

# Entrepreneurship and Innovation in Biomedical Engineering

# Moderator

Kunal Mitra, PhD

Professor Biomedical Engineering Florida Institute of Technology

# **BMES Education Committee Member**

Email: kmitra@fit.edu





# Announcements

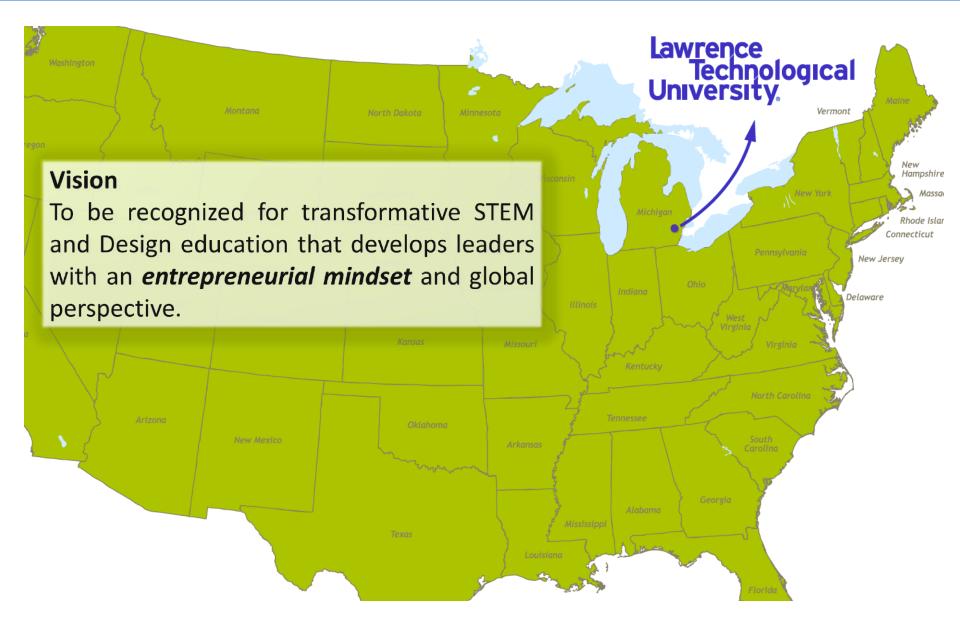
- The archived recording will be available shortly after the webinar on the BMES website.
- You may submit questions throughout the webinar by using the online chat function. Your questions will be addressed after the featured speaker presentations.
- Please take a few minutes to complete the brief survey following the webinar to provide us with your feedback.





Mansoor Nasir, PhD

Assistant Professor Biomedical Engineering Lawrence Technological University

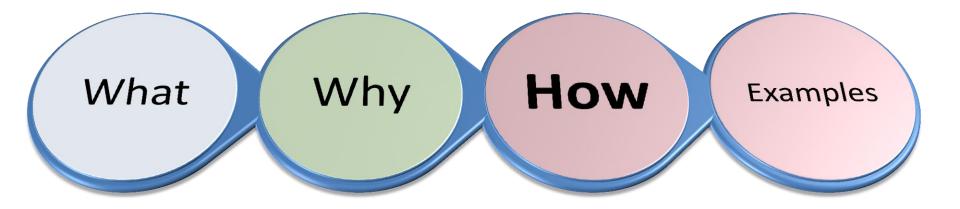

Email: mnasir@ltu.edu







## Lawrence Technological University




## Lawrence Technological University







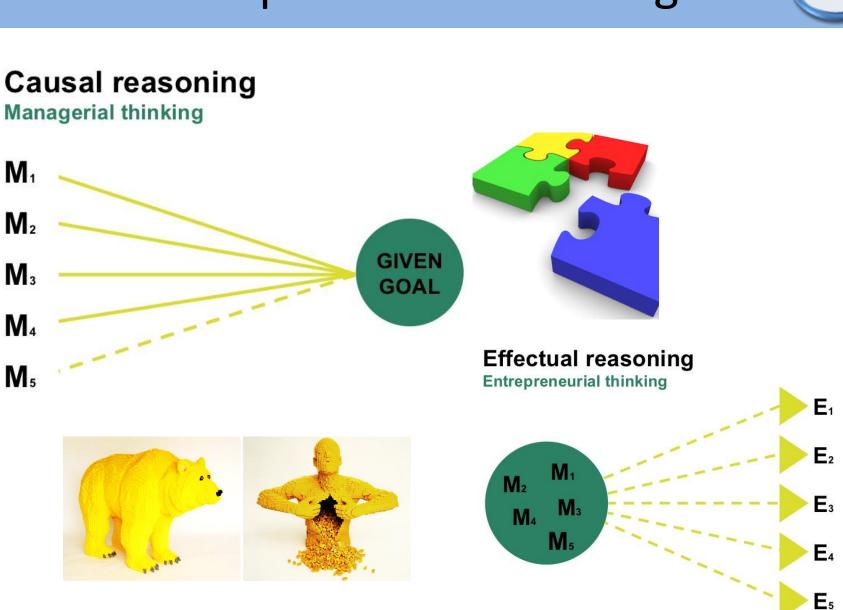


- What is entrepreneurial thinking?
- Why is entrepreneurial thinking important for engineers?
- How can students be exposed to this style of thinking?








