Performance: Neat & Modified Asphalt Mixtures

Follow up to "All PG 70-22s the Same?", AAPT 1998

Phil Blankenship Koch Pavement Solutions

We Are Going to Discuss...

- Project Description
- Mixture Results
 - Potential Rutting & Moisture
 Damage
- Project Performance as of November 2001

Cooperative Research

- Asphalt Institute
- Kentucky Transportation Cabinet
- Kentucky Transportation Center
- Various asphalt suppliers
- The Walker Company
- Koch Pavement Solutions

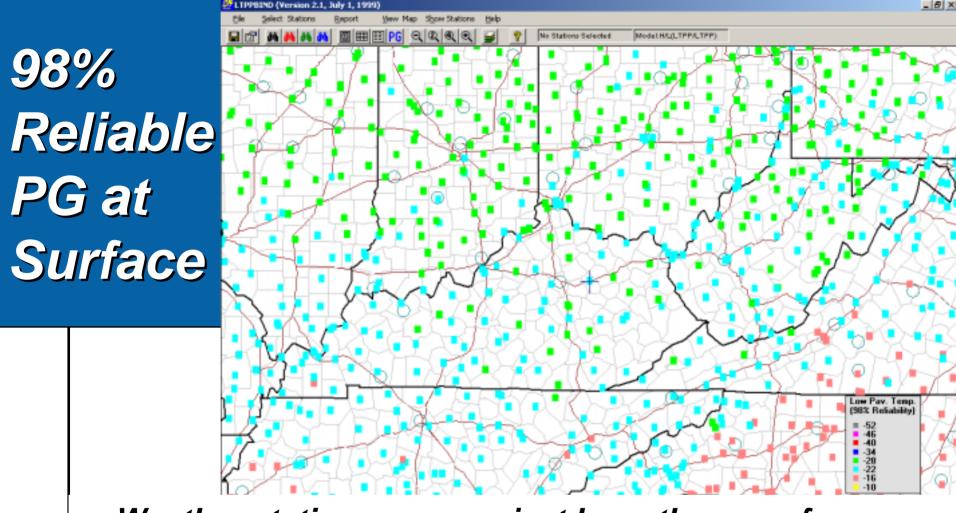
 Do all asphalt modification methods produce HMA mixtures that perform equally?

Research Goals

- Accomplish by...
 - Comparing the various mixtures according to potential performance
 - Rutting
 - Moisture damage
 - Low temperature (Asphalt Institute, TRR #1661)
 - Lab testing of asphalt binder & mix
 - Monitoring yearly performance

Project Description

- I-64 near Mount Sterling, KY
- 33 million ESAL's (20-year design)



Project Description

- Milled & placed 38 mm (1.5 in.) dense-graded (coarse) HMA surface
- One variable (binder type)
 PG 70-22's with different

modification methods with 64-22 (AC-20) control

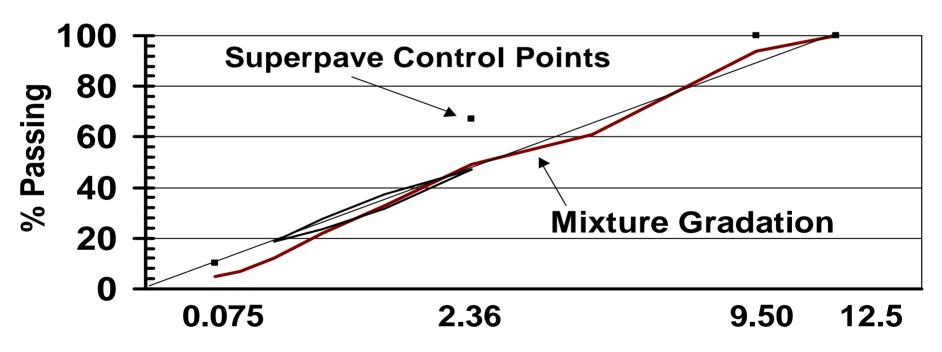
- Weather stations near project have these surface pavement temperatures:
 - 58.6 -20.8 (-20.1 air) → PG 76-22
 - 58.7 -22.9 (-21.5 air) → PG 76-28
- KY is in -22/-28 transition climate

Five Test Sections Placed in 1996

- The Walker Company constructed five, 1.5-mile PG 70-22 test sections
 - Straight-run (unmodified)
 - Chemically modified
 - SBR
 - SBS 1
 - SBS 2
- AC-20 (PG 64-22) control

