Life Cycle Cost Analysis of Engineered Pavements Understanding The True Costs And Savings With Modified Binders

AMAP Annual Meeting, Feb 2, 2005

Mark Buncher, Ph.D., P.E. Director of Field Engineering, Asphalt Institute

pavement cost is best illustrated using life cycle cost.

Today's Overview

asphalt institute

• LCCA

- -101 Basic Concepts
- -401 Advanced Concepts
 - Per FHWA Guidance

• Performance Study of PMA

- Quantifying the Effects of PMA for Reducing Pavement Distress
 - Harold L. Von Quintus, P.E.
 - Al's ER 215 and IS 215

PMA Impact to LCC

- Example Scenarios Illustrating Concepts

LCCA Objective

asphalt institute

 Evaluate the overall long-term economic efficiency between competing alternative investment options.

The Life Cycle

Performance

asphalt institute

Rehabilitation

Major Intervention - Restore Ride
Labor, Materials, Traffic Control *use past bid prices and engineer estimates*

asphalt institute

Maintenance

Activities to Slow Deterioration
Labor, Materials, Traffic Control *consult maintenance records*

Cost

Net Present Value

Most Critical: initial cost and initial performance period

Typical Breakdown of NPV

asphalt institute

40 yr. economic analysis, HMA Pavement

- Initial Construction
 - -65 to 85%
- Rehabilitations
 - 10 to 30%
- Maintenance
 - 3 to 5%
- Salvage Value
 - -1 to 2%

Present Worth Analysis (In/mi) for - LCCPub408yr10/10.xls 14.5-inch section

<mark>Interest</mark> 6

Typical Pa DOT LCCA for Hwy.

Year	Construction Item and/or Material	Quantit	Unit	С	ost/Unit	Current Price	PW
0	10" HMA Base (3 - 10 EAL)	7040	sy	\$	15.95	\$112,288	\$112,288
0	2.5" HMA Binder (3 - 10 EAL)	7040	sy	\$	5.00	\$35,200	\$35,200
0	2" HMA Wearing (3 - 10 EAL)	7040	sy	\$	4.00	\$28,160	\$28,160
0	10" HMA Base (0.3 - 3 EAL)	4106	sy	\$	15.95	\$65,491	\$65,491
0	2.5" HMA Binder (0.3 - 3 EAL)	4106	sy	\$	5.00	\$20,530	\$20,530
0	2" HMA Wearing (0.3 - 3 EAL)	4106	sy	\$	4.00	\$16,424	\$16,424
0	Maint. & Protection of Traffic @2.3%	1	ls		\$6,396	\$6,396	\$6,396
0	Mobilization @5.5%	1	ls		\$15,295	\$15,295	\$15,295
5	Seal Coat Shoulders	4106	sy	\$	0.85	\$3,490	\$2,608
10	Deep Patch 2% (mainline)	141	sy	\$	81.00	\$11,421	\$6,377
10	Mill 2" (mainline)	7040	sy	\$	0.80	\$5,632	\$3,145
10	2" hma overlay (mainline)	7040	sy	\$	4.00	\$28,160	\$15,724
10	Seal Coat Shoulders	4106	sy	\$	0.85	\$3,490	\$1,949
10	Maint. & Protection of Traffic @2.3%	1	ls	\$	1,120.17	\$1,120	\$625
10	Mobilization @5.5%	1	ls	\$	2,678.67	\$2,679	\$1,496
15	Seal Coat Shoulders	4106	sy	\$	0.85	\$3,490	\$1,456
20	Deep Patch 2% (mainline)	141	sy	\$	81.00	\$11,421	\$3,561
20	#60 scratch course	211	ton	\$	34.00	\$7,174	\$2,237
20	2.5" hma overlay (binder)	7040	sy	\$	5.00	\$35,200	\$10,976
20	1.5" hma overlay (wearing)	7040	sy	\$	3.00	\$21,120	\$6,585
20	#60 scratch course	125	ton	\$	34.00	\$4,250	\$1,325
20	2.5" hma overlay (binder)	4106	sy	\$	5.00	\$20,530	\$6,401
20	1.5" hma overlay (wearing)	4106	sy	\$	3.00	\$12,318	\$3,841
20	Maint. & Protection of Traffic @2.3%	1	ls		\$2,576	\$2,576	\$803
20	Mobilization @5.5%	1	ls		\$6,161	\$6,161	\$1,921
						\$0	\$0
25	Seal Coat Shoulders	4106	sy		\$1	\$3,490	\$813
						\$0	\$0
30	Same Scenario as Year 10	1	ls		\$52,502	\$52,502	\$9,141
						\$0	\$0
35	Seal Coat Shoulders	4106	sy	\$	0.85	\$3,490	\$454
						\$0	\$0
20	Total Annual Maintenance (\$1825/yr)	40	yr	\$	1,825.00	\$73,000	\$22,762
						\$0	\$0
						\$0	\$0
						\$0	\$0
						\$0	\$0
					Total	Present Worth	\$403,986