What



What



What



Saras D. Sarasvathy, University of Virginia

## **Entrepreneurial Thinking Framework**

| OPPORTUNITY                                                                                                    | DESIGN                                                    | IMPACT                                                                         |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>Identify</b><br>an opportunity                                                                              | <b>Determine</b><br>design requirements                   | <b>Communicate</b><br>an engineering solution<br>in economic terms             |
| <b>Investigate</b><br>the market                                                                               | <b>Perform</b><br>technical design                        | <b>Communicate</b><br>an engineering solution<br>in terms of societal benefits |
| <b>Create</b><br>a preliminary<br>business model                                                               | Analyze<br>solutions                                      | <b>Validate</b><br>market interest                                             |
| <b>Evaluate</b><br>technical feasibility<br>customer value<br>societal benefits<br>economic viabi <b>l</b> ity | <b>Develop</b><br>new technologies<br>(optiona <b>l</b> ) | <b>Develop</b><br>partnerships and<br>build a team                             |
| <b>Test</b><br>concepts quickly via<br>customer engagement                                                     | <b>Create</b><br>a model or prototype                     | <b>Identify</b><br>supply chains<br>distribution methods                       |
| <b>Assess</b><br>policy and<br>regulatory issues                                                               | <b>Validate</b><br>functions                              | <b>Protect</b><br>intellectual property                                        |

**KEEN** ENGINEERING UNLEASHED What

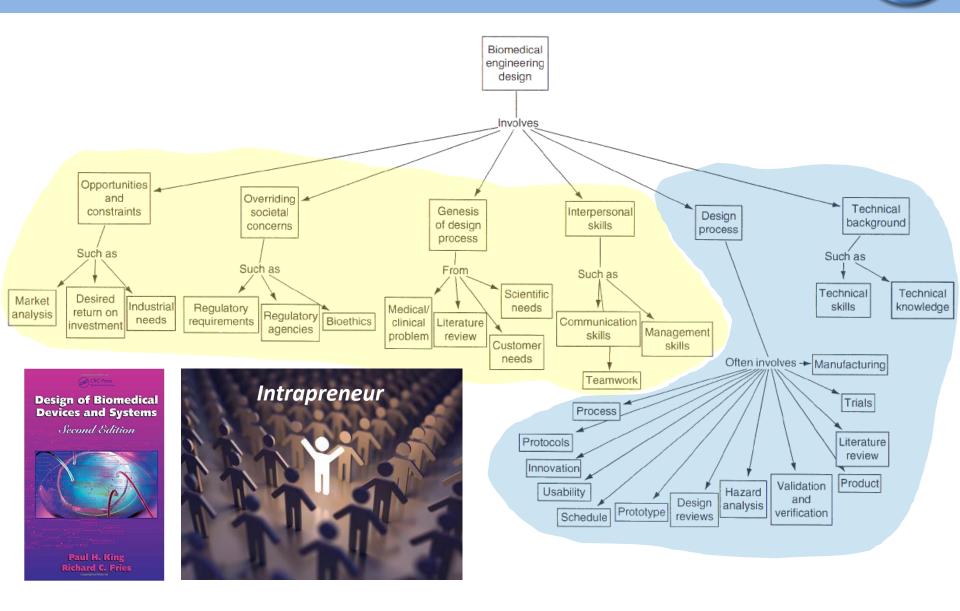
Curiosity Connections Creating Value

THESE SPECIFIC SKILLS REINFORCE THE DEVELOPMENT OF AN ENTREPRENEURIAL MINDSET

## **Entrepreneurially Minded Learning**

Can enhance.....

