacqueline M. Martin. "Estimating Commercial, Industrial, and Institutional Water Use on the Basis of Heated Building Areas" *Journal of American Water Works Association*, (103:6), (June 2011) 84-96.

Nair, C. "Pollution control through water conservation and wastewater reuse in the fish processing industry" *Water Science and Technology* (22.9) (Jan 1, 1990): 113-121.

Nemerow, Nelson L. 1971. *Liquid Waste of Industry – Theories, Practices, and Treatment*. Chapter 23 Food Processing Industries. Published by Addison-Wesley Publishing Company.

Omori, Satoshi1; Imamichi, Sumitoshi2; Shintani, Susumu3; Matsunaga, Masami2; Hagiwara, Tomoaki1; Watanabe, Manabu1; Watanabe, Hisahiko1; Sakiyama, Takaharu "Efficiency and water saving effect of rinsing with air-water two-phase flow for stainless steel pipelines".

Pagan, Robert and Prasad, P. UNEP Working Group for Cleaner Production. "Eco-efficiency, Water Conservation and Food Processing in Australia. (no date or publication info given)

Pagan, Robert et. al. The UNEP Working Group for Cleaner Production in the Food Industry, *Eco-Efficiency Toolkit for Queensland Food Processing Industry*, 2004.

Pequod Associates, Inc. Texas Industrial Water Use Efficiency Study – Final Report. October 1993. Prepared for the Texas Water Development Board.

Scharf, D., Burke, D., Villeneuve, and Leigh, L., 1996, "Industrial Water Use 1996", Environmental Economics Branch, Environment Canada, 2002. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.

Sharma, Ashok. "Resolving world water crises through virtual waterless manufacturing" Proceedings of the 2004 World Water and Environmental Resources Congress: Critical Transitions in Water and Environmental Resources Management. *American Society of Mechanical Engineers.* (Dec 1, 2004.) 2862-2869.

Shoemaker, Dr. Sharon et. al. California Institute of Food and Agricultural Research. U. C. Davis. CIFAR/EPRI Mobile Test and Demonstration Project.

Thaxton, Y V. "Plug profit drain through effective water management." *Poultry* (10.3) (June 2002): 18-19.

The Water Encyclopedia, Third Edition. Hydrologic Data and Internet Resources. Edited by Fierro, Pedro, Jr., Nyer, Evan, K. Taylor & Francis Group, 2007.

Thompson, H.W.; Esvelt, L.A. "Reclamation and Reuse of Fruit Processing Wastewater." *American Society of Agricultural Engineers* (Dec 1, 1978).

U.S. DOE (2008) "Establishing Baseline and Meeting Water Conservation Goals of Executive Order 13423", US Department of Energy Supplement Guidance to the Instructions for Implementing Executive Order 13423.

US Department of Agriculture, Soil Conservation Services. National Engineering Handbook. Agricultural Waste Management Field Handbook.

US EPA, Industrial Waste Branch. Proceedings Fifth National Symposium on Food Processing Wastes. June 1974.

US EPA, Office of Air and Water Programs. "Development Document for Effluent Limitation Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source." March 1974.

US EPA, Office of Water and Hazardous Materials. "Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetable and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Categories." October 1975.

US EPA, Office of Water and Hazardous Materials. "Draft Development Document for Effluent Limitations Guidelines and New Source Performance Standards, Miscellaneous Foods and Beverages Point Source Category", Part I. March 1975.

US EPA, Technology Transfer Seminar Publication Pollution Abatement in the Fruit and Vegetable Industry. Volume 1: Basics of Pollution Control / Case Histories. July 1977.

US EPA, Technology Transfer Seminar Publication Pollution Abatement in the Fruit and Vegetable Industry. Volume 2: In Plant Control of Process Wastewater. July 1977.

US EPA, Technology Transfer Seminar Publication Pollution Abatement in the Fruit and Vegetable Industry. Volume 3: Wastewater Treatment. July 1977.

van der Leeden, Frits. Troise, Fred L. Todd, David Keith. *The Water Encyclopedia*, Second Edition. Lewis Publishers.

Waste Treatment in the Food Processing Industry. 2006. Edited by Wang, L., Hung, Y., Lo, H. and Yapijakis, C. Taylor and Francis Group, LLC.

Water Environment and Technology "Georgia prison 'cans' excess water use" 16.1 (Dec 1, 2004): 72.

Appendix B

Most Useful References for Metric Data

Appendix B: Most Useful References for Metric Data

Reference (in order of relevance)	PROs	CONs
 Kollar, K.L. and MacAuley, P., Water Requirements for Industrial Development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA, Reprinted with permission. 1980. (Kollar, 1980) 	 Gives metrics: water use by various units of production for: Meatpacking, Poultry dressing, Dairy, Canned fruits and vegetables, frozen fruit and vegetables, Malt beverage. Breaks out water use into percentage noncontact cooling, process related, and sanitary. Breaks water use down into gross water use, intake by unit of production, consumption, and discharge. Comparison of high recycling plants to 1973 industry average by gallon of water per unit of production. 	 Not California specific.
 The Water Encyclopedia, Second Edition. van der Leeden, Frits. Troise, Fred L. Todd, David Keith. Lewis Publishers. 1983 (Water Encyclopedia 1983) 	 Gives metrics: water use versus industrial units of production for the following: Meatpacking, Poultry dressing, Dairy products, Canned fruits & vegetables, Frozen fruits & vegetables, Wet corn milling, Cane sugar, Beet sugar, Malt beverage (from Kollar, 1980). Comparison of average plants to high recycling plants using 1973 industry average using gallon per unit of production. Total United States industrial water broken down by: Percent noncontact cooling; Percent process and related; Percent sanitary and misc. 	Not California specific.
3. US EPA, Technology Transfer Seminar Publication Pollution Abatement in the Fruit and Vegetable Industry. Volume 2: In Plant Control of Process Wastewater. July 1977. (EPA 1977)	 Metrics: water use (gallon per ton) for various processes. Provides average gallons of wastewater per ton of product for different commodities Gives water use and process wastewater flows for several different food processing categories. Discusses water conservation and identifies where water can be recovered and reused. 	Not California specific.

Reference (in order of relevance)	PROs	CONs
4. US EPA, Office of Water and Hazardous Materials. Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetable and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Categories. October 1975 (EPA 1975)	 Metrics: raw waste flows (gallon per ton) in 1977 and 1983 for several dozen commodities. Discusses BACT for effluent reduction Over 500 sources of info relating to raw waste load characteristics of fruit and vegetable processing were obtained. 50,000 data points. Used computer modeling to aggregate, correlate, and predict gallons per ton. Discusses challenges associated with estimation of baseline values. 	 Not California specific. Mostly process wastewater data. Another EPA Development Document provided water use (gallons per tons) in granularity as well as process flow diagrams for the Apple, Citrus, and Potato processors.
 a. CA DWR. Bulletin No. 124-3 "Water use by Manufacturing Industries in California 1979." 1982. (DWR 1982) b. CA DWR, Bulletin No. 124-2 Water Use by Manufacturing Industries in California 1970). March 1977. (DWR 1977) c. CA DWR, Bulletin No. 124. Water Use by Manufacturing Industries in California 1957- 1959). April 1964. (EPA 1964) 	 California specific. Tables 4 and 5. Based on hundreds of survey responses Total water intake for cooling, processing, boiler feed, and sanitation; Total annual water use, water recirculated; water required without recirculation; water treated prior to use; water treat. 	Calculates cubic feet-of- water/SF and cubic feet-of- water/average-employee- day. These are then broken into the use categories (cooling, processing, boiler, etc.)
 Mannapperuma, Jatal D., Yates, E. D., and Singh, R. Paul. "Survey of Water Use in the California Food Processing Industry." Food Industry Environmental Conference. 1996. (FEIC 1993) 	 California specific. 71 respondents to the survey. Consumption rates were significantly lower than rates reported in earlier surveys. Some metrics as follows: Tomatoes ranged from 144 to 1870 gal per ton of tomatoes. Wine ranged from 625 to 2800 gal per ton of grapes Peach 1800 to 3900 gal per ton Olives 3000 to 10,400 gallons per ton apple sauce, apricots, artichokes, asparagus, Brussels sprout, cheese, cherry, frozen fruit, garlic, meat, mushrooms, onions, pears, pumpkins, raisins, seafood, specialty, vegetable oils, yams, zucchini. 	Uses raw material (i.e., grapes vs. wine) to normalize the data.
 Kreith, Marcia. Water Inputs in California Food Production, Sacramento, Calif.: Water Education Foundation. September 27, 1991. (WEF 1991) 	 California specific. Gallon per pound of purchased food. 	• The normalization to pound of retail food in the summary charts may be an issue.

Reference (in order of relevance)	PROs	CONs
 Katie Bromley-Challenor, Mark Kowalski, Richard Barnard, Stephen Lynn. Technical report. "Water use in the UK food and drink industry. A review of water use in the food and drink industry in 2007 and 2010, by sub- sector and UK nations." For WRAP. July 2013 (WRAP 2013) 	 Total water use by sub categories (2007 and 2010) as well as number of employees and meals. 	 Not related to California products.

Appendix C

Data Tables from Literature Survey

1. Kollar, K.L. and MacAuley, P., Water Requirements for Industrial Development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA, Reprinted with permission. 1980. (Kollar, 1980)

Industry	Parameters of Water Use	Gross Water Use by Unit of Production	Percentage Noncontact Cooling*	Percentage Process and Related*	Percentage Sanitary and Miscellaneous*
leatpacking	gal/lb carcass weight	3.6 gal/lb	42	46	12
oultry dressing	gal/bird poultry slaughter	11.6 gal/bird	12	77	12
airy products	gal/lb milk processed	0.85 gal/lb	53	27	19
anned fruits and vegetables	gal/case 24-303 cans eq	225 gal/case	19	67	13
rozen fruits and vegetables	gal/lb frozen product	11,2 gal/lb	19	72	8
Vet corn milling	gal/bu corn grind	416 gal/bu	36	63	1
ane sugar	gal/ton cane sugar	28 100 gal/ton	30	69	1
est sugar	gal/ton beet sugar	33 100 gal/ton	31	67	2
falt beverages	gal/barrel mait beverage	1500 gal/bbl	72	13	15
extile mills	gal/lb fiber consumption	34 gal/lb	57	37	6
awmills	gal/bd ft lumber	5.4 gal/bd ft	58	36	6 .
ulp and paper mills	gal/ton pulp and paper	130 000 gal/ton	18	80	1 1
aper converting	gal/ton paper converted	6600 gal/ton	18	77	. 5
Ikalis and chlorine	gal/ton chlorine	29 800 gal/ton	85	14	1
ndustrial gases	gal/1000 cu ft industrial gases	636 gal/mcf	86.	13	1
norganic pigments	gal/ton inorganic pigments	97 800 gal/ton	41	58	1 1
dustrial inorganic chemicals	gal/ton chemicals 100 percent basic	14 500 gal/ton	83	16	1 1
Plastic materials and resins	gal/lb plastic	24 gal/lb	93	7	1
Synthetic rubber	gal/lb synthetic rubber	55 gal/lb	83	17	z
ellulosic man-made fibers	gal/lb fibers	231 gal/lb	69	30	1
Drganic fibers, noncellulosic	gal/lb fibers	101 gal/lb	94	6	1
aints and pigments	gal/gal paint	13 gal/gal	79	17	
ndustrial organic chemicals	gal/ton chemical building blocks	125 000 gal/ton	91	g	1
Jitrogenous fertilizers	gal/ton fertilizer	28 506 gal/ton	92	8	Z
hosphatic fertilizers	gal/ton fertilizer	35 602 gal/ton	71	28	1
arbon black	gal/lb carbon black	4.6 gal/lb	57	38	, ß
etroleum refining	gal/barrel crude oil input	1851 gal/bbl	95	5	Z
fires and inner tubes	gal/tire car and truck tires	518 gal/tire	81	18	3
lydraulic cement	gal/ton cement	1360 gal/ton	82	17	1 1
Steel	gal/ton steel net production	62 600 gal/ton	56	43	1 1
ron and steel foundries	gal/lon ferrous castings	12 400 gal/ton	34	58	Å
	gal/lb copper	53 gal/lb	52	46	2
Primary copper Primary aluminum	gal/lb aluminum	49 gal/lb	. 72	26	2
Automobiles	gal/car domestic automobiles	36 500 gal/car	28	69	3

TADICO

 $^{*}Z =$ less than 0.5 percent of gross water use; percentages may not add evenly due to rounding

to desalinate saltwater at a high cost in dollars and energy. New water intensive industries are not likely to locate in these islands, unless they can satisfy much of their water requirements with saline water.