Samples & Testing

- Sampled from contractor's plant by Kentucky Transportation Cabinet
- Testing performed "blind" by:
 - Kentucky Transportation Cabinet
 - Asphalt Institute
 - Koch Pavement Solutions

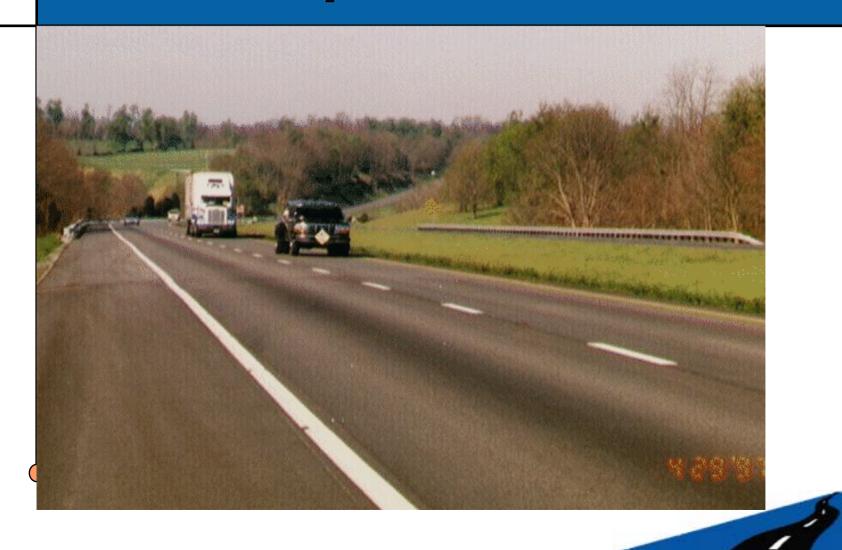


Job-Mix Formula

- Aggregate
 - 45% Dolomite # 8's, 35% Limestone sand, 20% Natural sand
- Marshall design
 - -5.5 % AC, 5.0 % voids at 75 blows
 - Similar to Superpave 9.5mm design with about 1% lower VMA
- Evaluated in SGC at N-design = 109

Gradation

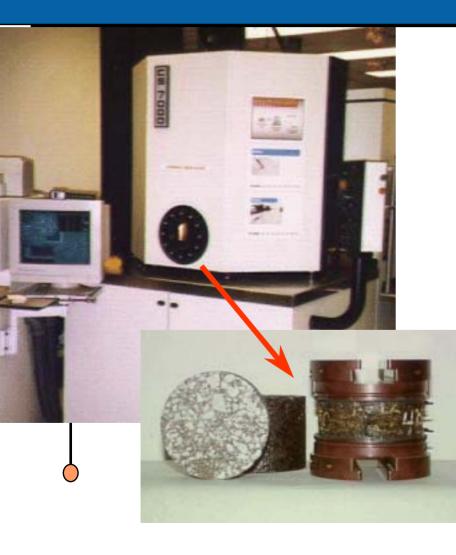
9.5-mm Nominal Mixture

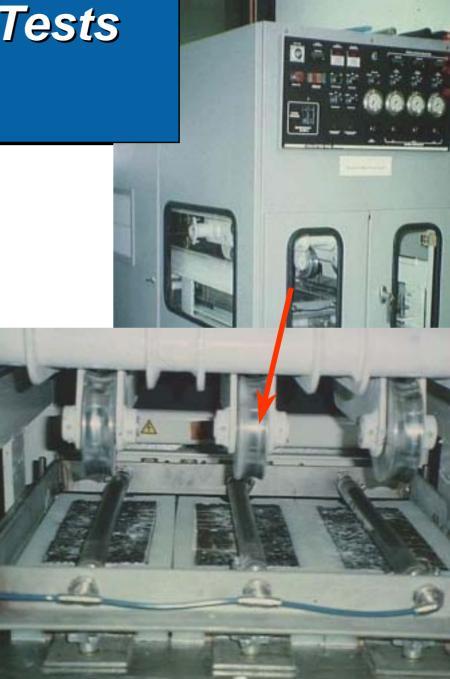

Sieve Size (mm) Raised to 0.45 Power

Identification Key

Sample			
Number	Product	PG	
1	AC-20 (Control)	64-22	
2 - 3	Straight-Run (Crude)	70-22	
4 - 5	Chemically modified	70-22	
6 - 7	SBR-Latex	70-22	
8 - 9	SBS 1	76-22	
11 - 12	SBS 2	70-22	