Student learning in classroom



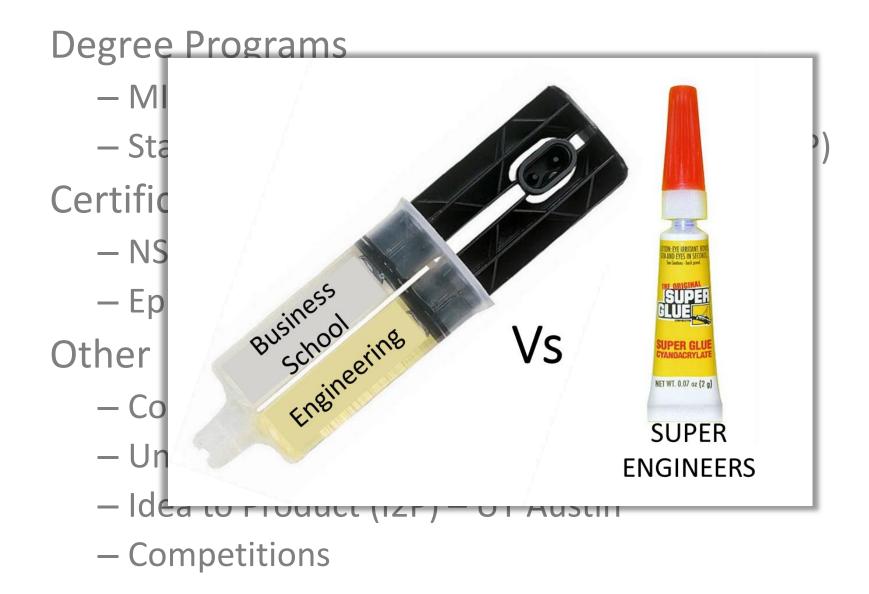

Why

- Understanding of real world constraints
- Student-Instructor
- Retention of fundamental concepts

## **Biomedical Design Process**

Why

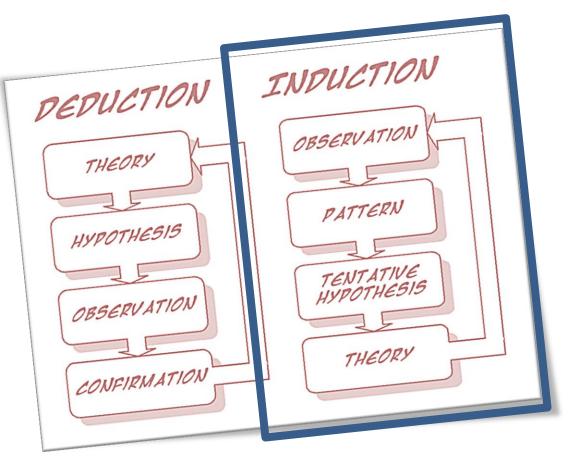



## Models for Implementation

How

### **Degree Programs**

- -MIT
- Stanford Technology Ventures Program (STVP)
- Certificates / Minors
  - NSF I-Corps
  - Epicenter
- Other
  - Courses
  - University Innovation Fellow VentureWell
  - Idea to Product (I2P) UT Austin
  - Competitions


## **Models for Implementation**



# **BME: Course Based Approach** How Junior Freshman Sophomore **Senior**

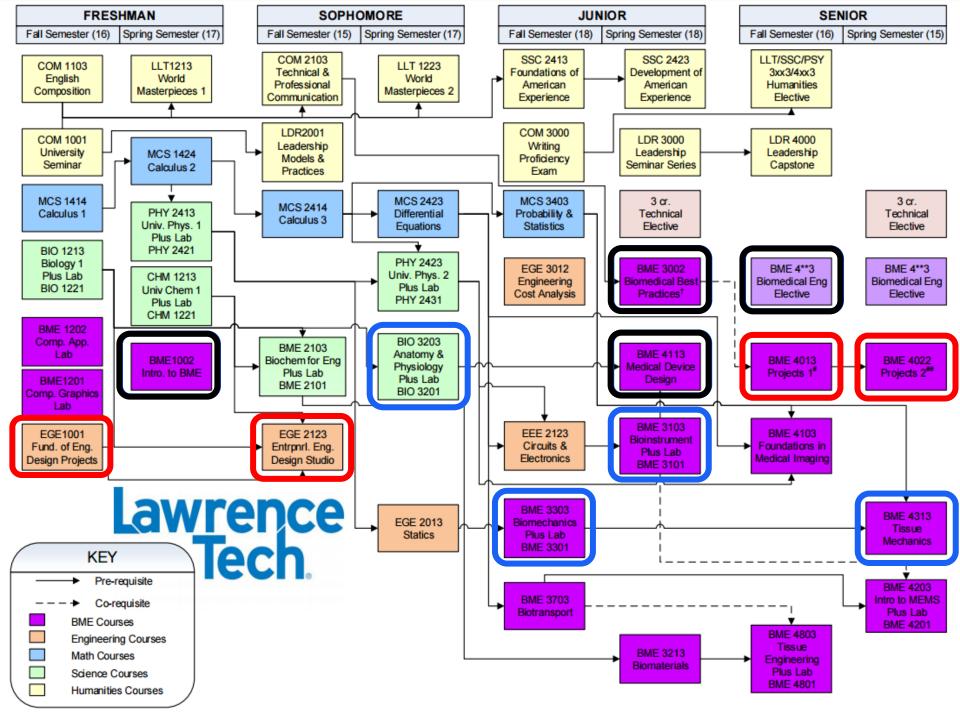
## Learning Modules to Build Entrepreneurial Skillset