Geographic Distribution of Water Intensive Manufacturing Industries

Table 1 shows the geographic distribution of water intensive manufacturing industries.

The paper industry is located in almost every section of the nation, but especially in the south Atlantic Gulf and Columbia-North Pacific regions. The chief determinant in locating paper mills is access to adequate supplies of softwoods for paper fiber. However, about 20 percent of the paper mills recycle waste fiber, and thus are usually located near cities or other sources of wastepaper. Those plants that buy paper and convert it into paper products are usually located near their industrial or retail customers.

The chemical industries produce a wide variety of products, of which petrochemicals and fertilizer are the most water intensive. Since access to petroleum and natural gas feedstocks are of primary importance, the chemical industry is heavily concentrated in the Texas Gulf and lower Mississippi regions. Other important concentrations of chemical plants are in such industrial centers as the Great Lakes, Ohio, and Atlantic regions.

The petroleum refining industry is found largely in oil-producing regions and in coastal regions where oil is imported. Three of the largest water-using areas are the Texas Gulf, lower Mississippi, and California regions,

JANUARY 1980

٦

3

a

S

g

n

d

e

at

1.

d

it

ł-

i-

١e

٢e

or

er

is

٧A

TABLE 3 Water Use Per Employee

	Gross W Per En	Intake Per Employee			
Industry Group	L/day	gpd	L/day	gpd	
Food and kindred products	15 540	4200	10 360	2800	
Tobacco manufacturers	22 570	6100	1480	400	
Textile mill products	6660	1800	2960	800	
Apparel and related products	370	100	370	100	
Lumber and wood products	5920	1600	3700	1000	
Furniture and fixtures	440	120	370	100	
Paper and allied products	43 930	38 900	42 920	11 600	
Printing and publishing	370	100	370	100	
Chemicals and allied products	149 110	40 300	56 240	15 200	
Petroleum and coal products	603 100	163 000	94 950	25 500	
Rubber and plastic products	10 730	2900	3700	1000	
Leather and leather products	740	200	703	190	
Stone, clay, and glass products	11 470	3100	5550	1500	
Primary metal industries	78 440	21 200	44 030	11 900	
Fabricated metal products	2960	800	1110	300	
Machinery, except electrical	3700	1000	1480	400	
Electrical machinery	9250	2500	1110	300	
Transportation equipment	17 020	4600	2220	600	
Instruments and related products	4440	1200	1110	300	
Miscellaneous manufacturing	1110	300	2960	200	

which are both oil importers and oil producers. Since the Arkansas-White-Red region is a major oil-producing district, it supports a large number of refineries despite the relative scarcity of water. The Middle Atlantic region refines large amounts of imported oil.

More than two thirds of the water use in primary metals manufacture occurs in the Great Lakes and Ohio regions, the heartland of the American steel industry. The steel industry has been concentrated in this area since the industrial revolution, reflecting the abundance of iron ore, coking coal, limestone, and water. Virtually all major steel mills are located alongside

Industry	Parameters of Water Use	Gross Water Used by Unit of Production	Intake by Unit of Production	Consumption by Unit of Production	Discharge by Unit of Production
Meatpacking	gal/lb carcass weight	3.6 gal/lb	2.2 gal/lb	0.1 gal/lb	2.1 gal/lb
Poultry dressing	gal/bird poultry slaughter	11.6 gal/bird	10.3 gal/bird	0.5 gal/bird	9.8 gal/bird
Dairy products	gal/lb milk processed	0.85 gal/lb	0.52 gal/lb	0.03 gal/lb	0.48 gal/lb
Canned fruits and vegetables	gal/case 24-303 cans eq	225 gal/case	107 gal/case	10 gal/case	98 gal/case
Frozen fruits and vegetables	gal/lb frozen product	11.2 gal/lb	7.1 gal/lb	0.2 gal/lb	6.9 gal/lb
Wet corn milling	gal/bu corn grind	416 gal/bu	223 gal/bu	18 gal/bu	205 gal/bu
Cane sugar	gal/ton cana sugar	28 100 gal/ton	18 250 gal/ton	950 gal/ton	17 300 gal/ton
Beet sugar	gal/ton beet sugar	93 100 gal/ton	11 100 gal/ton	390 gal/ton	10 700 gal/ton
Malt beverages	gal/barrel malt beverage	1500 gal/bbl	420 gal/bbl	90 gal/bbl	330 gal/bbi
Textile mills	gal/lb fiber consumption	34 gal/Ib	14 gal/lb	1.4 gal/lb	12.8 gal/lb
Sawmills	gal/bd. ft lumber	5.4 gal/bd ft	3.3 gal/bd ft	0.6 gal/bd ft	2.7 gal/bd
Pulp and paper mills	gal/ton pulp and paper	130 000 gal/ton	38 000 gal/ton	1800 gal/ton	36 200 gal/ton
Paper converting	gal/ton paper converted	8600 gal/ton	3900 gal/ton	270 gal/ton	3600 gal/ton
Alkalis and chlorine	gal/ton chlorine	29 800 gal/ton	22 200 gal/ton	700 gal/ton	21.600 gal/ton
ndustrial gases	gal/1000 cu ft industrial gases	636 gal/mcf	226 gal/mof	31 gal/mcf	193 gal/mc
Inorganic pigments	gal/ton inorganic pigments	97 800 gal/ton	49 400 gal/ton	1600 gal/ton	47 800 gal/ton
Industrial inorganic chemicals	gal/ton chemicals 100 percent basis	14 500 gal/ton	4750 gal/ton	470 gal/ton	4300 gal/ton
Plastic materials and resins	gal/lb plastic	24 gal/lb	6.7 gal/lb	0.6 gal/lb	6.1 gal/lb
Synthetic rubber	gal/lb synthetic rubber	55 gal/lb	6.5 gal/lb	1.4 gal/lb	5.1 gal/lb
Cellulosic man-made fibers	gal/lb fibers	231 gal/lb	68 gal/lb	4.6 gal/lb	63 gal/lb
Organic fibers, noncellulosic	gal/lb fibers	101 gal/lb	38 gal/lb	1.1 gal/lb	37 gal/lb
Paints and pigments	gal/gal paint	13 gal/gal.	7.8 gal/gal	0.4 gal/gal	7.4 gal/gal
Industrial organic chemicals	gal/ton chemical building blocks	125 000 gal/ton	54 500 gal/ton	2800 gal/ton	51 700 gal/ton
Nitrogenous fertilizers	gal/ton fertilizer	28 506 gal/ton	4001 gal/ton	701 gal/ton	3299 gal/ton
Phosphatic fertilizers	gal/ton fertilizer	35 602 gal/ton	8461 gal/ton	1277 gal/ton	7184 gal/ton
Carbon black	gal/lb carbon black	4.6 gal/lb	3.9 gal/lb	0.9 gal/lb	3.1 gal/lb
Petroleum refining	gal/barrel crude oil input	1851 gal/bbl	289 gal/bbl	28 gal/bbl	261 gal/bbl
Tires and inner tubes	gal/tire car and truck tires	518 gal/tire	153 gal/tire	14 gal/tire	139 gal/tire
Hydraulic coment	gal/ton cement	1360 gal/ton	830 gal/ton	150 gal/ton	680 gal/ton
Steel	gal/ton steel net production	62 600 gal/ton	38 200 gal/ton	1400 gal/ton	36 800 gal/ton
ron and steel foundries	gal/ton ferrous castings	12 400 gal/ton	3030 gel/ton	260 gal/ton	2760 gal/ten
Primary copper	gal/lb copper	53 gal/lb	17 gal/lb	4.1 gal/lb	13 gal/lb
Primary aluminum	gal/lb aluminum	49 gal/lb	12 gal/lb	0.2 gal/lb	11.8 gal/lb
Automobiles	gal/car domestic automobiles	36 500 gal/car	11 464 gal/car	649 gal/car	10.814 gal/car

TABLE 4Water Use Versus Industrial Units of Production

navigable waterways, because of the competitive cost of barge transportation and the large volumes of water needed in steelmaking.

Applications of Water by Industry

Table 2 shows the different industrial uses of water. The table deals with the three broadest and most commonly used classifications: noncontact cooling, process and related uses, and sanitary and miscellaneous uses.

Noncontact cooling is the largest water use for the manufacturing sector as a whole. In this application water is separated from the material being cooled by heat exchanger surfaces. The most common noncontact cooling uses are equipment cooling, process temperature control, steam electric power condensing, and air conditioning.

Process uses include a variety of applications where water comes in contact with process materials or waste products, or is incorporated in the product. The most common process applications are inclusion in food and beverages, slurrying, paper forming, bleaching, dissolving, rinsing, scalding, fume scrubbing, spray cooling, and barometric condensing. Included in this category is boiler feedwater, which is used to generate steam for process purposes or steam electric power generation.

The third category covers sanitary and miscellaneous uses, chiefly sanitary service water for the personal use of employees. It also includes water for plant cleanup, groundskeeping, firefighting, and dust control.

The relative importance of the different water uses varies considerably among industries. Cooling water is the dominant use in the petroleum refining and chemical industries, while process uses are more important in the paper and food processing industries. The paper industry is by far the largest user of process water, accounting for more than half of its total on a gross use basis. Sanitary uses of water are relatively minor except in the food processing industries, which have special sanitary requirements and are generally labor intensive.

Most "dry" industries use water chiefly for air conditioning and sanitary service. Sanitary service requirements rarely exceed 1 kL/day (300 gpd) per employee, and average about 340 L/day (90 gpd) for all manufacturing. Air conditioning is the largest water use in such dry industries as tobacco, instruments, and machinery. Water in evaporative air conditioning systems is usually very easy to recycle, and most such systems are designed to recycle the water twenty to 50 times. In situations where water is especially short, industries have the option of using dry heat exchangers or vapor compression air conditioners, both of which are more costly and energy intensive for commercial-sized applications.

The "wet" industries are for the most part those that convert raw materials into intermediate industrial goods. They are often termed heavy industries or smokestack industries. Most of these industries are capital intensive and energy intensive, rather than labor intensive.