<u>Yr.</u>	<u>Activity</u>			
0	14.5" HMA			
10	2" mill and fill 2% patching			
20	4" struct. overla 2% patching			
30	Same as yr.10			
Every 5 th	seal shoulders			
Annual	maintenance			
Analysis Period = 40 yrs.				

V

What's Significant

Typical Pa DOT LCCA for Hwy.

asphalt institute

Advanced LCCA Concepts

User Delay Costs

asphalt institute

Costs incurred by users of a highway due to construction, rehabilitation and maintenance activities.

SKI JO

User Delay Costs

User Cost Components

- Vehicle Operating

- stopping, idling, starting
- based on normal roadway speed and vehicle type
 - could be \$1000 / 1000 trucks @70 mph

- Delay

- FHWA Guidelines:
 - \$11.58 / hour for passenger vehicle
 - \$18.54 / hour for single unit truck
 - \$22.31 / hour for combination truck

- Others Difficult to Model

- Crash
- Self Rerouting

Analysis Alternatives

asphalt institute

• Deterministic

 Choose most economical option based on mean values

Probabilistic

- Examine distributions of cost and select most economical option at some level of probability
- Typical inputs: average and standard deviation

FHWA's Latest Guidance on LCCA

asphalt institute

"Demo Project 115"

• State of the Art Procedures Incorporating:

- work zone user delay costs
- probabilistic approach
- Very Complex
- Software Assists With Actual Implementation by Agencies
 - FHWA version
 - APA version

APA's LCCA Software

- Follows FHWA Guidelines
- Up to Four Alternatives
- Considers Agency and User Costs
 - Optimizes Work Zone Timing to Save \$\$\$
- Built-in Default Costs
- Deterministic or Probabilistic
- Self-Contained Windows Program
- Comprehensive Help File
- Graphical Output
- Free at www.asphaltalliance.com

asphalt institute

Performance of PMA

IS-215 Quantifying the Effects of PMA for Reducing Pavement Distress asphalt institute

This revealing new study defines the advantages of polymermodified asphalt (PMA) over conventional hot mix asphalt (HMA) when used in a variety of climates and traffic volumes within North America.

\$30.00

ER-215 Engineer's Report: Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress

ENGINEERING REPORT 215 ER-215

A detailed, in-depth version of the IS-215, the Engineer's Report includes all related data and findings of the study.

A CD accompanies the report with five appendices, tables, and other pertinent material. Includes a <u>free copy</u> of the related IS-215.

\$40.00

Study Sponsors

asphalt institute

Industry Associations

- The Asphalt Institute
- The Association of Modified Asphalt Producers

Federal Highway Administration

Corporate Sponsors

- Arr-Maz Products
- ATOFINA Petrochemicals, Inc.
- Dexco Polymers LP
- Dynasol LLC
- KRATON Polymers
- Polimeri Europas Americas
- Ultrapave

asphalt institute

Project Team ARA

- Harold L. Von Quintus, P.E.
- Jagannath Mallela

Study Team

• Jane Jiang

Project Monitors

- Mark Buncher
- Tim Glanzman

- Quantify the effect of using PMA as compared to conventional-unmodified HMA mixtures.
- 2. Identify conditions that maximize effect of PMA to increase HMA pavement & overlay life.

Agency Survey: Reasons for Using PMA?

Is There a Benefit Using PMA?

Test Sections - Experiments

- LTPP: Core & Supplemental Sections
 - SPS-1; SPS-5; SPS-6; SPS-9
 - GPS-1; GPS-2; GPS-6; GPS-7
- MTO Modifier Study
- Accelerated Pavement Tests
 - FHWA ALF, Turner Fairbanks
 - NCAT Test Road
 - California HVS Studies
 - Ohio Test Road
 - Corp of Engineers