## Implementation in Classroom?



#### DRIVING INNOVATION AND ENTREPRENEURSHIP

How



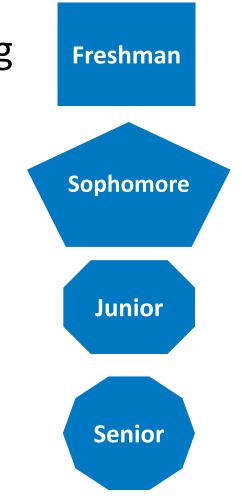

Ignite your students' entrepreneurial mindset with "Quantified-Self"



## Theme: Quantified Self






## Course Examples

• Intro. to Biomedical Engineering

• Biomedical Best Practices

Medical Device Design

• Orthopedics

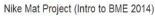


## Target Skills for EML Modules

| Level                                                    | Freshman               | Sophomore             | Junior                   | Senior      |
|----------------------------------------------------------|------------------------|-----------------------|--------------------------|-------------|
| Course                                                   | Introduction<br>to BME | BME Best<br>Practices | Medical<br>Device Design | Orthopedics |
| Opportunity Recognition                                  | Х                      |                       | Х                        |             |
| Market Investigation                                     | Х                      | Х                     | Х                        | Х           |
| Create a Preliminary Model                               | Х                      |                       | Х                        | Х           |
| Communicate Economic Benefits                            | Х                      | Х                     |                          |             |
| Communicate Societal Benefits                            | Х                      | Х                     | Х                        |             |
| Examine technical feasibility<br>Economic Drivers, Needs |                        |                       | х                        | X           |
| Intellectual Property Protection                         |                        | Х                     | Х                        |             |
| Regulatory Issues                                        |                        | Х                     | Х                        | Х           |
| Collaborate in a team setting                            | Х                      | Х                     | Х                        |             |

#### Freshman

## Intro to Biomedical Eng.


### **Opportunity Recognition**

- Investigation of QS devices
- Using Nike+ Shoe Sensor in a new application
  - Device Concept
  - Business Model and Market Potential
  - Pitch video



Nike+ Hyperdunk Shoe Sensors







E LTU BME Nike Pitch



No Sweat Sleep Set

<u>How</u>

"Repurposing" QS device to solve a Global Health need

- Medical device & patent (IP) search
- Mock 510-k (FDA) application

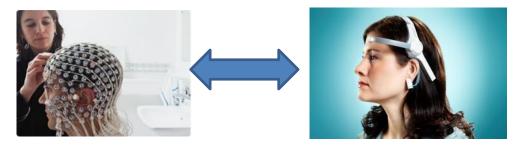
Soph.

Mock invention claims disclosure



Eclipse Self Breast Exam

EarlySense Sleep Monitoring


## Medical Device Design

• In class Activities

Junior

– Hands-on Learning

- Homework Assignments
  - Find Similarities
  - Find Differences



How

## Technical Content Need not be Sacrificed

## Junior Example: Portable EEG Headsets

#### Differentiators / How to Create Value



IMEC: Wireless EEG



StatNet Disposable EEG



Neurosky



MicroEEG



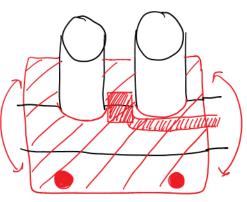
Emotiv



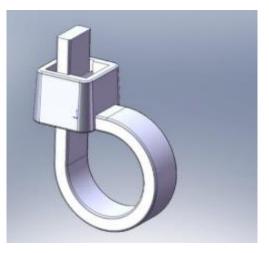
NeuroFocus

#### Junior

# Medical Device Design


### Semester long Project

- Finding Medical Needs
- Interaction with Clinician and Users of Device
- Identifying Problem
- Regulatory Pathway
- Patent Generation
- Preliminary Design
- Pitch Video



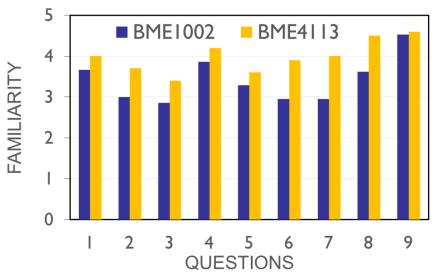

TOP

TOD



Sensor to monitor nasal cannula




Handsfree Asthma Mask

Cord Cutter

<u>How</u>

## **Student Learning Outcomes**

- 1. Define problems, opportunities, and solutions in terms of value creation.
- 2. Anticipate technical developments by interpreting surrounding societal and economic trends.
- 3. Identify new business opportunities.
- 4. Apply creative thinking to ambiguous problems.
- 5. Apply systems thinking to complex problems.
- 6. Examine technical feasibility, economic drivers, and societal and individual needs.
- 7. Communicate engineering solutions in economic terms and with regard to societal benefits.
- 8. Substantiate claims with data and facts.
- 9. Collaborate in a team setting.