While these plants are not especially labor intensive in themselves, they provide an important industrial base for the community. They function both as markets

JA

an

to

na

se

se

si

m

CC

th

h£

in

di

"g

as

wi

W

av

aγ

Water Use Versus Standardized Units of Production Consumption by Unit of Production Discharge by Unit of Gross Water Intake Used by Unit of Production by Unit of Industry Parameters of Water Use Production Production Meatpacking Poultry dressing gal/ton carcass weight 7194 gal/ton 4331 gal/ton 78 gal/ton 4253 gal/ton gal/ton ready-to-cook weight 7369 gal/ton 6542 gal/ton 296 gal/ton 6246 gal/ton Dairy products 1692 gal/ton 9 700 gal/ton 1035 gal/ton 9400 gal/ton 63 gal/ton 850 gal/ton gal/ton milk processed 964 gal/ton Canned fruits and vegetables Frozen fruits and vegetables gal/ton vegetables canned 19 700 8550 gal/ton gal/ton vegetables frozen 22 500 gal/ton 14 100 gal/fon 300 gal/ton 13 800 gal/ton gal/ton corn ground 14 869 Wet corn milling gal/ton 7988 gal/ton 643 gal/fon 7345 gal/ton Cane sugar gal/ton cane sugar 944 gal/ton 386 gal/ton 28 102 gal/ton 18 256 gal/ton 17 312 gal/ton gal/ton beet sugar gal/gal beer and malt liquor Beet sugar 33 145 gal/ton 11 118 gal/ton 10731 gal/ton Malt beverage 14 gal/gal gal/gal 49 gal/gal 3 11 gal/gal Textile mills gal/ton textile fiber input 69 808 gal/ton 30 016 gal/ton 3008 gal/ton 27 008 gal/ton Sawmille gal/bd ft lumber 5.4 gal/bd ft 3.9 gal/bd ft 0.63 gal/bd ft 1178 gal/ton 2.7 gal/bd ft 36 193 gal/ton Pulp and paper mills 37 971 gal/ton gal/ton paper 130 047 gal/ton Paper converting Alkalis and chlorine gal/ton paper converted gal/ton chlorine 3588 6584 gal/ton 3861 gal/ton 273 gal/ton gal/ton 29 840 gal/ton 676 gal/ton 780 gal/ton 22 302 gal/ton 21 626 gal/ton Industrial gases gal/ton weight of gas 18 080 gal/ton 5700 gal/ton 4900 gal/ton Industrial gases Inorganic pigments Industrial inorganic chemicals Plastic materials and resins gal/ton pigments 97 800 gal/ton 49 400 gal/ton 1600 gal/ton 47 800 gal/ton 470 gal/ion 1078 gal/ion gal/ton chemical products 14 500 gal/ton 4700 gal/ton 4300 gal/ton gal/ton plastles 47 061 gal/ton 13 338 gal/ton 12 278 gal/ton Synthetic rubber gal/ton synthetic rubber 110 600 gal/ton 13 200 gal/ton 2800 gal/ton 10 979 gal/ton Cellulosic man-made fibers gal/ton fibers 462 230 gal/ton 135 100 gal/ton 9200 gal/ton 125 846 gal/ton Organic fibers, noncellulosic gal/ton fibers 202 123 gal/ton 76.523 gal/ton 2159 gal/ton 74 369 gal/ton gal/gal paint gal/ton chemical building blocks Paints and pigments 13.2 gal/gal 7.8 gal/gal 54.500 gal/ton 0.4 gal/gal 2800 gal/ton 7.4 gal/gal Industrial organic chemicals Nitrogenous fertilizers 124 700 gal/ton 51 700 gal/ton 4001 gal/ton 8461 gal/ton gal/ton gal/ton fertilizer 28 506 gal/ton 3299 gal/ton 7184 gal/ton 701 Phosphatic fertilizers gal/ton fertilizer 35 602 gal/ton 1277 gal/ton Carbon black gal/ton gal/ton carbon black 9200 gal/ton 7885 gal/ton 6.9 gal/gal 1771 gal/ton 0.7 gal/gal 8114 gal/gal crude petroleum input gal/tire car and truck tires Petroleum refining 6.2 gal/gal 44 gal/gal Tires and inner tubes 518 gal/tire 153 gal/tire 831 gal/ton 14 gal/tire 139 gal/tire gal/ton Hydraulic cement gal/ton cement 1355 gal/ton 62 601 gal/ton gal/ton 146 gal/ton gal/ton steel not tons 38 200 gal/ton 1400 gal/ton 36 800 gal/ton fron and steel foundries 2764 gal/ton 26 000 gal/ton gal/ton ferrous castings 12 407 gal/ton 3024 gal/ton 260 gal/ton Primary copper Primary aluminum gal/ton copper 106 000 gal/ton 34 000 gal/ton 8200 gal/ton gal/ton gal/ton aluminum 98 800 gal/ton 23 900 gal/ton 381 23 500 gal/ton Automobiles gal/car automobiles 36 500 gal/car 11 464 gal/car 649 gal/car 10 814 gal/car

TABLE 5

and suppliers for many other businesses. Since access to markets and suppliers is among the chief determinants of new plant location, these heavy industries serve to support a number of light industries and services.

Many environmentalists still harbor a lingering aversion to certain water intensive industries (such as steel mills, refineries, and paper mills). Because of pollution control laws and major efforts by industries to improve their image, these plants are becoming much more harmonious with their surroundings. Water quality improvements are dramatic as industries upgrade discharge treatment and recycle more wastewater. New "greenfield" plants are becoming especially attractive as advanced pollution control technology is combined with careful landscaping and handsome architecture.

Water Use Per Employee

ti-

in er

æ,

se

or

ve

or

li-

'e-

зе,

:C-

ch

:у. эl-

.re

In

.es

or

re

li-

ιat

ial

or

tre

an

ve

ial

ets

WA

Table 3 shows some of the variations by industry in average water use per employee. These are overall averages for each industry group and are shown only for purposes of comparison. Two different parameters of water use are intake and gross water use. Intake is the volume of water taken into the plant, either purchased from water utilities or self-supplied. Gross water use is the sum of the intake water plus the reused water, and is a measure of the total volume of intake that would have been required if water were used on a once-through basis.

It is readily apparent from Table 3 that some industry groups tend to require much more water per employee than others. For example, the apparel and furniture

JANUARY 1980

TABLE 6 Typical Water Uses in Paper Mills*

	Gros Water		Intak Requirer (Low Re	nent	Intake Requirement (High Reuse)	
Purpose	ML/day	mgd	ML/day	mgd	ML/doy	mgđ
Kraft pulping (process use) Kraft pulping (cooling system) Bleaching Paper forming (process system) Paper forming (cooling system) Electric power cooling† Net totals‡	118 44 140 129 14 51 499	32 12 38 35 4 14 135	51 44 70 44 14 • 51 225	14 12 19 12 4 14 61	22 1.5 18 22 0.7 1.8 44	6 0.4 5 6 0.2 0.5 12,1
*1000 ton per day integrated bleached †Condenser cooling requirements for a electric power needs ‡Intake net totals are less than the sun the wastewater from high quality uses	ı steam ele a of the in	ctric p dividu	al compon	ents b	ecause mu	

industries average about 380 L/day (100 gpd) per employee, while paper and petroleum refining require thousands of L/day per employee. For the most part the wet industries use water chiefly for industrial cooling and process applications, while the dry industries use water for air conditioning and sanitary service.

The relative importance of water can be circumvented by some industries in water-short areas by water recirculation. As shown in Table 3 the petroleum refining industry averages 0.6 ML/day (163 000 gpd) per employee of gross water use, yet withdraws only 0.1 ML/day (25 500 gpd) per employee. This works out to an industry-wide recycling rate of 6.4. Some petroleum refineries on the Great Plains and in California operate at recycling rates as high as 40. Since water in petroleum refining is used overwhelmingly for noncontact

K.L. KOLLAR & P. MACAULEY 7

а
tı
g b
iı
g
а
fe
te
y e:
2{
gı
0]
sł
w N
to
er
pl
CC
Wi CO
le
ex
inį
be
m
be
dif
inc
Cet
mc er
Wa
Poi
۲ روی
COL AVE
wit
tha
abl,
is (Alti
itly
mol
trea
is t redi
reat

	TABLE Water Intake Requirements: Average Pl		ecycling Plants		
		Inta	ke	Re	cycling Rate*
Industry	Parameters of Water Use	1973 Industry Average	BAT† With Maximum Feasible Recycling	1973 Industry Average	BAT† With Maximum Feasible Recycling
Meatpacking Poultry dressing Dairy products Canced fruits and vegetables Frozen fruits and vegetables Frozen fruits and vegetables Wet corn milling Cans sugar Beet sugar Beet sugar Malt beverages Textile mills Sawmills Pulp and paper mills Paper converting Atkalis and chlorine Industrial gasee Inorganic pigments Industrial inorganic chemicals Plastic materials and resins Synthetic rubber Cellulosic man-made fibers Organic fibers, noncellulosic Paints and pigments Industrial organic chemicals Nitrogenous fertilizers Phosphatic fertilizers Carbon black Retroleum refining Tires and inner tubes Hydraulic cement Steel Iron and steel foundries Primary copper Primary aluminum	gal/lb carcass weight gal/lb milk processed gal/lb milk processed gal/lb frozen product gal/lb frozen product gal/lb frozen product gal/lb care sugar gal/lb frozen sugar gal/lb frozen sugar gal/lb free consumpilon gal/lb free consumpilon gal/lb free consumpilon gal/lb free consumpilon gal/lb free consumpilon gal/lb frozen paper gal/lon paper converted gal/ton chlorine gal/lon longenic pigments gal/lon longenic pigments gal/lon chemicals 100 percent basis gal/lb frees gal/lb carbon black gal/lb carbon black gal/lb carbon black gal/lb care and truck tires gal/ton cerent gal/ton cerent gal/ton ferrous castings gal/lb copper gal/lb copper	2.2 gal/lb 10.3 gal/bird 0.52 gal/b 107 gal/case 7.1 gal/lb 223 gal/bu 18 250 gal/ton 11 100 gal/ton 420 gal/ton 3000 gal/ton 2200 gal/ton 2200 gal/ton 2200 gal/ton 2200 gal/ton 2200 gal/ton 49 400 gal/ton 4750 gal/ton 4750 gal/ton 6.7 gal/lb 6.6 gal/lb 38 gal/lb 38 gal/lb 38 gal/ton 4000 gal/ton 4000 gal/ton 4000 gal/ton 54 800 gal/ton 3.9 gal/ton 3.9 gal/ton 3.9 gal/ton 3.9 gal/ton 3.0	0.5 gal/lb 1.7 gal/star 0.5 gal/lb 1.7 gal/star 1.6 gal/lb 4.6 gal/lb 4.6 gal/lb 5.300 gal/ton 5.300 gal/ton 1.8 gal/lb 1.8 gal/lb 1.8 gal/lb 1.8 gal/lb 1.9 gal/ton 7.50 gal/ton 6.600 gal/ton 1.6 gal/lb 1.6 gal/lb 1.6 gal/lb 1.6 gal/lb 0.8 gal/gal 4.000 gal/ton 2.400 gal/ton 2.400 gal/ton 5.5 gal/lb 5.5 gal/lb 5.5 gal/ton 5.5 gal/ton 1.8 gal/ton 1.5 gal/ton 1.8 g	1.66 1.13 1.64 2.10 1.60 1.86 1.54 2.98 3.50 2.23 1.64 3.42 1.70 1.34 2.82 1.98 3.08 3.53 8.38 3.42 2.64 1.69 2.29 7.12 4.21 1.17 6.38 3.39 1.63 1.64 4.10	6.67 6.71 6.67 6.71 6.67 7.75 7.25 9.09 5.26 5.38 14.3 16.2 14.3 16.2 8.65 12.2 8.93 34.5 34.5 34.5 35.3 33.3 27.8 20.0 18.1 31.2 31.2 31.2 14.7 16.1 33.3 29.4 7.41 11.9 11.8 11.9 16.9 16.9
Automobiles	gal/car domestic automobiles	11 500 gal/car	2200 gal/car	3.18	16.9 16.3

*The recycling rate is obtained by dividing gross water use by intake. †Best available technology economically echievable as defined by Water Pollution Control Act amendments of 1972

cooling and condensing, it is relatively cost effective to recirculate the wastewater after it has been cooled.

Industrial Production Versus Water Usage

Table 4 relates water use to uniform production units for 34 water intensive manufacturing categories. These 34 industries account for 88 percent of all manufacturing water requirements. Good judgment should be exercised in interpreting these ratios, since they represent overall averages for these industries.

The physical production units shown in Table 4 are a diverse set of inputs and outputs peculiar to each industry. In some cases the production parameter is a unit of input, such as barrels of crude oil refined or number of chickens processed. In other cases a particular measure of output was used, such as automobiles assembled or pounds of meat packed. This approach was required to reflect industry practice.

For water resource planners it is interesting to compare water requirements by standarized production parameters. Table 5 shows the data presented in Table 4 in similar format, except that the water use ratios are expressed in a more uniform standardized form. All physical production units have been recalculated into either tons or gallons, except in cases where this would be totally inappropriate.