Selected Locations for Comparison

Comparison of Pavement Distress/Performance

asphalt institute

Fatigue Cracking Rutting

- Thermal Cracking

Experimental Factorial

		Climate					
Pavement Cross Section	Foundation	Free	eze	Non-Freeze			
		Wet	Dry	Wet	Dry		
	Fine-Grained	2	2	4	3		
	Coarse-Grained	3	3	3	3		
Thick HMA	Fine-Grained	2	2	2	3		
	Coarse-Grained	2	2	3	2		
	Fine-Grained	0	1	2	2		
Full-Depth	Coarse-Grained	0	1	2	2		
HMA Overlays	HMA	3	3	6	6		
	PCC	4	3	4	4		
Total No. PMA +	- Comp. Sections	16	17	26	25		

Distress Comparisons - Rutting

Distress Comparisons – Transverse Cracking

Distress Comparisons – Fatigue Cracking

Distress Comparisons – Fatigue Cracking

M-E damage based analysis completed for loadrelated distresses comparing damage indices w/ actual distress observations.

- Fatigue Cracking
- Rutting
 - Thermal Cracking

Damage indices computed for both rutting and fatigue using local, cell specific calibration.

		Climate					
Pavement Cross Section	Foundation	Free	eze	Non-Freeze			
		Wet	Dry	Wet	Dry		
	Fine-Grained	2	2	4	3		
	d d	3	3	3	3		
Unmodified Thisk up Sect used for		2	2	2	3		
	Calibration	2	2	3	2		
Eull Donth	Pine-orained	0	1	2	2		
Full-Depth	Coarse-Grained	0	1	2	2		
	НМА	3	3	6	6		
	PCC	4	3	4	4		
Total No. PMA Sections		16	17	26	25		

Summary of Expected Increase in Service Life, Years, Based on M-E Damage Based Analysis

Site Factor		Condition Description	Added Life
	Non-E	xpansive	5-10
Foundation	Expar	xpansive 2-5	
	Frost	Susceptible – Cold Climate	2-5
Water	Deep		5-10
Table &	Shallo	w; Adequate	5-8
Drainage	Shallo	w; Inadequate	0-2
		Good	5-10
Existing		Poor-Extensive Cracking	1-3
Condition	DCC	Good	3-6
Condition	PCC	Poor-Faulting & Cracking	0-2

Summary of Expected Increase in Service Life, years asphalt institute

Site Factor	Condi	Added Life	
Climate;	Hot	Hot Extremes	5-10
Temp.	Mild		2-5
Fluctuations	Cold	Cold Extremes	3-6
		Intersections	5-10
T (() T)	Low	Thoroughfares	3-6
Volumes		Heavy Loads	5-10
Volumes	Moderate		5-10
	High	5-10	

Generic LCCA Strategy/ Timeline and Revised PMA Timelines Based on Results

Years	5	10	15	20	25	30	35	40
Conv.	R.	Maint.	R.	Maint.	R.	Maint.	R. I	Maint.
Struct.		Mill- Fill		HMA Over.		Mill- Fill	HMA Over	
PMA		R. Ma	int.			RM	•	RM
Surrace 2-4 in.				HMA Over.			HMA Over	
PMA			RM			RM		RM
Full Depth				Mill- Fill			Mill- Fill	

Findings

- Use of PMA reduces distress in pavements & overlays
 - Less Fatigue Cracking
 - Fewer Transverse Cracks
 - Smaller Ruts

- Field & laboratory investigations of PMA mixes suggest:
- Enhanced Performance
 - -25 to 100 % increase in service life
 - 3 to 10 years increase in service life
- Reduced Maintenance Activities
 - Crew Safety
 - Traffic Delay

Findings & Conclusions

 Mechanistic-empirical analysis confirms need for <u>different calibration factors</u> for predicting performance of PMA mixtures.

Economic Impact of PMA

- asphalt institute
- Use LCCA to Evaluate Actual Cost/Savings with Enhanced Performance from PMA – Examples, But...
- Each Agency Must Evaluate Using Their Unique Inputs:
 - Prices, Performance Periods, Designs,
 Strategies, Discount Rates, User Costs, Etc

Assumptions for Examples

14.5" HMA Pavement	Interest Rate: 4%		No User Costs	Considered		
	Analysis Period = 40 yrs.					
Prices						
Wearing (PG 64-22)	\$36/ton	\$1.97/sy-in				
Wearing (PG 76-22)	\$41/ton	\$2.24/sy-in				
Binder (PG 64-22)	\$35/ton	\$1.91/sy-in				
Binder (PG 76-22)	\$40/ton	\$2.19/sy-in				
Base (PG 64-22)	\$35/ton	\$1.91/sy-in				
Base (PG 76-22)	\$40/ton	\$2.19/sy-in				
Milling		\$1.40/sy				
HMA Patching		\$36/sy				
Quantities (per mile)						
Mainline: 2-lanes @ 12 ft ea	Э.	14,080sy				
Shoulders: 1 @ 10 ft and 1	@ 4 ft	8,212sy				
References						
Prices from Maryland's "Pavement Selection Process"						
Maintenance from "Pa DOT Pub. 242, Pavement Policy Manual"						
Performance Scenarios are Examples from "Quantifying Effects of PMA"						