Results

## **Capstone Design Assessment**

**Results** 

|                                                                                                                                                                                                           | Capability Scale |     |   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|---|---|
| Learning Objectives                                                                                                                                                                                       | 4                | 3   | 2 | 1 |
| Construct a system or process to meet desired needs within<br>such realistic constraints as economic, environmental,<br>social, political, ethical, health and safety, feasibility and<br>sustainability. | 52%              | 48% |   |   |
| Demonstrate the ability for self-directed learning by planning, research and design for the project.                                                                                                      | 78%              | 22% |   |   |

#### **Overall Course Satisfaction**

| 2012-2013  | 2013-2014      | 2014-2015      | 2015-2016      |
|------------|----------------|----------------|----------------|
| 3.67 ± 0.9 | $4.09 \pm 0.7$ | $4.83 \pm 0.4$ | $4.82 \pm 0.4$ |

## **Example: Capstone Design**

**Results** 



## Example: Capstone Design



Honda Civic –  $14.5ft^3$ 

2 Full Sized Cart Bags!

**Results** 

## **Future Direction**

- Module development in other courses
- Mapping of learning outcomes
- Metrics for assessment
- Dissemination





# Acknowledgements

### Eric Meyer

- Michael Rust
- Brent Ulrey
- Patrick Atkinson
- Joe Tranquillo
- Ziad Youssfi
- Jeff Morrissette
- Giscard Kfoury
- Kun Hua



### Lawrence Tech

Western New England Western New England Kettering Bucknell **Ohio Northern** Lawrence Tech Lawrence Tech Lawrence Tech



http://qs4eml.ltu.edu





## Donald Gaver, PhD



**BMES Education Committee Chair** 

Alden J. "Doc" Laborde Professor and Chair Department of Biomedical Engineering Tulane University

Email: <u>dpg@tulane.edu</u>



# **Opportunity to Grow** and Explore: Lessons from a **Bioinnovation PhD student internship** program at the FDA Anne-Marie Jacob Job (Tulane University) Rebecca Zarch (SageFox Consulting Group) Alan R. Peterfreund (SageFox Consulting Group) Donald P. Gaver (Tulane University)







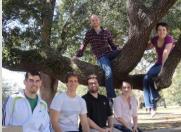
## Tulane's Interdisciplinary Boinnovation PhD Program

This training program cultivates our trainee's abilities to develop clinically relevant biomedical technologies and devices leading to commercial products.



We couple Research, Non-Academic Experiences, and Entrepreneurship Training.

## Supra-Academic Graduate Program


'Supra-academic' refers to a career that expands beyond academic scientific and technological discovery/development to practical application that may best be conducted through

with industry or the public sector.

We specifically seek to recruit a diverse student population who can contribute vantage points from different cultures and disciplines.

- Laboratory Rotations
- Business Model Experiences
- **FDA Internship Program**





### **Nouvelle Orleans**















#### Overarching GOAL We will Create a community for Biomedical Engineering Research and Innovation in New Orleans



Tulane University - SSE, SoM, Business, Law, Primate Center



**Biodistrict New Orleans** 

New Orleans Bioinnovation Center

New Orleans Idea Village



New Wave of Entrepreneurship of Region



#### The New New Orleans

#### DEMOGRAPHIC DENSITY

#### CRITERIA BASED ON

Growth of Foreign Born, Domestic, and College Educated Migration

#### MOVING

Increase in domestic migration

| 1  | AUSTIN, TX      | 7.5%  |
|----|-----------------|-------|
| 2  | RALEIGH, NC     | 7.2%  |
| 3  | CHARLOTTE, NC   | 4.9%  |
| 4  | NEW ORLEANS, LA | 4.4%  |
| 5  | SAN ANTONIO, TX | 4.2%  |
| 51 | DETROIT, MI     | -3.2% |

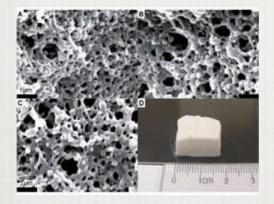
#### **BRAIN GAIN**

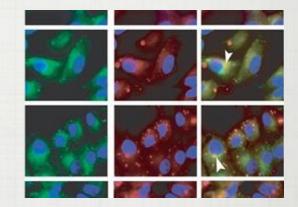
Increase in college grad population

| 1  | AUSTIN, TX      | 20.6% 1 |
|----|-----------------|---------|
| 2  | SAN ANTONIO, TX | 20.3%   |
| 3  | NEW ORLEANS, LA | 20%     |
| 4  | NASHVILLE, TN   | 14.3%   |
| 5  | LOUISVILLE, KY  | 14%     |
| 51 | TAMPA, FL       | -0.3%   |

## Program Objective #1 (Research) Translational biomedical research projects.

Emphasis on <u>transport processes</u> that are fundamental to elucidating and manipulating physiological and cellular systems and are ripe for the creation of <u>biomedical</u> <u>technologies and devices</u>.


Projects **link laboratories** from Tulane's School of Science and Engineering, the School of Medicine and the FDA.