The descriptions of the industries in Tables 4 and 5 require proper interpretation. In addition to interindustry variations in water use, there are also many intra-industry variations. Even plants in the same industry can utilize a wide range of industrial processes

Industry	Gross Water Use*	Intake*	Mean Recy- cling Ratet	Highest Recy- cling Rate1	Tenth Highest Recy- cling Ratet	Twentieth Highest Recy- cling Rate†
Meat packing plants	49,732	20,335	2,45	7.05	2.41	1.85
Poultry dressing	3.473	1.990	1.75	4.28	1.30	1.14
Fluid milk	8.118	0.859	9.45	71.71	7,92	3,96
Canned fruit and vegetables	10,873	3,419	9.12	18.24	2.50	1.78
Frozen fruit and vegetables	17,353	9.259	1.87	7.13	1.97	1.89
Wet corn milling	53.986	32.109	1.68	11.91	2,31	1.11
Beet sugar	58.949	16.829	3.50	22,24	2.97	1.84
Malt liquors	64.350	12.675	5.08	10.00	2.85	1.11
Shortening and cooking oils	48.106	5.425	8.87	113.53	8.23	1.30
Cigarettes	60.765	2,292	26.51	33.39	15,31	1.11
Weaving mills, cotton	74.289	1.186	62.64	285.91	64.25	27.99
Weaving mills, synthetics	88.114	0.717	122.89	558.25	111.27	48.53
Weaving and finishing, wool	19.163	2.637	7.27	93.44	24.19	1.18
Pulp mills	713.440	208.179	3.43	7.57	3.84	1.41
Papermills, except building	723.008	71.057	10.18	76.54	8.96	6.06
paper		1.1.1.1.1	· ·		a statu	1
Paperboard mills	272.670	14.515	18.79	50.00	14.68	8.22
Alkalies and chlorine	198.798	87.167	2.28	25.11	1,79	1.12
Industrial gases	141.450	1.490	94.93	157.80	84.89	46,23
Cyclic intermediate and crudes	927,354	55.446	5.90	160.00	13.45	2,24
Inorganic pigments	120.387	50.222	2.40	15.22	1.53	1.11
Industrial organic chemicals	962.830	35,142	27.40	48.18	23.20	15.80
Industrial inorganic chemi-	505,919	16.670	30.35	70.95	30,10	28.81
çals			1.11		les de tr	
Plastic materials and resins	704.229	5.131	137.25	613.60	27.37	13.81
Cellulosic man-made fibers	209.801	46.088	4,36	20.83	4.30	1.37
Organic fibers, noncellulosic	392.335	151.969	2.58	28.06	2.82	1.16
Pharmaceutical preparations	70.621	15.385	4,59	104.73	7.36	1.11
Fertilizers	282,251	23.373	12.08	90.60	9,72	2.45
Petroleum refining	2026.521	30.221	67.06	251.05	44.08	34.36
Cement, hydraulic	20.863	4.320	4.83	97.35	2,58	1.77
Blast furnaces and steel mills		29.050	13,58	95.13	18.66	6.76
Electrometallurgical products	22.732	1.827	12.44	65.81	25.64	5.07
Gray iron foundaries	35.396	10.254	3.45	15.23	2.86	1.82
Primary copper	78.473	33,218	2.36	9.85	2.23	1,18
Primary aluminum	65.519	15.723	4.17	10.10	3.50	1.66
*Billions of gallons per year; †The recycling rate is obtained			uratan un	hu intaka		- *

TABLE 8 Water Recycling in the Twenty Plants with the Highest Rates in 34 Major Water-Using Industries, 1970

The recycling rate is obtained by dividing gross water use by intake.

8 MANAGEMENT AND OPERATIONS

JOURNAL AWWA

trea

Poll

thar

that

final

be r

such

indu

tene

from

ably

Ť. abl€

JANU

2. The Water Encyclopedia, Second Edition. van der Leeden, Frits. Troise, Fred L. Todd, David Keith. Lewis Publishers. 1983 (Water Encyclopedia 1983).

duction in the United States

able 7G.78 Water Ose Ver	rsus Industrial Units of Productio	Gross Water Used by Unit of Production	Intake by Unit of Production	Consumption by Unit of Production	Discharge by Unit of Production
ndustry	gal/lb carcass weight	3.6 gal/lb	2.2 gal/lb 10.3 gal/bird	0.1 gal/lb 0.5 gal/bird	2.1 gal/lb 9.8 gal/bird
leatpacking	gal/bird poultry slaughter	11.6 gal/bird	0.52 gal/lb	0.03 gal/lb	0.48 gal/lb
outry dressing	gal/lb milk processed	0.85 gal/lb	U	10 gal/case	98 cal/case
airy products	gal/case 24-303 cans eq	225 gal/case	107 gal/case	0,2 gal/lb	6.9/gal/lb
anned fruits and vegetables	gal/lb frozen product	11.2 gal/lb	7,1 gal/lb	18 gal/bu	205 gal/bu
rozen fruits and vegetables	gal/lb corn grind	416 gal/bu	223 gal/bu	950 gal/ton	17,300 gal/ton
Vet corn milling	gal/ton cane sugar	28,100 gal/ton	18,250 gal/ton	390 gal/ton	10,700 gal/ton
ane sugar	gai/ton carle sugar	33,100 gal/ton	11,100 gal/ton		330 gal/bbl
Beet sugar	gal/ton beet sugar	1,500 gal/bbl	420 gal/bbl	90 gal/bbl	12.8 gal/lb
Malt beverages	gal/barrel malt beverage	34 gal/lb	14 gal/lb	1.4 gal/lb	2.7 gal/bd ft
rextile mills	gal/ib fiber consumption	5.4 gal/bd ft	3.3 gal/bd ft	0.6 gal/bd ft	36,200 gal/ton
Sawmills	gal/bd ft lumber	130,000 gal/ton	38,000 gal/ton	1,800 gal/ton	3,600 gal/ton
oulp and paper mills	gai/ton pulp and paper	6,600 gal/ton	3,900 gal/ton	270 gal/ton	
Paper converting	gal/ton paper converted	29,800 gal/ton	22,200 gal/ton	700 gal/ton	21,600 gal/ton
Alkalis and chiorine	gal/ton chlorine		226 gal/mcf	31 gai/mcf	193 gal/mcf
	gal/1,000 cu ft industrial gases	636 gai/mcf	49,400 gal/ton	1,600 gal/ton	47,800 gal/ton
Industrial gases	dal/ton inorganic pigments	97,800 gal/ton	4,750 gai/ton	470 gal/ton	4,300 gal/ton
inorganic pigments	gal/ton chemicals 100 percent basic	14,500 gal/ton	6.7 gal/lb	0,6 gal/lb	6.1 gal/lb
Industrial inorganic chemicals	gal/lb plastic	24 gal/lb	6.5 gal/lb	1.4 gal/lb	5,1 gal/lb
Plastic materials and resins	gal/b synthetic rubber	55 gal/1b		4.6 gal/lb	63 gai/lb
Synthetic rubber	gal/lb fibers	231 gal/lb	68 gal/ib	1.1 gal/lb	37 gai/lb
Cellulosic man-made fibers	gal/ib fibers	101 gal/lb	38 gal/lb	0.4 gal/gal	7,4 gal/gal
Organic fibers, noncellulosic		13 gal/gal	7.8 gal/gal	2,800 gal/ton	51,700 gal/to
Paints and ploments	gal/gal paint gal/ton chemical building blocks	125,000 gal/ton	54,500 gal/ton		3,299 gal/tor
Industrial organic chemicals	gai/ton chemical building blocks	28,506 gal/ton	4,001 gal/ton	701 gal/ton	7,184 gal/tor
Nitrogenous fertilizers	gal/ton fertilizer	35,602 gal/ton	8,461 gal/ton	1,277 gal/ton	3.1 gal/lb
Phosphatic fertilizers	gal/ton fertilizer	4.6 gal/lb	3.9 gai/lb	0.9 gal/lb	261 gai/bbl
Carbon black	gai/lb carbon black	1,851 gal/bbl	289 gal/bbl	28 gal/bbl	139 gal/tire
Petroleum refining	gal/barrel crude oil input	518 gal/tire	153 gal/tire	14 gal/tire	680 gal/ton
Tires and inner tubes	gal/tire car and truck tires	1,360 gal/ton	830 gal/ton	150 gal/ton	36,800 gal/to
Hydraulic cement	gal/ton cement	62,600 gal/ton	38,200 gal/ton	1,400 gal/ion	
Steel	gal/ton steel net production	12,400 gal/ton	3,030 gal/ton	260 gal/ton	2,760 gal/to
Iron and steel foundries	gal/ton ferrous castings		17 gal/lb	4,1 gal/lb	13 gal/lb
	gal/lb copper	53 gal/lb	12 gal/lb	0,2 gal/lb	11.8 gal/lb
Primary copper	nai/lb aluminum	49 gal/lb	11,464 gal/ca		10,814 gal/c
Primary aluminum Automobiles	20 Anno atta automobile 2	36,500 gal/car			

Source: From Koliar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., no. 1. Copyright AWWA. Reprinted with permission.

THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES

. ! !

na en mana ana angles en degle an talimit da Mana angles angles angles ang

7-144

The verter list verter list verter ve					Discharge hv
Table / G./ 9 Water 000	Water Use Versus Juanteen Annual Mater	Gross Water		Consumption	Unit of
		ď	Intake by Unit of Production	by unit of production	Production
	parameters of Water Use	Production		to adition	4,253 gal/ton
Industry		7 194 gai/ton	4,331 gal/ton	10 yan wu	6.246 cal/ton
	dal/lb carcass weight	7 389 dai/ton	6,542 gal/ton		964 gal/ton
Meatpacking	ral/ton ready-to-cook weight	4 ROO ARIAD	1,035 gal/ton	63 gai/tui	8.550 ral/ton
Poultry dressing	del/lb milk processed	10,000 guilton	9,400 gal/ton	850 gal/ton	13 RÚO nal/ton
Dairy products	althon vegetables canned	eo eon del/fon	14,100 gal/ton	300 gal/ton	7 345 califon
Canned fruits and vegetables	dalAnn vedetables frozen	22,500 944 101	7.988 gal/ton	643 gal/ton	17 310 Barron
Frozen fruits and vegetables		14,809 gai/wi	18 256 dal/ton	944 gal/ton	10,012 gailou
Wet corn milling		28,102 gal/tun	+1 118 gal/ton	386 gal/ton	10,761 garton
Cane sugar		33,145 gai/ton	14 ael/ael	3 gal/gai	11 gal/gai
Beet sudar	galvon beer area.	49 gal/gal	-+ 90 mg/hou	3.008 gal/ton	27,008 gal/ton
Malt heverades	gal/beet allounder induction	69,808 gal/ton		n.63 gal/bd ft	2.7 gal/bd ft
Tootile mills	gal/ton textile line: "Per	5.4 gal/bd ft		1 178 dal/ton	36,193 gal/ton
Countills	gal/bd ft lumber	130,047 gal/ton	37,971 gai/uni	973 nal/ton	3,588 gal/ton
Dammer mills	gal/ton paper	6,584 gal/ton	3,867 gai/10/1	e76 cal/ton	21,626 gal/ton
rup and part boost convertind	gal/ton paper converted	29,840 gaiñon	22,302 gavron	780 dal/ton	4,900 gal/ton
rajet conversa Anote and chlorine	gal/ton chlorine	16,080 gal/ton	5,700 gal/ton	s ann nalfron	47,800 gal/ton
Alkalis and Crosses Lodi intrial (28565	gal/ton weight of gas	97,800 gal/ton	49,400 gal/ton	470 nalifión	4,300 gai/ton
	gal/ton pigments	14,500 gal/ton	4,700 gal/ton		12,278 gal/ton
anolganic pignore	gal/ton chemical products	47.061 gal/ton	13,338 gal/ton		10.373 gal/ton
Industriat Invigation of the second	gal/ton plastics	110.600 gal/ton	13,200 gal/ton	2,800 ganton	125,846 gal/ton
	gal/ton synthetic rubber	462,230 gal/ton	135,100 gal/ton	9,200 garton	74.369 gal/ton
Syntheuc tuouse	gal/ton fibers	one 123 dal/ton	76,523 gal/ton	2,163 gavior	7.4 gal/gal
	gal/ton fibers	13.2 oal/gal	7.8 gal/gal	0.4 gavgar	51.700 gal/ton
	gal/gal paint	124.700 gal/ton	54,500 gal/ton	2,800 ganton	3.299 gal/ton
Paints and promised chemicals	gal/ton chemical building piocks	og 506 dal/ton	4,001 gal/ton		7.184 gal/ton
Industrial organic organic	gal/ton fertilizer	as 602 dal/ton	8,461 gal/ton	1,277 gal/tor	6.114 cal/ton
	gal/ton fertilizer	o 200 caliton	7,885 gal/ton		6.2 nal/oal
Phosphatic lei uitzete	dal/ton carbon black	lenier ht	6.9 gal/gal	0.7 gal/gal	130 nal/hire
Carbon black	gai/gal crude petroleum input	erto califiro	153 gal/tire	14 gal/tire	BR nal/ton
petroleum relining	gentry car and truck tires		831 dal/ton	146 gal/ton	
Tires and inner tubes	cal/ton cement	1,355 gavun 20 601 201400	38.200 gal/ton	1,400 gal/ton	30,000 yan tan
Hydraulic cement	delification steel net tons	100,200 100,200 100,200		260 gal/ton	04/00 000 00
Steel	ralifion ferrous castings	12,4U/ gai/t01		8,200 gal/ton	26,000 gar ton
fron and steel foundries	gatter coper	100,000 year roi		381 gal/ton	zo,oou yaara
Primary copper	dal/ton aluminum	96,300 gal/tori	•	649 gal/car	10,014 gara
Primary aluminum	alicar automobiles	20°200 กิด:			areter Morks ASS
A+itomohiles	non non				

Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirer vol. 72, no. 1. Copyright AWWA. Reprinted with permission.

THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES

Table 7G.81 Water Intake Requirements in the United States --- Average Plants Versus High Recycling Plants

7.41 16.3 6°11 11.5 6.11 16.9 16.1 33.3 29.4 8.93 31.2 31.2 33.3 33.3 20.0 31,2 14.7 Recycling 34.5 27.8 16.1 BAT^b with 7.25 9.09 5.26 6.85 Maximum Feasible 5.38 34.5 14.3 18.2 12.2 6.67 7.75 6.67 6.71 Recycling Rate^a 1.63 1.64 4.10 1973 Industry 2.64 1.69 2.29 7.12 4.21 1.17 6.38 3.39 3.12 4.11 3.18 1.70 1.34 2.82 1.98 3.08 8.38 3.42 3.53 Average 1.60 64 3.42 2.98 2.23 1.13 2.10 1.86 1.54 1.66 2,200 gai/cat 2,400 gal/ton 0.3 gal/lb ,080 gal/ton 5,300 gal/ton 4.5 gal/lb 4,000 gal/ton 180 gal/ton 2.9 gal/lb 6,100 gal/ton 18 gal/tire 10,700 gal/ton 750 gal/ton 860 gal/ton 1.6 gal/lb 8.4 gal/lb 5.0 gal/lb 900 gal/ton 55 gal/bbl 0.8 qal/gal 6,200 gal/ton 470 gal/ton 5,300 gal/ton 105 gal/bbl 18 gal/mcf 0.7 gal/lb 46 gal/bu 1.8 gal/lb 1.7 gal/bird 0.13 gal/lb 29 gal/case 0.8 gal/ft Recycling 1.6 gal/lb Maximum 0.5 gal/lb BAT^b with Feasible 38,200 gal/ton 11,500 gal/car 3.030 gal/ton 54,500 gal/ton 8.500 gal/ton 12 gai/lb 49,400 gal/ton 4,000 gal/ton 289 gal/bbl 153 gal/tire 830 gal/ton 68 gal/lb 38 gal/lb 17 gaVlb 22,200 gal/ton 4,750 gal/ton 6.5 gal/lb 38,000 gal/ton 3,900 gal/ton 7.8 gal/gai 3.9 gal/lb 226 gal/mcf 18,250 gal/ton 11,100 gal/ton 3.3 gal/ft 6.7 gal/lb 107 gal/case 14 gal/lb 1973 Industry 420 gal/bbl 10.3 gal/bird 7.1 gal/lb 223 gal/bu 0.52 gal/lb 2.2 gal/lb Average gal/ton chemicals 100 percent basis gal/ton chemical building blocks gal/car domestic automobiles gal/1,000 cu ft industrial gases Parameters of Water Use gal/ton steel net production gal/tire car and truck tires gal/ton inorganic pigments gal/barrel crude oil input gai/ton ferrous castings gal/case 24-303 cans ed gal/barrel malt beverage gal/ton paper converted gal/bird poultry slaughter gai/ib fiber consumption gal/lb synthetic rubber gal/ton pulp and paper gal/lb carbon black gal/lb carcass weight gal/1b milk processed gal/lb frozen product gal/lb aluminum gal/ton cane sugar gal/ton cement gal/ton beet sugar gal/ton fertilizer gal/ton fertilizer gal/bu corn grind gal/bd ft lumber gal/lb copper gal/ton chlorine gal/gal paint gal/lb plastic gal/lb fibers gal/lb fibers Industrial inorganic chemicals Industrial organic chemicals Organic fibers, noncellulosic Plastic materials and resins Cellulosic man-made fibers Canned fruits and vegetables Frozen fruits and vegetables Iron and steel foundries Nitrogenous fertilizers fires and inner tubes Phosphatic fertilizers Paints and pigments Primary aluminum Petroleum refining Pulp and paper mills Inorganic pigments Hydraulic cement Alkalis and chlorine Primary copper Synthetic rubber Paper converting Industrial gases Carbon black Poultry dressing Wet corn milling Malt beverages Dairy products rextite mills Meatpacking Cane sugar Seet sugar Sawmills Steel Industry

From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, *J. Am. Water Works* Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission. ^a The recycling rate is obtained by dividing gross water use by intake.
^b Best available technology economically achievable as defined by Water Pollution Control Act amendments of 1972.

Source:

7-146

Table 7G.82 Water Recycling in the 20 Plants with the High in the United States, 1970

1	Gross Water Use ^a	Intake ^a	Me.			ø
ndustry						BLV-L
Meat packing plants	49.732	20.335	2.			× ×
Poultry dressing	3.473	1,990				
cluid milk	8,118	0.859	9.45			
Canned fruit and vegetables	` 10.673	3.419	3.12			
Frozen fruit and vegetables	17.353	9.259	1.87			
Wet com milling	53,986	32,109	1,68			
Beet sugar	58,949	16.829	3.50			
Malt liquors	64.350	12.675	5.08		8.,	
Shortening and cooking oils	48,106	5.425	8,87	115	15.3,	
Cigarettes	60,765	2,292	26.51	33.5	64.25	. ı ∠7,99
Weaving mills, cotton	74.289	1,186	62.64	285.31	111.27	48.53
Weaving mills, synthetics	88.114	0.717	122.89	558.25	24.19	1.18
Weaving and finishing, wool	19.163	2.637	7.27	93.44	3.84	1.41
Pulp mills	713,440	208.179	3,43	7.57		6.06
Papermills, except building	723.008	71.057	10.18	76.54	8.96	
paper	272.670	14.515	18.79	50,00	14.68	8.22
Paperboard mills	198.798	87,167	2.28	25,11	1.79	1.12
Alkalis and chlorine	141.450	1.490	94,93	157.80	84,83	46.23
Industrial gases	327.354	55.446	5,90	160.00	13.45	2.24
Cyclic intermediate and	021.004	001110				
crudes	120.387	50.222	2,40	15.22	1.63	1.11
Inorganic pigments	962.830	35.142	27,40	48.18	23,20	15,80
Industrial organic chemicals	505,919	16,670	30.35	70.95	30.10	23.81
Industrial inorganic	000,818	10.070				
chemicais	704.229	5,131	137.25	613,60	27.37	13.81
Plastic materials and resins	209,801	48.088	4.36	20.83	4.30	1.37
Cellulosic man-made fibers		151.969	2.58	28.06	2.82	1.16
Organic fibers, nonceilulosic	392,335	15.385	4.59	104.73	7.36	1.11
Pharmaceutical	70.621	10,000	4.00	101110		
preparations	000 051	00.070	12.08	90.60	9,72	2.45
Fertilizers	282,251	23.373	67.06	251.05	44.08	34.36
Petroleum refining	2,026.521	30.221	4.83	97,35	2.58	1.77
Cement, hydraulic	20.868	4.320		97.38	18.66	6.76
Blast furnaces and steel	394.549	29.050	13,58	80.10	10100	511 0
mills			10.11	CE OI	25.64	5.07
Electrometallurgical	22,732	1.827	12.44	65.81	20.04	5.07
products				45.00	2,86	1,82
Gray iron foundaries	35,396	10.254	3.45	15.23	2,86	1.18
Primary copper	78.473	33.218	2,36	9.85		1.66
Primary aluminum	65.519	15.723	4.17	10.10	3,50	1.00

7-181

a b

^a Billions of gallons per year: 1 bil gal=3.7 GL.
 ^b The recycling rate is obtained by dividing gross water use by intake.
 Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.

SECTION 7H INDUSTRIAL WATER USE --- WORLD

able 7H.89 Water Intal	Number of	Processing	Cooling, Condensing, and Steam	Sanitary Services	Other	Total Intake	%
ndustry Group Food Beverages Rubber products Plastic products Primary textiles Textile products Wood products Paper + allied products Primary metals Fabricated metals	Plants 1,264 121 96 486 87 47 454 292 217 543	128.6 38.4 3.6 5.9 15.5 12.8 9.7 1,847.5 557.6 11.3	107.3 29.0 7.7 5.9 64.6 1.8 24.4 508.3 830.1 6.4 25.0	27.8 4.6 0.9 1.3 6.5 0.4 2.2 49.1 21.5 1.6 11.1	5.9 1.1 0.2 0.0 0.1 8.8 16.4 13.8 0.1 0.4	269.5 73.1 12.3 13.3 86.7 15.0 45.1 2,421.3 1,423.0 19.4 65.0	4.5 1.2 0.2 1.4 0.2 0.7 40. 23. 0. 1.
Transportation equipment	547	28.5 21.6	44.9	3.5	32.1	102.1	1
Nonmetallic mineral products	726	34.4	324.6	4.9	6.6	370.5	6
Petroleum + coal products		220.9	879.8	10.9	9.7	1,121.3	18
Chemicals + chemical products Total	.5,506	2,936.3 48.6	2,859.6 47. 4	146.3 2.4	95.3 1.6	6,037.5 100.0 D., Burke, D.W., Ville	100

Source: From Scharf, D., Burke, D., Villeneuve, and Leigh, L., 1996. Industrial Water Use 1996, Scharf, D., Burke, D.W., Villeneuve, M., and Leigh, L., Environmental Economics Branch, Environment Canada, 2002. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.

able 7H.90 Water	Intake in w	Fresh Water							
		Public		If-Supplied		ę	Self-Supplied		Total Intake
	Number	Supplied	Surface	Ground	Other	Ground	Tidewater	Other	
ndustry Group Food Beverages Rubber products Plastic products Primary textiles Textile products Wood products Paper +- allied	of Plants 1,254 121 96 482 87 47 454 292	Municipal 118.7 49.0 8.2 7.0 34.6 13.1 18.8 70.4	61.8 16.1 1.3 4.8 51.4 0.0 16.4 2,240.0	44.6 8.1 2.4 1.2 0.1 2.0 9.5 65.8	3.4 0.0 0.5 0.1 0.0 0.0 0.2 45.3	1.9 0.0 0.1 0.1 0.0 0.1 0.0 0.1	38.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0	0.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0	269.3 73.1 12.3 13.2 86.7 15.0 45.1 2,421.3 1,423.0
products Primary metals Fabricated metals		61.2 12.1 59.5	1,314,0 6.8 4.7	22.9 0.5 0.7	12.8 0.0 0.0	0.0 0.0 0.0	12.1 0.0 0.0	0.0 0.0 0.0	19.4 65.0
Transportation equipment Non-metallic	547 725	19.5	36.3	9.9	36.0	0.0	0.4	0.0	102.1
mineral products	07	11.4	249.0	2.5	1.3	0.0	102.1	4.2	370.
Petroleum + coal products Chemicals +	599		940.1	7.2	67.2	0.1	40.5	0.1	1,121
chemical products Total	5,49	- 40 0	4,942.5 81 . 9		166.8 2. 8		3.2	5.0 0.1	6,037 100

Source: From Scharf, D., Burke, D., Villeneuve, and Leigh, L., 1996. Industrial Water Use 1996, Scharf, D., Burke, D.W., Villeneuve, M., and Leigh, L., Environmental Economics Branch, Environment Canada, 2002. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.