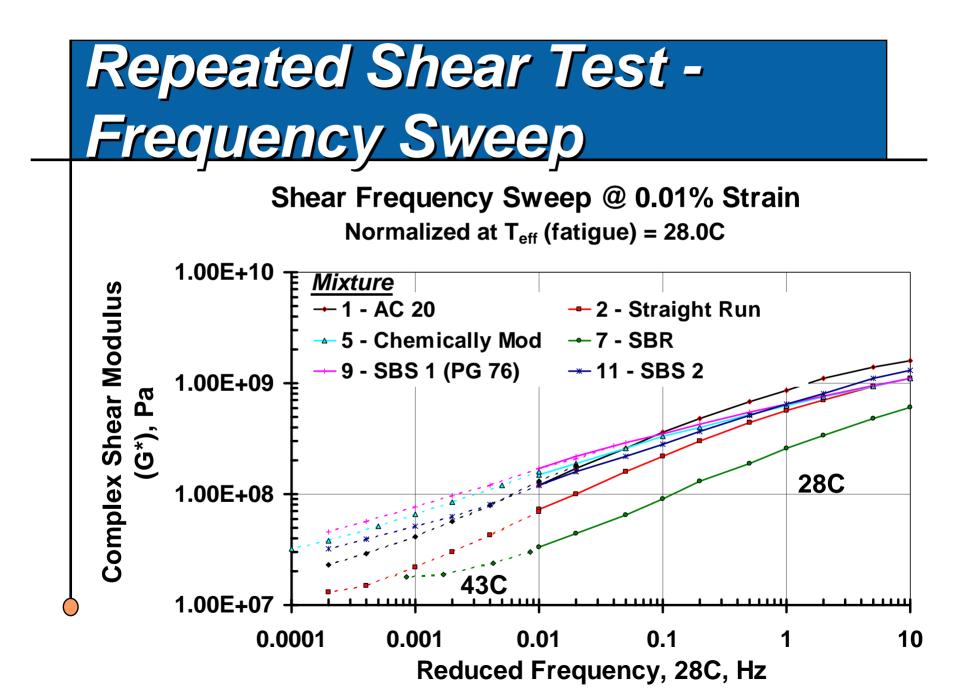
KY I-64, April 1997




Lab Mixture Results

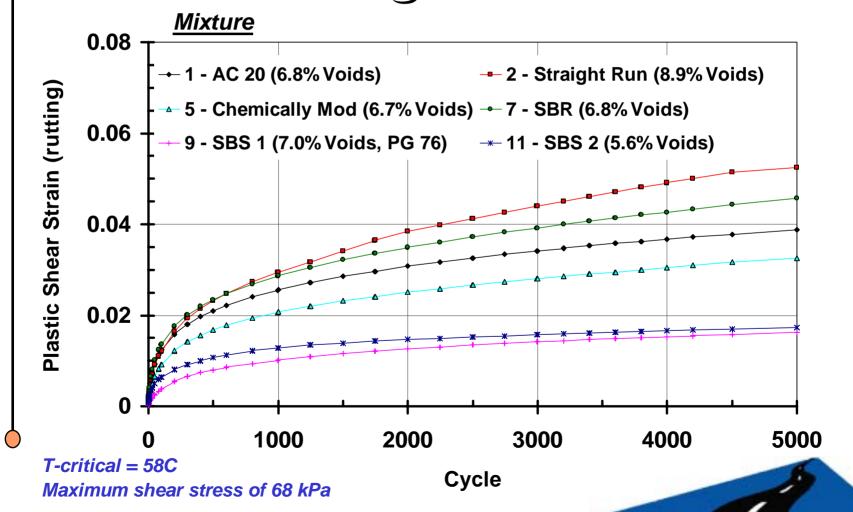
Modulus & Rutting

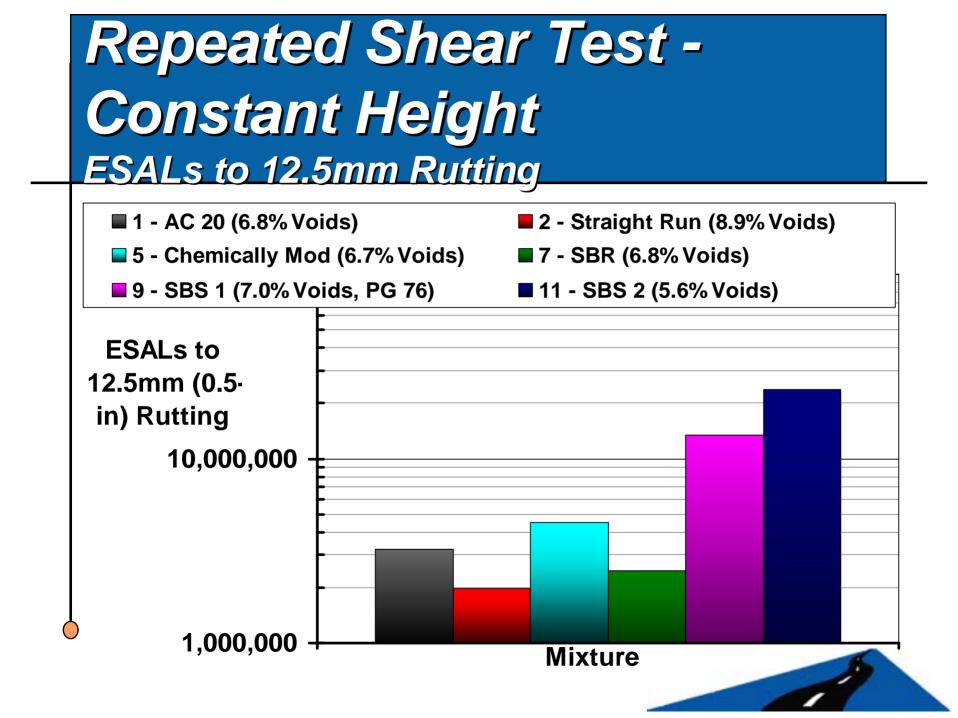
Modulus and Rutting Tests SST and APA