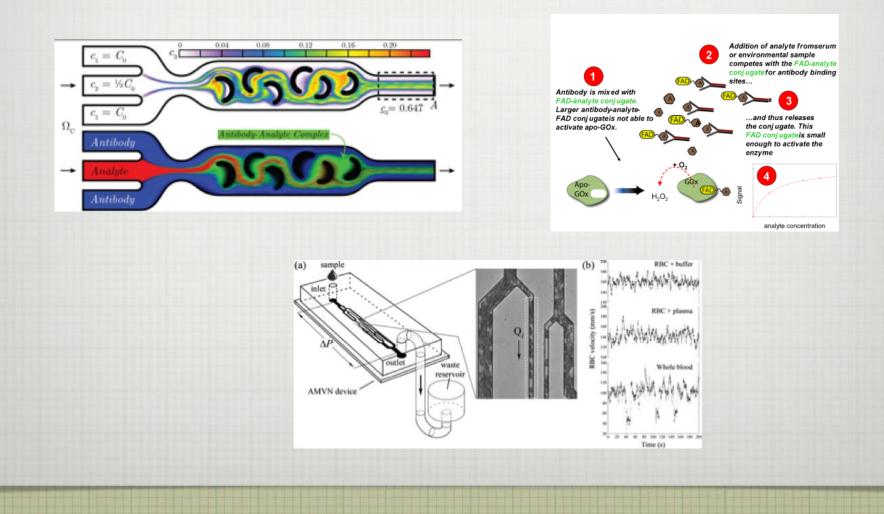


## Research Areas (Therapeutic Materials)



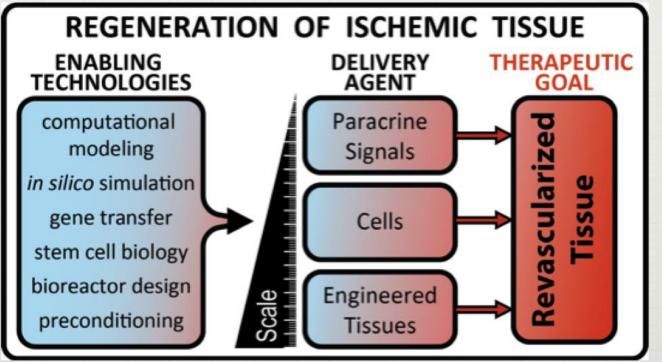




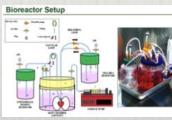



### Research Areas (Biosensors for real-world application)

NOVATION


N

BIO






## Research Areas (Regenerative Medicine)







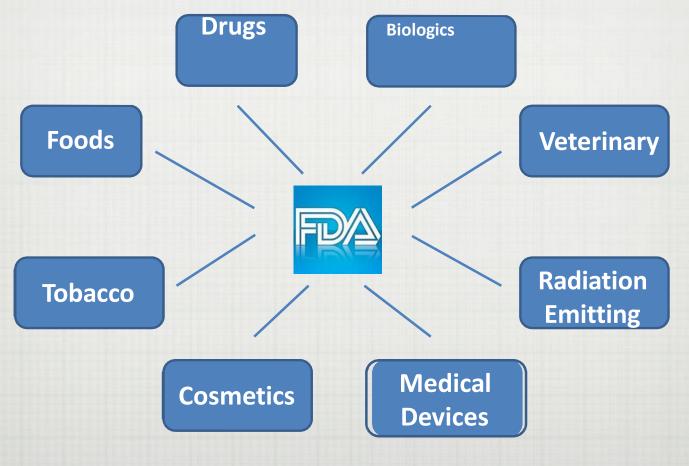


## The Value Proposition: FDA Supra-Academic Experience

- The FDA Experience provides students with an advanced hands-on interaction through which students understand the regulatory environment and process. This is important to bioinnovation career development.
- The FDA Experience benefits the FDA by providing a talented and motivated cadre of students who help with the FDA mission.



# Why is the FDA a Relevant Partner?


- In the Private-Sector... who employs the most bioengineers?
  - Hospitals & Health Care Facilities (44,100 of them in USA)
- In the Public-Sector... who employs the most bioengineers?

U.S. Food and Drug Administration

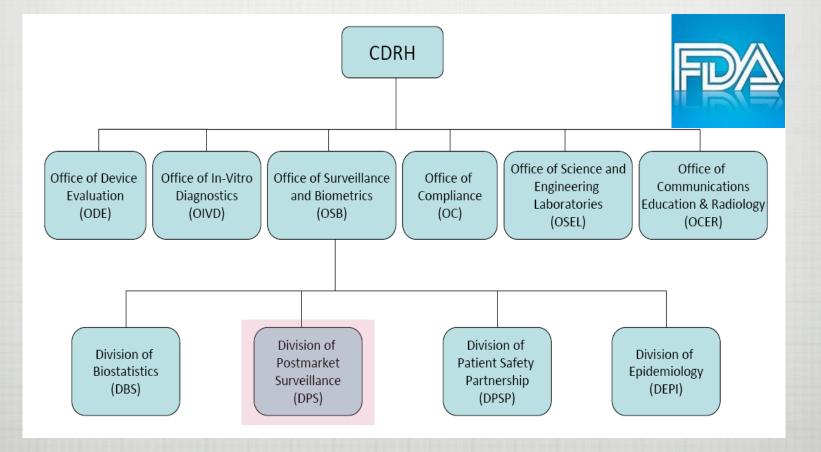


Most importantly, the FDA regulates the products created by Bioinnovation students.