EXAMPLE 1, Unmodified All Layers

Year	Construction Item and/or Material	Quantity	Unit	Co	st/Unit	
0	10" HMA Base (3 - 10 EAL)	14080	sy	\$	19.10	Yr.
0	2.5" HMA Binder (3 - 10 EAL)	14080	sy	\$	4.78	
0	2" HMA Wearing (3 - 10 EAL)	14080	sy	\$	3.94	U
0	10" HMA Base (0.3 - 3 EAL)	8212	sy	\$	19.10	
0	2.5" HMA Binder (0.3 - 3 EAL)	8212	sy	\$	4.78	
0	2" HMA Wearing (0.3 - 3 EAL)	8212	sy	\$	3.94	
0	Maint. & Protection of Traffic @2.3%	1	ls		\$14,264	
0	Mobilization @5.5%	1	ls		\$34,109	
						10
10	Deep Patch 1% (mainline)	141	sy	\$	36.00	10
10	Mill 2" (mainline)	14080	sy	\$	1.40	
10	2" hma overlay (mainline)	14080	sy	\$	3.94	
10	Maint. & Protection of Traffic @2.3%	1	ls	\$	1,846.05	
10	Mobilization @5.5%	1	ls	\$	4,414.48	10
						10
18	Mill 2"	22292	sy	\$	1.40	
18	Deep Patch 3% (mainline)	422	sy	\$	36.00	
18	#60 scratch course	422	ton	\$	36.00	
18	2.5" hma overlay (binder)	14080	sy	\$	4.78	
18	2" hma overlay (wearing)	14080	sy	\$	3.94	
18	#60 scratch course	246	ton	\$	36.00	
18	2.5" hma overlay (binder)	8212	sy	\$	4.78	
18	2" hma overlay (wearing)	8212	sy	\$	3.94	
18	Maint. & Protection of Traffic @2.3%	1	ls		\$6,091	
18	Mobilization @5.5%	1	ls		\$14,566	28
28	Same Scenario as Year 10	1	ls		\$86,524	
						34
34	SameScenario as Year 18	1	ls		\$285,492	54
20	Total Annual Maintenance (\$1825/yr)	40	yr	\$	1,825.00	A
						Annual
					Total	

<u>Activity</u>	<u>Cost,\$</u>	<u>NPW,\$</u>
10" Base	668K	668K
2.5" Binder		
2" Wearing		
0"	071/	5016
2 ^{°′} mili/fili	8/K	58K
1% patching		
(not on shoulde	rs)	
2" mill	285K	141K
3% patching		
scratch		
2.5" Binder		
2" Wearing		
(incl. shoulders))	
Same as yr.10	87K	29K
Same as yr.18	285K	75K
Maint (\$1.8K/yr)	73K	33K
Total N	PW:	1,005K

EXAMPLE 2, Modified Wearing Course (top 2", including shoulders)

Year	Construction Item and/or Material	Quantity	Unit	Cos	t/Unit
0	10" HMA Base (3 - 10 EAL)	14080	sy	\$	19.10
0	2.5" HMA Binder (3 - 10 EAL)	14080	sy	\$	4.78
0	2" HMA Wearing (3 - 10 EAL)	14080	sy	\$	4.48
0	10" HMA Base (0.3 - 3 EAL)	8212	sy	\$	19.10
0	2.5" HMA Binder (0.3 - 3 EAL)	8212	sy	\$	4.78
0	2" HMA Wearing (0.3 - 3 EAL)	8212	sy	\$	4.48
0	Maint. & Protection of Traffic @2.3%	1	ls		\$14,541
0	Mobilization @5.5%	1	ls		\$34,771
18	Mill 2"	22292	sy	\$	1.40
18	Deep Patch 3% (mainline)	422	sy	\$	36.00
18	#60 scratch course	422	ton	\$	36.00
18	2.5" hma overlay (binder)	14080	sy	\$	4.78
18	2" hma overlay (wearing)	14080	sy	\$	4.48
18	#60 scratch course	246	ton	\$	36.00
18	2.5" hma overlay (binder)	8212	sy	\$	4.78
18	2" hma overlay (wearing)	8212	sy	\$	4.48
18	Maint. & Protection of Traffic @2.3%	1	ls		\$6,368
18	Mobilization @5.5%	1	ls		\$15,228
34	SameScenario as Year 18	1	ls		\$298,469
20	Total Annual Maintenance (\$1825/yr)	40	yr	\$	1,825.00
					Total