Repeated Shear Test -Frequency Sweep

Lab modulus testing




Repeated Shear Test -Constant Height

Lab rut testing

Repeated Shear Test -Constant Height

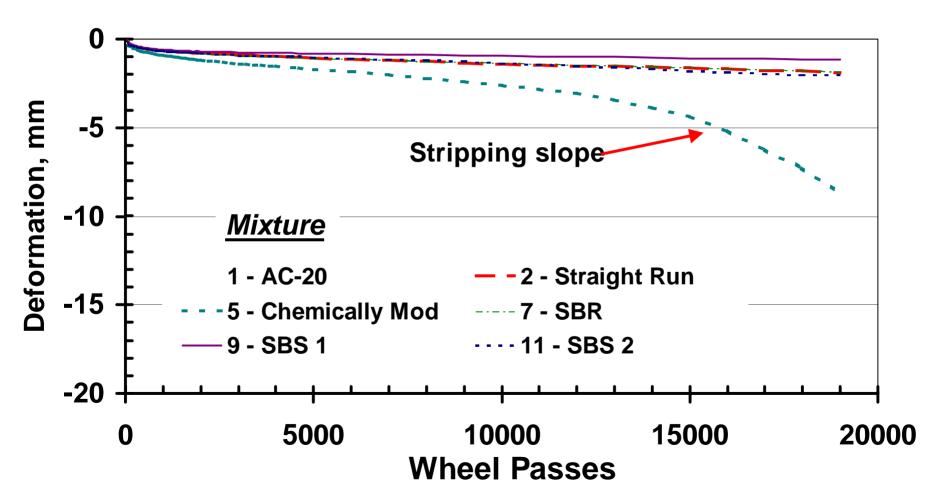
Mixture Results Summary of Lab Predicted Permanent Strain (Rutting)