#### What is the FDA?






## **CDRH** Mission Statement

To promote and protect public health by insuring the safety and efficacy of medical devices.

#### **KEY Issues:**

- Efficacy Devices work as intended.
- •Safety Devices do not injury people.
- Public Health Device-based therapies reach intended population.
- Protect Get the bad products off the market.
- Promote Get the good product on the market.

### **CDRH** Organizational Chart



# How Do the Bioinnovation Students help the PRODUCT EVALUATION BRANCH?

PEB analysts routinely monitor postmarket medical device adverse event reports for actual or potential risks to patient safety through:

#### **Postmarket Signal Development:**

- · Identify, investigate, trend, and analyze safety signals
- Initiate actions with CDRH offices to resolve issues

#### **Safety Reviews for Center Activities:**

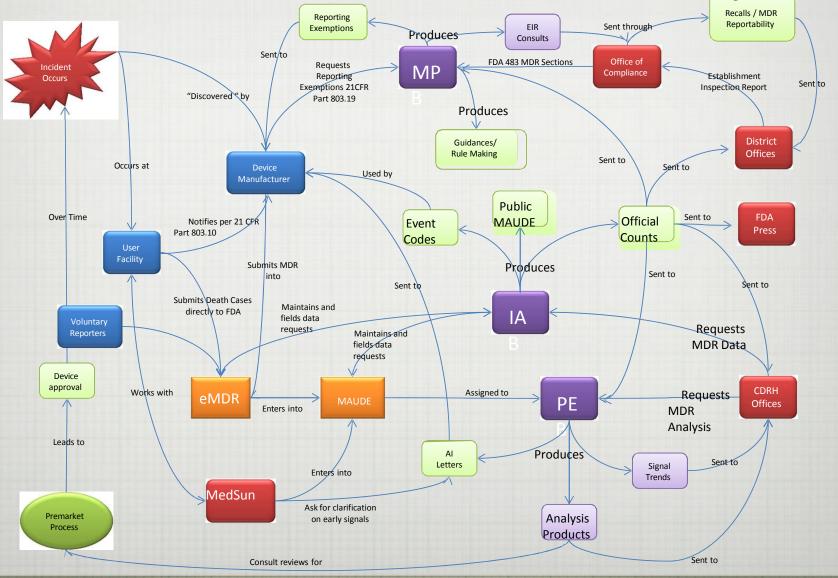
- Query database
- Prepare analyses for all CDRH Center Offices by providing postmarket data (TPLC):
  - to aid in premarket review (e.g., 510(k), PMA, HDE)
  - to support OC in postmarket actions
  - to support Working Groups and Center Initiatives
  - to support analysis for post-approval studies



#### Medical Device Reporting Regulation

#### Medical Device Reporting (MDR, 21 CFR Part 803)

- Establishes the reporting requirements for device user facilities, manufacturers and importers.
- A mechanism for EDA and manufacturers to identify and monitor significant adverse events involving marketed medical devices.


#### What Types of Events Must Be Reported to FDA?

- If device may have caused or contributed to a death or serious injury.
- Certain malfunctions must also be reported.

#### **Additional requirements:**

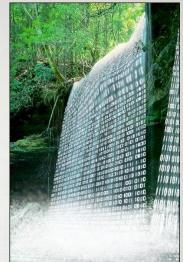
- Device manufacturer must conduct a complete investigation of each event (as per 21 CFR Part 820.198)
- All information required in 21 CFR Part 803.52
- Develop and implement written MDR Procedures (21 CFR Part 803.17)
- Establish and maintain MDR event files
- Have a system in place that ensures access to information that facilitates timely follow-up/inspection by FDA.

## The Incident Pathway



#### The need for Data Analytics




Over 1 Million MDRs Annually with 45 Employees in the Division of Post-Market Surveillance

## BioInnovation FDA Projects

- IMPROVING Electronic MDR
- EXPLAINING the increase in Adverse Event Reports
- ALTERNATE Summary Report Data
- LONGITUDINAL STUDIES to track devices from original premarket submission through adverse incident reports from manufacturers, user facilities and end users.