通知時間客がありた。 前日前日前客です。 市内 のないのであってい

> というない A CONTRACTOR

ble 7H.93 Water Requirements for Selected Indu	Unit of Product	Water Required per Unit (L)
	(Ton, Except as Specified)	per onic ()
dustry, Product, and Country		4 100
I Products	•	1,100 2,1004,200
		2,100-4,200
hand United States	· · ·	
wood CVDrus		
canned toou		400
zolaium		1,500
		15,000
Fish, preserved		8,00080,000
Fruit		
Vegetables Canada		10,00050,000
Fruits and vegetables ^a		2,800
O metter		16,000
Chrue/fomato luice		10,000-15,000
Granefruit Sections		30,000
Peaches/pears"		2,000
Granes ^a		21,000
Tomatoes, Whole		10,000
Tomato paste		16,000
Peas ^a		30,000
Carrots ^a		_
Spinach ^a		4,000
Israel Citrus fruits ^a	Ton of raw citrus	10,000–15,000
Vegetables ^a		01.000
United States		21,200
Apricots		20,500
Asparagus		9,300 69,800
Beans, green		7,000
Beans, lima		2,800
Beets, corn and peas		15,600
Grapefruit juice		18,100
Grapefruit sections		9,300
Peaches and pears		7,000
Pork and beans	· · ·	950
Pumpkin and squash		49,400
Sauerkraut Spinach		34,800
Succotash		20,500
Tomato products		2,200
Townships whole		24,000
Industry average, fruits, vegetables, and juice	s (1965)"	500
Meat	Ton of carcass	500
Meat freezing, Cyprus ^a	Ton of calcase	3,0008,600 23,000
Meat freezing, New Zealand	Ton of prepared meat	8,80034,000
Meat packing, United States ^a	Ton of carcass	200
Meat packing, Canada ^a	Ton of prepared meat	20,000-35,000
Meat products, Belgium		25,000
Sausage factory, Finland		4,000-9,000
Sausage factory, Cyprus ^a	Ton, live weight	10,00
Slaughtering, Finland	Ton of carcass	10,00
Slaughtering, Cyprus ^a Meat preserving, Israel ^a	Ton of prepared meat	
Fish		30,000300,00
Fresh and frozen fish, Canada ^a		58,00
Canned fish, Canada ^a		16,00020,00
Canning and preserving fish, Israel ^a	Ton of raw fish	
Poultry	T	6,00043,00
Poultry, Canada ^a	Ton Ton of dressed chicken	33,00
Chickens, Israel ^a		
Chickens, United States ^a	Per bird Per bird	
Turkeys, United States ^a	Let hind	
Milk and Milk Products		20,0
Butter		and the second
New Zealand ^a		(Continue

7-161

.

•

Water Required per Unit (L)	10,000	2,000 27,500	7,000 2,000–5,000 2,700 2,000–4,000 3,000	45,000 200,000 10,000 10,000 20,000 20,000	4,800-15,800 10,000-20,000 10,900	10,400–14,000 14,900 1,800 10,500–12,500 3,200–8,300 6,000	7,000-20,000 22,000-30,000 10,000-20,000 10,000-20,000 6,000-10,000 5,600-10,000 2,600-76,000 30,000 15,000-17,000 55,100-17,000 55,100-17,000 56,000-17,000 56,000-17,000 56,000-17,000 56,000-15,000 10,000-10,000 10,000-10,000 10,000-10,000 10,000-10,000 10,000-10,000 10,000-10,000 10,000-10,000 10,000 10,000-10,000 10,0000 10,00
Unit of Product	(Ton, Except as Specifieu)		1,000 L	•	Ton of sugar beets Ton of sugar beets	Ton of sugar beets Ton of sugar beets (range)	Kiloliter Kiloli
7-162 Table 7H.93 (Continued)	Industry, Product, and Country	<i>Cheese</i> Cyprus ^e Now Zealand ^e	uew zeatorise United States ^a <i>Milk</i> Belgium Finland Israel ^a	Sweden United States ^a <i>Milk powder</i> New Zeatland ^a South Africa Whey, United States ^a Whey, United States ^a Dairy products, general, Canada ^a	roe crean, onco occord Yogurt, Cyprus ^a Denmark ^a	Finland France ^a Germany, Federal ^a Great Britain ^a Israel ^a Italy ^a Republic of China ^a	United States Beverages Beer Belgium Canada Cyprus Finland France ^a Israel ^a Israel ^a United Kingdom ^a United Kingdom ^a United Kingdom ^a Israel ^a Israel ^a Israel ^a Israel ^a Nine, Israel ^a Wine, Israel ^a

WA

» |17 |14

mon. Z Z LL LL Z Z Z Z Z Z

3. US EPA, Technology Transfer Seminar Publication Pollution Abatement in the Fruit and Vegetable Industry. Volume 2: In Plant Control of Process Wastewater. July 1977. (EPA 1977)

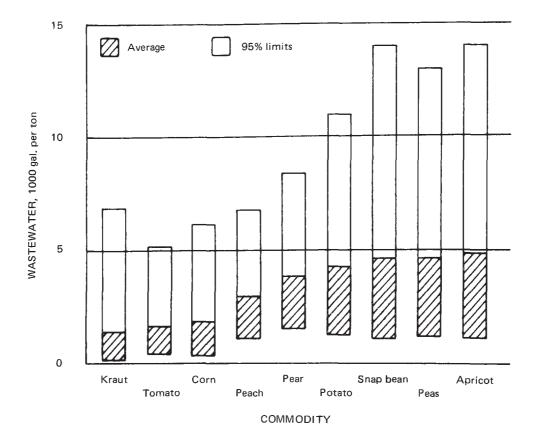
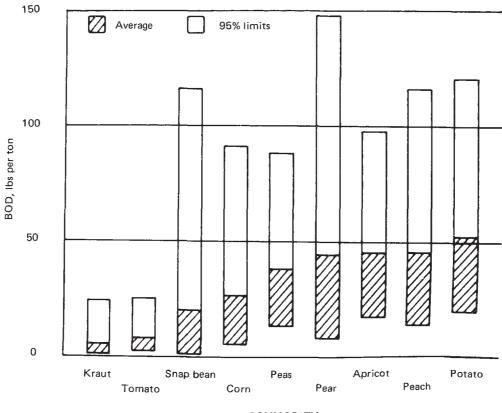



Figure III-1. Generated wastewater, average and 95% limits.

COMMODITY

Figure III-2. Generated BOD, average and 95% limits.

		Wastewat 00 gallon:		D	BOD bunds/tor	1	r	TSS pounds/t	on	Temp.	pН
	ave	-	limits	ave		limits	ave		6 limits	ave	ave
Apple	3.2	.2	17	22	4.4	64	6.3	.5	30	54	5.6
Apricot	4.9	1.1	14	45	17	98	9.9	4.0	22	76	8.0
Asparagus	8.6	1.4	31	5	.6	26	7.5	4	13		
Dry bean	9.8	1.1	44	75	16	238	59	(2	130) ^a		6.8
Snap bean	4.7	1.1	14	20	.7	116	7.0	.3	63	70	7.3
Beet	4.0	.8	12	44	5	217	26	2	116		7.9
Berry	3.5	.4	16	24	5.2	77	16	(1	57) ^a		
Broccoli	8.8	1.6	32	16	2.1	54					
Cauliflower	11	(1.7	23) ^a	18	(2	49) ^a					
Carrot	4.0	.8	13	31	9. 6	80	17	2.0	72	63	8.7
Cherry	4.8	.4	27	15	2.4	75	.8	(.5	1) ^a		
Citrus	4.3	.4	16	16	(1	45) ^a	6.0	(2	10) ^a	79	6.5
Corn	1.9	.3	6.2	27	4.8	91	12	2.1	44	77	5.6
Grape	2.8	.3	13								
Lima	7.3	1.4	24	58	6.0	240	50	2.7	332		
Mushroom	9.6	1.7	33	20	8.8	40	10	4.2	22		
Okra	5.0	1.3	15								
Onion	6.8	(.2	17) ^a								
Pea	4.7	1.2	13	38	13	88	12	1.3	67	70	6.0
Peach	3.0	1.1	6.8	45	13	116	9.1	1.8	30	72	9.6
Pear	3.9	1.5	8.4	44	8.6	147	8.7	1.7	29		7.0
Peppers	4.6	.9	16	32	(5	50) ^a	58	(1	170) ^a		
Pickle	4.6	.8	19								
Pineapple	1.7			16	7.4	31	9.9	3,5	24	92	6.8
Plum	4.9	.4	23	11	(3	19) ^a	4.4	(.3	11) ^a		6.8
Potato	4.3	1.2	11	52	19	120	44	3.8	250		
Pumpkin	2.9	.4	11	32	9.2	87	6.7	(2	12) ^a		6.3
Sauerkraut	1.4	.1	6.9	6.0	.9	24	.6			65	6.4
Spinach	7.3	1.5	23	13	3.5	37	4.6	1.7	11		
Sprouts	10.1	(4.8	20) ^a	25	(5	75) ^a					
Squash	6.0	1.1	22	20			14				
Sweet potato	4.0	.3	23	60	24	130	34				
Tomato	1.7	.4	5.2	8.6	2.0	26	8.4	.3	66	79	7.9
Turnip	7.3	2.4	18								

Table III-1 --- Wastewater and generated pollution loads by commodity

^a "Limits" in parentheses are reported maxima and minima,

PREPARATION PROCEDURES AND EQUIPMENT

PRODUCT STYLE

The kind of products made from a given commodity influences the amount of wastewater and the generation of pollutants. An example of this influence is found in figure III-3, in which the generation of BOD is compared to the percentage of peeled style tomatoes; on the average, the more peeling, the more BOD. The relationship is highly significant in spite of the wide probability limits. In a recent study, slicing apples, slicing snap beans, peeling tomatoes, and 4. US EPA, Office of Water and Hazardous Materials. Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetable and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Categories. October 1975 (EPA 1975)

TABLE 7 Comparison of Raw Waste Loads From Fruits, Vegetables and Specialties

INDUSTRY SEGMENTS

	FRUITS	VEGETABLES	SPECIALTIES
Average Water Usage			
cu m/kkg	10.86	22.91	15.17
(gal/ton)	(2586)	(5454)	(3612)
Average BOD <u>5</u>			
kq/kkg	11.8	13.0	14.8
(1b/ton)	(23.5)	(26.0)	(29.6)
Average TSS			
kg/kkg	2.2	6.6	14.3
(1b/ton)	(4.4)	(13.1)	(28.5)