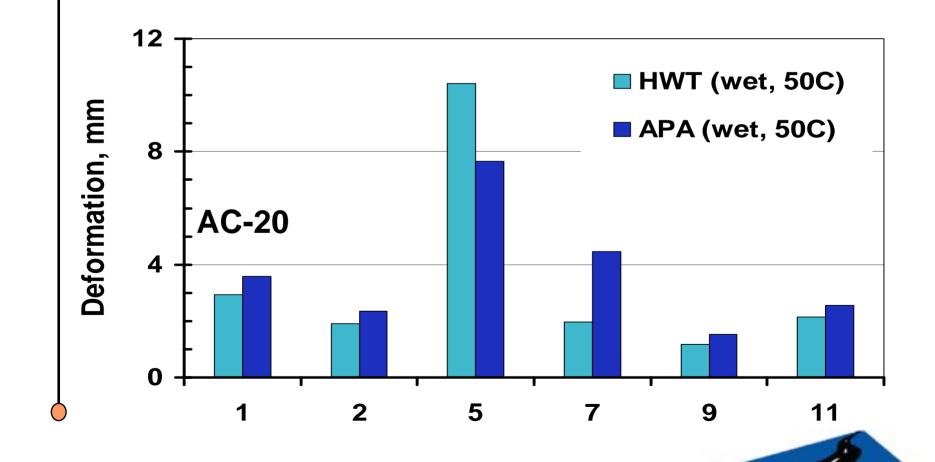
Least Potential Rutting	Shear Frequency Sweep mix m- value, 43C	RST- Constant Height 58°C	RST- Constant Stress Ratio 58°C	GA Loaded Wheel dry at 49°C
	SBS 1	SBS 2	SBS 2	SBS 1 - PASS
	Chemically Modified	SBS 1	SBS 1	SBS 2 - PASS
	SBS 2	Chemically Modified	Chemically Modified	Straight Run - PASS
	SBR	AC 20	SBR	Chemically Mod PASS
	AC 20	SBR	Straight Run	AC 20 -PASS
	Straight Run	Straight Run	AC 20	SBR - FAIL

Lab Mixture Results

Moisture Damage

Moisture Damage Tests APA, TSR, and HWT





Mixture Results Hamburg Wheel Track Test

Mixture Results

Hamburg and Asphalt Pavement Analyzer

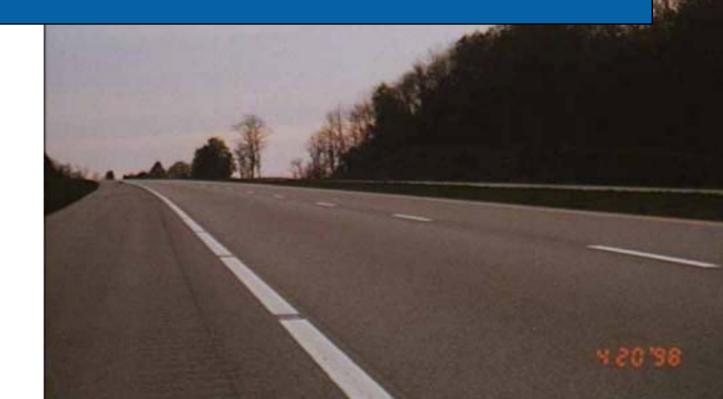
Mixture Results

Summary of Lab Predicted Moisture Damage

Asphalt	TSR	HWT	HWT Stripping	APA
		wet,	Performance	wet,
		50C	(passes) [*]	50C
	70%	4- <i>mm</i>	Visual Stripping	4-mm
	min	max	(Inflection Point)	max
AC20	Pass	Pass	Good	Pass
Straight Run		Pass	Good	Pass
Chemically	Pass	Fail	Maintenance	1 Pass
Modified			possible (14,764)	& 1 Fail
SBR	Pass	Pass	Good	Fail
SBS 1	Pass	Pass	Good	Pass
SBS 2	Fail	Pass	Good	Pass

Conclusions in 1998

1998 Conclusions


- Did we expect all PG 70-22's to perform the same? Not according to:
 - 4 rutting indicators show slight differences
 - –2 moisture damage tests show one mix with potential to strip
- Differences may take 5+ years to appear

1998 Conclusions

In addition to PG testing & volumetric testing, performance related & based testing should be used to verify higher ESAL mixtures

I-64 Performance Update

I-64 Performance Update

- Project visited 1x per year
 - No differences in August 2000
 - No large <u>lab</u> performance differences in stripping & rutting (I.e. catastrophic failures) → no large <u>field</u> performance differences in stripping & rutting Last visit,

I-64 Performance Update Cracking

- Last visit, November 2001
 - All sections but SBR has thermal cracks
 - 1 section with SBS has block & thermal cracking
- Cracking performance differences are from PG low differences, rather than modifier type

Cracking Definitions

SHRP P-338 Distress Manual

What Is Transverse (Thermal) Cracking?

FIGURE 20 ACP 6. Moderate Severity Transverse Cracking

From SHRP P-338 Distress Manual

FIGURE 21 ACP 6. High Severity Transverse Cracking

What Is Block Cracking?