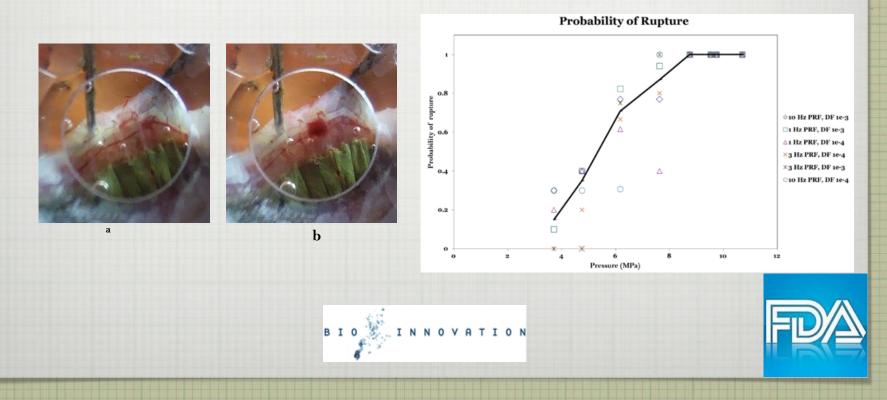
# Office of Science and Engineering Laboratories



Supports the CDRH mission of protecting and promoting public health by:

- Conducting laboratory-based regulatory research;
- Providing scientific and engineering expertise, data, and analyses to support regulatory processes, and
- Collaborating with colleagues in academia, industry, government, and standards development organizations.




total heat transfer rate over  $A_{s}$  $q_s = \int_{A} q_s''(x) dA_s = \int_{A} h(x) \big( T_s - T_\infty \big) dA_s$ If T = constant.  $q_{s} = \left(T_{s} - T_{\infty}\right) \int_{A} h(x) dA_{s} \equiv \overline{h} A_{s} \left(T_{s} - T_{\infty}\right)$ average heat transfer coefficient:  $\overline{h} = \frac{1}{4} \int_{A} h dA_{s}$ 





## **OSEL** Lab Experiences

#### Microvessel Rupture from Exposure to High Intensity Therapeutic Ultrasound



## **Signal Meetings**



- Interdisciplinary multi-divisional meeting
  - Includes Pre- to Post-Market Divisions
  - Each party describes perspectives of what the problems are and how to move forward.





## Positive Consequences of FDA Internship Program

- Provides a big draw to the Bioinnovation program
- Has affected changes in device design by helping students to understand the regulatory pathway.
- Provides insight to careers in nonacademic positions.

## Negative Consequences of Internship Program

- Distraction from research during the first year.
- The allure of non-academic careers may cause attrition.



#### **COMPETITIONS**

TULANE BUSINESS MODEL COMPET (2ND PLACE 2015, FINALIST 2016) ☆2014 NOVELTECH TULANE CHALLENGE (1ST) PLACE, SEMI FINALIST) ☆2015 NEUROSTARTUP CHALLENGE (NIH) — **MULTIPLE AWARDS** ☆2016 NOVEL TECH CHALLENGE (KG, SK, NP ARE FINALISTS, 2016) **☆RICE UNIVERSITY BUSINESS PLAN** COMPETITION (DD; NP, KK, DT) STAGE 1 E-TEAM PROGRAM GRANT **RECIPIENT; VENTUREWELL XINTERNATIONAL BUSINESS MODEL** COMPETITION **SOLUTION CONFERENCE TECH BUSINESS PITCH** 

FLAGE ZUIS, FINALIST ZUIO 2014 NOVELTECH TULANE CHALLENGE (1ST PLACE, SEMI FINALIST) NOVATION MULTIPLE SK, NP ARE ☆2016 NO\ **FINALIST ☆**RICE UN COMPE **☆STAGF** ENT; Sandi Heysinger & Dick Williams \$25,000 Women's Health and Wellness VENTI Pay to the Bio Aesthetics BUS **☆INTE** pril 16, 2016 Twenty-Five Thousand & 00/200 25,000.00 COMPETING Sandi Heysinger SUSC MARSHALL INNOV NCE **TECH BUSINESS PITCH** ☆SEMI-FINALIST FOR MASSCHALLENGE (DD) **VENTUREWELL E-TEAM STAGE 1 RECIPIENT** 

(DD)

#### Successes <u>AWARDS</u> NSF I-CORPS FELLOWSHIPS (4) AND COUNTING NSF I-CORPS SITE VENTUREWELL UNIVERSITY INNOVATION FELLOW ENGAGED LEARNING AWARD FROM SISE @ TULANE KOSENMAN INNOVATION AWARD FOR MEDICAL DEVICES





## **QUESTIONS?**

## **BMES Activities and Events**

- > 2017 Professional Development Webinars <u>http://www.bmes.org/content.asp?contentid=147</u>
- 2017 BMES/FDA Frontiers in Medical Devices Conference

http://www.bmes.org/medicaldevices

- May 16-18, 2017 Washington, DC
- 2017 BMES Annual Meeting
   <u>http://www.bmes.org/annual%20meeting</u>
   • October 11–14, 2017 Phoenix, AZ
  - Abstracts Submission Deadline: April 26<sup>th</sup> <u>http://submissions.mirasmart.com/BMES2017</u>