TSS - LBS/TON 977 1983		.49 5.75	-17 0.574	15 0.653				(Q	(N)	9		un	CV.			-	0 4								3 4		יי די	n n	i m	Ð	10	8.80 4.70	0 ~					21 1.50 375 0.198	•						,					94 1.23		24 5.23
LBS/TON 1983 15		2	98	9	4	4	0	. 2	.73	•	~	7	0.2		5.89 1.0		14°2 00			8.47		~	. 950									15.0 8.			~					•					8.00		4 4	59.4 04°			-	49 5.
800 - 1977		30.9	5.66	19.3	34.3	43 . 5	19.9	24.8	21.4	3.81	87.4	28.1	23.4	5 ° C +	14.0	0.0	20.6	8.23	12.1	10.6	8.18	2.58	40 t	10.6	6.85		10.5	28.8	40.4	13.0	10.0	30° /	17.4	45.1	44.2	36.6		2.49	O F	12.1	10.4	33.6		54.6	۰	9.12	70 • 4	59.4		11.7	2.94	
GAL/TON 1983		2946.	679.7	1067.	259 1.	1356.	1519.	1701.	1479.	270.4	55/8.	2450.	1004	10.70	10/01	76.86	5	744.0	393.2	1662.	1183.	920 • /		5633.	7867.	2323.	20469.	424.1	2772.	3060.	+000+	3020. 4746.	3202.	4073.	2908.	2622.	646.1	74.89	2631.	3437.	2500	739.8		758.6		1310.	2003. 4214.	4878.	2193.	492.0 541.5	7342	2370.
FLOW -		- CO30	1401.	1863.	2883.	4783.	2955	3185.	1/32	3/3.9	•0614	*****	1631	2053	- 1000	253.1	3133.	1193.	671.3	3148.	2146.	1132.	1212	10945.	8722.	2910.	21473.	1071.	3194.	4//2• 5303	0000 0100	6510.	5385.	5516.	4721.	3483. 6014	843.3	103.4	3691.	3816.	70.04	1341	995.2	1992.	1 \ 1 7	1/69.	5628.	4878.	3108.	631.7 551.3	7342.	\$ 5716.
CATEGORY	I I I I I I I I I I I I I I I I I I I		REALLES	-	S I				CUNTRE COLCE - CANNERS		PEACHES = CANNED	PEACHER - FDATEN	PFARC	- FRESH	PICKLES - PROCESS PACKED	SALTING	NEAPPLES	PLUMS		" .	TOWATOFS - PEELEU Towatofs - Doonurts	2	BEETS	BROCCOLI	BRUSSELS SPROUTS	CARROTS	IFLOWE	CURN - CANN	DEHVDDATED ONTON AND CARLTO	DEMYDRATED VEGETARI FS	ι	LIMA BEANS	MUSHROOMS	- CANN	DEAC - CANNED	MFNTOS	ວ 	SAUERKRAUT - CUTTING	31 +		FRO -	JASH	SWEET POTATOES	WHITE POTATOES	AUUEU INGREDIENTS RARY FOOD	CHIPS - CODN	CHIPS - POTATO	CHIPS - TORTILLA	FOODS	JAMS AND JELLLES MAYONNAISE AND DRESSINGS	SOUPS	TOMATO - STARCH - CHEESE SPECIALTIES

TABLE 18 RAW WASTE LOAD SUMMARY - ALL SUBCATEGORIES 5. a. CA DWR. Bulletin No. 124-3 "Water use by Manufacturing Industries in California 1979." 1982. (DWR 1982)

SIC CODE 201					PLANTS R	REPORTING V	WATER INTAKE	E	
201	INDUSTRY GROUP	TOTAL NO.				IN MILL	ON GALLONS	PER YEAR	
201		OF PLANTS	TOTAL	UNDER 0.1	0.1 - 1	1 - 10	10 - 100	100 -1000	OVER 1000
	FEAT PRODUCTS	234	56	8	16	38	2.9	5	0
204	DAIPY PFOCUCIS Preserved Foutts and Vegetagles	147	69	2 0	16	11	21	14	
204	GPAIN HILL PPODUCTS	179	92	18	34	27	12	58	m 0
202		266	100		41	11	6 1	m	
207	FATS AND CILS	61	5.0	5 N	11	10	14	vo +	+ 0
209	BEVERAGES MISC. FRODS AND KINDPED PPODUCTS	380	205	10	54	99	15	12	
ŝ	FCOD AND KINDPED FRODUCIS	2001		130	244	294	219	114	
212	CIGARS CFEMING AND SHOKING TOPACCO	014		00	00				
21	TO9ACCO MANJFACTURES	m	e						
	MEAVING MILLS. COTTON								
222	WEAVING HILLS, SYNTHETICS WEAVING AND FINISHING HILLS, WOOL	2 L S							
200	NARPOW FARRIC MILLS Kattting Milts			u	•••				
S NO		121							
228	VAPN AND THPEAD HILLS HISCELLANEOUS TEXTLE GOODS	52							
25		454					, ,		
1:2	AND BOYS	15		0	0	0			0
N P		313						•••	
31	MOMEN'S AND CHIL	3							
536		20				• •	• •		
	FUR GOODS Miscellenfous Appapel and Accessories	-	1 · c		••	00			
523	1	565	m			-			
22	AFPAPEL AND OTHER TEXTILE PRODUCTS	2452	۴.		2	1		0	0
241	I LOGGING C	153		Ð	0	0	0	0	0
-	HILLWORK, PLYNOOC & STPUCTURAL MEMBERS	214	1 20		16	15	15	80 C	~ ~
5 4 E	MCODEN CONTAINERS MCOD BUILCINGS & MCGILE HCHES MCCOT ANEONIC JOOD DEDONICTS	161 134							
_	LIVAEP AND MODO PEDDICTS		:	• •		n .	N.		-

	REPORTED /	ANNUAL INTAKE IN MILLION GALL		BY INDUSTRY GROUP IN 1979 NS OF GALLONS ONS=3.7854 MEGALITRES	UP IN 1979			
SIC		NUMBER OF	EMPLOYEES	FRESH	I WATER	RECLAIMED	BRACKISH	TOTAL
CODE		TOTAL	REPORTING	PURCHASED	SELF PRODUCED	WATER	WATER	WATER
2002 500 3 50 5 50 5 50 5 50 5 50 5 50 5	MEAT PRODUCTS DAIPY PRODUCTS DAIPY PFODUCTS Presepved FPuits and Vegetagles Graim Mill Products Bakepy Products Sugar and Confectionary Products Fats and Dils Beverages Misc. Foods and Kindred Products	19281 7977 46769 8375 21549 21549 2695 2695 29393 25393	9442 4235 35757 4993 7499 5469 2644 14332	2342. 1222. 7680. 562. 1026. 360. 3900. 3962.	278. 2900- 14645. 184. 17. 4328. 303. 2890. 1465.		196. 173. 62. 62. 10240. 9. 2050.	2819- 4122 22503- 809- 1045 15447 573- 5673- 5673- 5673- 7481-
20	FCOD AND KINDRED FRODUCTS	159156	97349	21041.	27009.	6.	12728.	60785.
213	CIGARS CMEWING AND SMOKING TOBACCO Tobacco Manyfactinges	13 34 3				::	***	
*		040						
522 5225 5225 5225 5225 5225 5225 5225	WEAVING MILLS, COTTON WEAVING MILLS, SYNTHETICS WEAVING MILLS, SYNTHETICS WEAVING AND FINISHING MILLS, WOOL NARROW FABRIC WILLS RAITTING MILLS TEXTILE FINISHING, EXCEPT WOOL FLOOP COVERING MILLS YAPN AND THREAD MILLS WAPN AND THREAD MILLS MISCELLANEOUS TEXTILE GOODS	1077 740 740 740 740 740 740 740 740 740						
22	TEXTILE MILL' PRODUCTS	20484	88	•	.0	•0	0.	
	HEW'S AND BOYS' SUITS AND COATS HEN'S AND BOYS' FURNISHINGS HEN'S AND BOYS' FURNISHINGS WOMEN'S AND MISSES' OUTERWEAR HOMEN'S AND CHILDREN'S UNDE®GAPMENTS HATS, CAPS, AND MILLINERY CHILDPEN'S OUTERWEAR FUR GOODS HISCELLANEOUS APPAPEL ANC ACCESSORIES HISCELLANEOUS APPAPEL ANC ACCESSORIES MISC. FABPICATED TEXTILE PPJOUCTS	3753 15436 15436 4959 4104 719 1985 172 3182 20117	0000000 N M M					
53	AFPAFEL AND OTHER TEXTILE PODUCTS	99327	332	2.	.0	•0	0.	2.
100000 10000 10000 10000 10000	LEGGING CAMPS & LOGGING CONFRACTORS Sawmille and planing mills millaork, plywooc i stpuctural members wcoden contatners wcod buildings & mobile pomes miscell angus wooc products	3571 18499 21294 7363 7363	8596 32 7 288 288	567. 567. 19.	12767. 0. 0. 97.		.9E	13665. 13665. 19. 152.
54	LUMBEP AND WOOD PRODUCTS	63703	6916	606.	12865.	•66	248.	13817.

NOTE : ZEROS MAY INDICATE VALUES BETWEEN D AND 1 OR INCONCLUSIVE VALUES.

l

REPORTED ANNUAL WATER INTAKE BY TYPE OF USE AND INDUSTRY GROUP IN 1979

		NUMBER OF	R OF				WATEF	R INTAKE			
SIC	INDUSTRY GROUP	EMPLO	YEES		(million	gallons)			(mega	(megalitres)	
CODE		TOTAL	REPORT	COOLING	PROCESS	SANITARY	TOTAL	COOLING	PROCESS	SANITARY	TOTAL
201	HEAT D	8	1	328	207	169.	2703.		12	639.	023
202	CATRY PRODUCTS	5:	523		2338	21	9707	3906	20	291	-
322	GRAIN MILL PRODUCTS	6375	15165		10010.	555°	22176.	0 m	68174 . 1943 .	2101.	83945.
205	94KEPY POC	5	6 4	27	552	97.		104	2090	367.	256
5 22	SUGAP AND	9 0	9.	51	62	66.	151 99.	3 65 22.	m	251.	mI
		2 4	204	1 20	140	51.0	669. 1.721.	~ 0	10/5	141.	2534
5:3		5	E E	32 +0.	3379.	1 40.	6798.	12415.	12791.	529.	25735.
20	FCOD ANT KINDRED PPODUCTS	159156	97349	19785.	36473.	1390.	57648.	74895.	138065.	5262.	218222.
212	CIGAPS	13	0.						•		
			-							•	•
21	TC3ACCO MANUFACTURES	313	U	.0	•0	.0	••	••	.0	• 0	•0
221	WEAVING	1077	0			•••	•••	•••	•		
523	WEAVING AND FIN										::
224	NARPOW FARRIC MILLS KNITTING MILLS	296	00		å e	•••	••		•••	å .	
226	_	1				: .					
227	-	80	0				•		•••	.0	
523	MISCELLANEDIS TEXTLE GODDS	3046	99					•••			
53	TEXTILE MILL PRODUCTS	20484	88	••	••	• 0	•0	••	••	1.	1.
211	S-N 3H	375	U				•0			0.	.0
222	SOMINSIAN STARS SALE DAG SALENDA	3			•••		••				
120	NUMBER STOR	56.6					•••			•••	••
N N	HATS, CEPS.	11								::	
422		1985	0		•					.0	
	HUY GODOS				••		••			•••	•••
523		20017	332			s.	· ~				
-	AFPAPEL AND DTHES TFXTILE PPDDUGTS	99327	132			2.	2.	••	.0		7.
24:		357		•	•			0	-	1,000	•
242	SAMMILLS AND PLANING WILLS	6 5	9595					24057 .			50645.
244	MCODEN CONTEINEDS	1671	20								
572		7383			0		0	0	.0		
	MISCELLANCOJS NODC PPODUCTS	5	288	71.	77.		152.	268.	2 92 .	15.	574.
24	LUNGED AND MOOD PRODUCTS	5 2 7 A 2	8016	37.84.	CK41.	AS.	13531.	14325.	16572.	222	C+2+3.

JI NUMBER OF EMPLOYEES INCLUDED IN THE SURVEY NOTE: ZEROS MAY INDICATE VALUES BETWEEN D AND 1 OR INCONCLUSIVE VALUES.