FIGURE 10 ACP 2. High Severity Block Cracking

FIGURE 9 ACP 2. Moderate Severity Block Cracking

From SHRP P-338 Distress Manual

I-64 Section with No Cracks, Nov. 2001

No cracks: Typical of Sections 6-7 & 9-10

I-64 Transverse Cracking, Nov. 2001

All sections cracked except 6-7 (SBR) Low Severity Transverse Cracking

tratert


Transition from Section 7 to Section 8, Nov. 2001

Color difference

I-64 Block Cracking Only Section 8-9, Nov. 2001

Why Cracking? Not expected & was not a major concern in KY...

The Cold & Snow of December 2000 in the Midwest Midwest Climate Center Report

- "The Midwestern region of the United States experienced its 2nd coldest December in 106 year record..."
- "The December 2000 average temperature was 14.3°F (-10C)"
- "... stations broke all-time cold records for December including South Bend, IN; Chicago-Midway, IL; and Louisville & Paducah, KY."

December 2000 Low Temperature

• On December 16, 2000 the low was -17.2C near I-64 PG 70-22 project

Results from Al Study Asphalt Institute, TRR #1661

		Critical Pavement Temp, °C	
	Sample	Mixture IDT	Binder (m-value)
Section 8-9: This field	Α	-30.2	-25.4
	B	-31.7	-22.2
	С	-19.9	-15.1
	D	-23.1	-22.2
	Ε	-26.1	-28.3
	\mathbf{F}	-22.5	-26.2
	G	-34.9	n/a
	Η	-29.9	-21.5
	Ι	-30.6	n/a
	J	-30.8	-21.8
	Κ	-28.4	-24.6

BBR m-value was limiting value on all binders.

Observed Field Cracking

Least Cracking

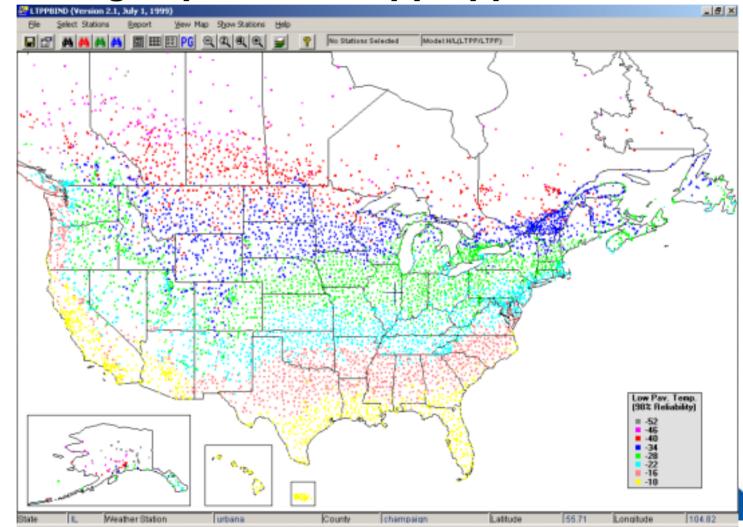
Section (Modifier)	Low Transverse (Thermal) Cracking	Moderate Blocking Cracking	*BBR Predictions
6-7 (SBR)	No cracking	None	NA
11-12 (SBS2)	Few, 1-2 cracks	None	NA
4-5 (Chemically Modified)	Less cracks	None	NA
1 PG (64-22)	Several cracks	None	NA
2-3 (Neat)	Several cracks	None	NA
8-9 (SBS1)	Most cracking	Moderate	-15.1C Sample C in Al Study

*Al data key is not available on all samples.

Comments from KYTC Materials Division

"The amount of cracking that occurred in the past year was very significant and highly undesirable on a 5-yr old project."

What should suppliers & agencies learn from this project as of Nov. 2001?



- The 98% algorithms in LTPPBind continue to prove their validity in field performance
- Agencies should verify that they are specifying 98% reliable binders

Verify You Are Using 98% LTPPBind PG Binders

http://tfhrc.gov/pavement/ltpp/ltppbind.htm

Conclusions

- 98% temperatures occur less frequently than 50%, but can happen any year
- Dear Suppliers:
 - 1st recommend 98% reliable binder according to LTPPBind
 - -...then discuss modifier advantages

- When 98% reliable binders are used, do not expect immediate performance differences between modifiers
 - Similar I-80 PennDOT study of 6 modifiers reported noticeable performance differences after 9-yrs (built 1989) when one section was removed

Other Similar Projects

- Review reports on similar field studies:
 - *PennDOT I-80, CTAA 1996*
 - TTI 187-22, Lewandowski's LCC study

The American Road System It Works! Thank you