<u>Yr.</u>	<u>Activity</u>	Cost,\$	<u>NPW,\$</u>
0	10" Base 2.5" Binder 2" Wearing	682K	682K
18	2" mill 3% patching scratch 2.5" Binder 2" Wearing	298K	147K
34	Same as yr.18	298K	79K
Annual	Maint (\$1.8K/yr)	73K	33K
	Total NF	PW:	941K

EXAMPLE 3, Perpetual Pavement: Modified Wearing Course (top 2") and Bottom 4" of Base (incl. shoulders)

nterest									
4		-	_			(r.	Activity	Cost.\$	NPW.\$
Year	Construction Item and/or Material	Quantity	Unit	Cost/	/Unit	<u></u>	<u>/////////////////////////////////////</u>	<u> </u>	<u></u> ,,,
0	4" HMA Modified Base (3 - 10 EAL)	14080	sv	\$	8.76				
0	6" HMA Base (3 - 10 EAL)	14080	sv	\$	11.46		10" Base	709K	709K
0	2.5" HMA Binder (3 - 10 EAL)	14080	sv	\$	4.78		2.5" Rindor		
0	2" HMA Wearing (3 - 10 EAL)	14080	sv	\$	4.48		2.5 Dilidei		
0	4" HMA Base (0.3 - 3 EAL)	8212	sv	\$	8.76		2" Wearing		
0	6" HMA Base (3 - 10 EAL)	8212	sy	\$	11.46		Ŭ		
0	2.5" HMA Binder (0.3 - 3 EAL)	8212	sy	\$	4.78				
0	2" HMA Wearing (0.3 - 3 EAL)	8212	sy	\$	4.48				
0	Maint. & Protection of Traffic @2.3%	1	ls		\$15,115				
0	Mobilization @5.5%	1	ls		\$36,144				
18	Mill 2"	22292	sy	\$	1.40 -	8	2" mill/fill	141K	70K
18	2" hma overlay (wearing)	14080	sy	\$	4.48		2 11111/111	1411	101
18	2" hma overlay (wearing)	8212	sy	\$	4.48				
18	Maint. & Protection of Traffic @2.3%	1	ls		\$3,015				
18	Mobilization @5.5%	1	ls		\$7,209				
34	SameScenario as Year 18	1	ls	9	\$141,301 1	84	Same as vr 18	141K	37K
									UII
20	Total Annual Maintenance (\$1825/yr)	40	yr	\$ 1	1,825.00				
						Annual	Maint (\$1.8K/yr)	73K	33K
					Total	maar	(\$11013))	, or	UUI
							Total N	849K	

PMA - Smart Economics

Pavement Type	Initial Cost	<u>Change</u>	<u>NPV</u>	<u>Savings</u>
1) Unmodified (resurface yr.10 and 28, structural ov	669K erlay yr.18 ai	- nd 34)	1,005K	-
2) Modified Wearing (structural overlay yr.18 and 34)	682K	+ 2.0%	941K	6.5%
Extra) Modified Wearing and Binder (structural overlay yr.18 and 34)	698K	+ 4.5%	964K	4.5%
3) Modified Wearing & Base (Perpetual Pavement: resurface yr. 18	709K 3 and 34)	+ 6.0%	849K	15.5%
Extra) Modified Wearing, Binder & Ba (Perpetual Pavement: resurface yr. 18	se 725K 3 and 34)	+ 8.5%	864K	14.0%

Note: Modified mainline and shoulders

West Virginia LCCA Example

- Changed Only Initial Performance from 10 to 15 yrs
 - Overlays at yr.15 (vs yr.10), yr.25 and yr.35
 - Result: 5% savings in NPV
- Last Example: Cost to Modify was Approx. 1% of Pavement Cost per Inch Modified
 - Based on PMA mix costing approx 14% more
 - Included modifying shoulders
- Ballpark Breakeven Rule of Thumb: Need approx.
 10% Performance Increase per Inch Modified
 - Doesn't consider user delay costs which would make PMA even more attractive

Polymer Modified Asphalt -Smart Economics

Questions?