TABLE 5

REPORTED ANNUAL FRESH WATER INTAKE, RECIRCULATION, AND DISCHARGE IN 19 IN MILIONS OF GALLONS 1 MILLION GALLONS = 3.7854 MEGALITRES	79	
	D ANNUAL FRESH WATER INTAKE, RECIRCULATION	1 MILLION CALLONS = 3.7854 MEGALITRES

210		TOTAL NO.			RECIRCULATION			0	DISCHARGE	
CODE	INDUSTRY GROUP	OF EMPLOYEES	EMPLOYEE REPORTING	INTAKE	RECYCLED	GROSS USE	RECYCLE RATE	EMPLOYEE REPORT	INTAKE	WATER DISCHARGE
201	_	19291	4374	1569.	2033.	3602.	~	2446	2620.	2196
202	-	1161	2765	3050	5890.	·0 + 65	N	4236	4122.	3431
500	PRESERVED FUITS AND VEGETABLES	46769	30364	20762 .	28668.	49430.	~	35757	22 32 7.	16631
502	_	21549	2825	200.	- 696	1749.		5664	1043	613
90	_	7465	4720	5148.	23	17500.	M	5204	4106.	2632
-	_	2695	2144	385 .	62	20 47 .	s	2644	670.	350
209	HE VERAGES MISC. FOODS AND KINDRED FRODUCTS	19652	8208 3960	2957 -	5621.	9657.	-2 ·	12975	5890.	1124
20	FCOD AND KINDRED PRODUCTS	159156		38673.	59824.	0 0		97064	46 956.	36472
212	CIGAPS CFEMING AND SHOKING TOBACCD	13 300								
21	TC9ACCO MANUFACTURES	313	0			.0	••	0	.0	•
222	WEAVING MILLS. CUTON	1052			::				•••	
N C	-	996	•••				•••			
225	_	2965								
226	TEXTILE FINISHING. EXCEPT WOOL	1414					•			
224	VAON ANE THREAD MILLS	19261								
229	VISCELLANEOUS TEXTILE GOODS	3404	-		.9					
22	TEXTILE MILL PRODUCTS	20484	88		.9	6.	18.	69	.0	•
112		3753	0	0.	.0	.0			.0	
NE	SACE ONE SAUNA	15436			••			•	•	
	_	4014								
535	_	219								
536	_	1985					•••	•	•	
- 0		3182								
612	HISC. FABPICAT	20017	231	::				332	2.	2
22	APPAREL AND OTHER TEXTILE PRODUCTS	99327	231	1.		1.	1.	332	2.	2
241	LCGGING CAMPS & LCGGING CONTRACTORS	3571	1 3	-	-					
243	HILLWORK, PLYNOOD & STRUCTURAL HEMBERS	21294	5469	13153.	15220.	26372.		32	13453.	6735
244		4600				.0		-		
545	MCOD BUILDINGS & MOBILE FCHES MISCELLANEOUS WOOD PRODUCTS	7363 8356	271	115.	78.	191.	0.	269	116.	0.0
								L		
54	LUMAFP BND KOOD PRODUCTS					二月 月 月 月 月				

¹/ NUMBER OF EMPLOYEES MCLUDED IN THE SURVEY. NOTE: ZEROS MAY INDICATE VALUES BETWEEN 0 AND 1 <u>OR</u> INCONCLUSIVE VALUES.

51

SIC MAJOR INDUSTRY GROUP	D. T	NUMBER OF PLANTS	NUMBER O	NUMBER OF EMPLOYEES		FRESH WATER USE	
	TOTAL	REPORTING	TOTAL	REPORTING ^{2]}	MEGALITRES	WILLION GALLONS	ACRE FEET
TEHAMA							
20 FOOD AND KINDRED PRODUCTS	m	2	162	68	229.	61.	186.
ER AND WOOD P	13	-	1410	114	137.	36.	
5 FURNITJRE AND FIXTURES	E V		22			2.	
	-		9		;		'n
	~		28			-2.	••••
2 STONE, CLAY, & GLASS PRODUCTS			52				
					2.	1	s.
	1	•	10		•0	••	••
TOTAL	30	m	1.609	182	429.	113.	348.
20 FCOD AND KINDRED PRODUCTS	0	Ŧ	0	1	2.	1.	2.
LUMBER AND WO	9	Ŧ	642	144	48.	13.	39.
2 STONE. CLAY. & GLASS PRODUCTS	2	1	94	1	187.	•64	152.
LDTAL		3	295	146	237.	63.	192.
TULARE							
	27	19	1912	2114	11790.	3115.	9558.
TEXTILE MILL PRODUCTS	2	•••	022			~	
	26	• •	1345	374	421.	111.	341.
	1		101		7.	2.	.9
16 PAPER AND ALLIED PRODUCTS	24	•••	191		50.	• F 1	41. 191
	4 °		109		57.	15.	46.
PETROLEUM AND	-		9	•		12.	36.
	æ .	NE	147	22	68.	10.	.50
	19	, N	331	87	447.	115.	363.
IS PRIMARY HETAL INDUSTRIES	۳.	-10	380	204	320.	85. 61.	260.
	12		1138	19.	72.	19.	- 29.
-	1	-	1345	474	119.	32.	.16
A NOITATSCASHATTON	5		624	-	+S.	12.	37.
36 INSTRUTENTS AND RELATED PRODUCTS 39 MISCELLANEDUS MANUFACTURING INDUSTRIES	m		168			 m	: *
TOTAL	191	30	10721	3575	13729.	3627.	11130.
LUCLUMNE					a standard		
FCOD AND KINDRED PRODUCTS	2	2	32	9	32.		26.
24 LUMBER AND WOOD PRODUCTS	- 6		693	415	765.	202.	620.

TABLE 7

F 1

	NUMBER OF	MBER OF PLANTS	NUM	NUMBER OF		FRESH WATER		UNIT USE	USE/WORK DAY
CODE	TOTAL	REPORT ^{1]} ING	TOTAL	REPORT 2	MEGALITRES	MILLION	ACRE FEET	LITRES	GALLONS
THEAT PRODUCTS	234	95	19281	9442	20249.	5349.	16415.	4647.	1228
~	147	69	1797	4238	29367.	7758.	23606.	16290.	4333.
	323	196	46769	35757	110538.	29201.	89614.	10458.	2753.
	179	92	8375	1993	4737.	1251.	3841.	2503.	651
	266	100	21549	66 % 2	11350.	2996.	9202.	2331.	919
16 SUGAR AND CONFECTIONARY PROJUCTS	90	44	7465	5469	26907.	7105.	21614.	15949.	4213
-	19	53	2692	N I	2587.	6 83.	2097 -	4247.	1122
209 MISC. FOODS AND KINDRED FRODUCTS	389	174	25153	12 975	35771.	9614.	27379.	7604. 6342.	2039
20 FEOD AND KINDPED PRODUCTS	2001	1005	159156	97349	.106572	72885.	223675.	7670.	2026
-	2	0	13		1.	.0	1.	377.	100
213 CHEWING AND SMOKING TOBACCO	1		310	•	26.		21.	377.	100
21 TO9ACCO MANUFACTURES	2	•	313	0	27.	.1	22.	377.	100
WEAVING	52	•	1011	0	46.	12.	37.		50
	67		740	0	32.	•	25.	186.	20
MEAVING	m	0	60		•°	1.	2.	188.	5
S KATTTNG MILLS			2962		13.		-01	166.	205
	25		1616		60.	• · · ·	.002	1 88.	
227 FLOOP COVEPING MILLS	11		5600		238.	63.	193.	166.	105
YAPN AND THPEAD MILLS	20	P	1926	•	68.	16.	- 55	155.	•11
B WISCELLANEOUS TEXTILE GOODS	82	-	3464	88	*6*	13.	*0*	e4*	17.
Z TEXTILE MILL' PRODUCTS	454	I	20484	88	762.	201.	613.	165.	43
MEN-S	51	0	3753	0	132.	35.	107.	155.	14
-	313	0	15436		542.	143.	439.	155.	41.
MCMEN-S AND	1275		63664	-	1753.	463.	1421.	155.	.1.
SH MCHEN'S AND CHILDREN'S UNDERGAMMENIS	5 6		4104		144.	38.	-111	155.	
CHILDREN'S D	14		1985		70.	16.	56.	155.	. 14
-	6		172		.9	2.	- 2*	155.	1.
_	102	•	3182	•	112.	-62	91.	155.	41
19 MISC. FABRICATED TEXTILE PRODUCTS	265	m	20017	332	* * 0 *	107.	329.	.68	. 4 .
2: APPAPEL AND OTHER TEXTILE PRODUCTS	2452	3	99327	332	31.88.	842.	2584.	142.	38
	153	0	1251	0	660.	174.	535.	816.	216
	214	56	184 49	8596	108791.	28739.	88195.	26022.	6874.
243 MILLMOPK, PLYMODC & STRUCTURAL MEMBERS	713		21264	EI C	236.	62.	191.	.64	
_	101		7 2 8 2		1 40.	• 26		100.	200
MISCELLANEDUS MODE PPODUCTS	306	~	8356	285	12738.	3365.	10 327.	6745.	1792
and the state state and st						12.121			2262

ž

1

5. b. CA DWR, Bulletin No. 124-2 Water Use by Manufacturing Industries in California 1970). March 1977. (DWR 1977)

÷

26

0 H N M J	WI	MILLION GALLONS	9	3/83.4 CUBIC MEIKES			
		NUMBER OF	F PLANTS	FRE	FRESH WATER	BRACKISH	TOTAL INTAKE
		TDTAL	REPORTING	PURCHASED	SELF PROOUCEO	MAIEK	MAIEK
		۰ ۶4	6	706	0	0	706
	S DEMS	1 29	5	571	0	0	571
-			m	133	0	0	133
ADDI ACMA	EQUIFMENT			*	0	0	*
				•*		0	*
144 UKUNANCE ANU ALLESSCRIES, NEU 200 FEOR AND VINDER EDUDUTIS	NEC	2464	601	12150	24705	7870	44742
MEAT		315	62	1299	935		2235
		278	53	398	2091	0	2489
-	FCODS	508	129	4505	9606	1037	15351
204 GRAIN HILL PRCOUCTS		241	6.7	142	4	111	276
		18	~	1031	7026	6680	14737
_	PROCUCTS	119	28	81	2165		2247
209 BEVERAGES 209 MISC. FOODS AND KINCRED PROCUCT	ROCUCTS	532 429	108	2846	780	50	2258
210 TOBACCO MANUFACTURES 211 CIGARETTES 212 CIGARS		3-10					
220 TEXTILE MILL PRODUCTS		252	52	207	*	0	207
		0 W	1	*	0	0	*
MEAVING	S. WCOL	=:		Μ.	0 4		m .
224 MAPPON FARALC MILLS		13	v) «	24	+ 0		3 6
_	MOOL	24	m	60		. 0	60
		52	13	102	0	0	102
229 HISCELLANEOUS TEXTILE GOOCS	S	62	21	14			14
230 APPAREL AND OTHER TEXTILE PRODU	PRODUCTS	2183	250	93	0.0	0.0	26
231 HEN'S AND BOYS' SUITS AND COATS	COATS	28	8	2			15
WOMEN'S ANC	HEAR	1202	127	33			33
_	CERGARMENTS	55	1	2	0	-	2
235 HATS, CAPS, ANO MILLINERY		30		* 0			* 0
		28	~ ~	u *			*
MISCELLANEOUS APPAREL	AND ACCESSORIES	11	11	2	•	0	2 9
-	610000	160A	277	1736	SAD7	*	7544
LOGGING CAMPS, + LOGGING	CCNTRACTCRS	442	0 *	27	21	0	84
SAMMILLS AND FLANING MILL		267	12	1634	4787	*	6421

* indicates quantify between 0 and 1. NOTE: Tatals include quantities between 0 and 1

(Title 5b - DWR 1977 - continues in Part 2 of 3)