IMPACT OF POLYMER MODIFIED BINDERS ON THE DSR CREEP PROPERTIES OF HMA MIXTURES

by Gerald Reinke & Stacy Glidden

Mathy Technology and Engineering Services

- MOTIVATION to develop a mechanistic test for HMA
- Sample Preparation & Test Description
- Rutting Prediction Results (MN & ALF)
- Results compared to SST testing
- Impact of Binder, Modifier & Gradation

- MOTIVATION to develop a mechanistic test for HMA
- · Sample Preparation & Test Description
- Ruiting Prediction Results (MIN & ALF)
- Results compared to SST testing
- · Impact of Binder, Modifier & Gradation

- Work on mechanistic test not finalized at the end of SHRP research program
- SST equipment and FSCH & RSCH tests were available, test methods and analysis procedures to predict rutting not well defined
- Equipment was expensive, few units available
- Agencies & contractors were interested in answers to short term questions regarding relative performance of mixes

- Perception among user agencies and suppliers that SHRP PG grading system did not adequately identify the performance benefits of polymers or other additives in binders
- Reasons for perception
 - SHRP binder tests seemed to correlate to mix performance for conventional binders
 - SHRP PG grading system did not provide tests capable of identifying superior performing binders in HMA

- One response was the implementation of SHRP Plus <u>binder</u> specifications
 - Forced suppliers to provide binders with a known performance history
 - Elastic Recovery (@ various temperatures & values)
 - Force Ductility (@ various temperatures & values)
 - Toughness & Tenacity (various results)
 - In effect the binder specification became a surrogate mixture performance specification
 - Lack of correlation to mix performance has not deterred use
 - Obvious need for some mechanistic solution

- MOTIVA TION to develop a mechanistic test for HIMA
- Sample Preparation & Test Description
- Ruiting Prediction Results (MIN & ALF)
- Results compared to SST testing
- · Impact of Binder, Modifier & Gradation

Idea for dynamic mixture test based on the procedure developed for binder cumulative strain test plus the test procedure employed in SST RSCH mix test

A 1 SECOND STRESS IS APPLIED FOLLOWED BY A 9 SECOND RECOVERY PERIOD

Idea for dynamic mixture test based on the procedure developed for binder cumulative strain test plus the test procedure employed in SST RSCH mix test

A 1 SECOND STRESS IS APPLIED FOLLOWED BY A 9 SECOND RECOVERY PERIOD

Sample Preparation

Sample Preparation & Test

- Sample Size
 - 6 mm x 12 mm x 50 mm
 - 10 mm x 12 mm x 50 mm

Sample Preparation & Test

- Dynamic Creep & Recovery Test
 - 10 Second Cycles
 - 1 Second Stress
 - 9 Seconds Recovery
- Static Creep Test
 - Stress Applied Until Failure

- MOTIVATION to develop a mechanistic test for HIMA
- · Sample Preparation & Test Description
- Rutting Prediction Results (MN & ALF)
- Results compared to SST testing
 - · Impact of Binder, Modifier & Gradation

MNROAD 1992 MIX INFORMATION

CELL #	MIX TYPE &	AVE RUT DEPTH
	BINDER	AUG 2000, mm
CELL 3	50 BLOW MARSHALL, 120/150	6.21
CELL 4	GYRATORY DESIGN, 120/150	9.60
CELL 17	75 BLOW MARSHALL, AC-20	5.15
CELL 18	50 BLOW MARSHALL, AC-20	5.96

RUT DATA FROM ALF REPORT TESTING PERFORMED @ 58° C

LANE	BINDER	1994	Rutting	Wheel	Rutting
#		Rut, mm	@ 2730	passes to	@ 10,000
			wheel	15 mm	wheel
			passes	rut depth	passes
5	AC-10, 58-28	27	23.2	946	39.3
7	STYRELF 82- 22	18	8	5.55 E4	12
8	NOVAPHALT , 76-22	9	3.5	1.75 E6	4.4
9	AC-5, 52-34	22	37.4	340	48.1
10	AC-20, 64-22	36	20.1	980	36.3

FHWA ALF Testing

FHWA LANE 8-3, 68kPA, 58°C, CUM CRT

FHWA ALF Testing

WHEEL PASSES TO 15 mm RUT DEPTH AS FUNCTION OF MIX PERMANENT STRAIN @ 10 TEST CYCLES

FHWA ALF Testing

ALF RUT DEPTH AFTER 2730 WHEEL PASSES AS FUNCTION OF MIX η_{0} @ 10 CYCLES, 58° C, 68 KPa

- MOTIVATION to develop a mechanistic test for HIMA
- · Sample Preparation & Test Description
- Ruiting Prediction Results (MIN & ALF)
- Results compared to SST testing
- · Impact of Binder, Modifier & Gradation

SUPERPAVE MIX - COMPARE SST TO DSR DYNAMIC CREEP RESULTS

SMA MIX - COMPARE SST TO DSR DYNAMIC CREEP RESULTS

- MOTIVATION to develop a mechanistic test for HIMA
- · Sample Preparation & Test Description
- Ruiting Prediction Results (MIN & ALF)
- Results compared to SST testing
 - Impact of Binder, Modifier & Gradation

MIXTURE STATIC CREEP TEST COMPARISON ALL MIXES USED THE SAME AGGREGATE

=**||||TF**|=

TORSIONAL FLOWTIME TO FAILURE OF MIX, 67° C, 50 KPa CORRELATED TO CUMULATIVE STRAIN OF RTFO RESIDUE DETERMINED AT 67° C & 50 Pa STRESS

RELATIONSHIP BETWEEN CUMULATIVE STRAIN RESULTS AND

CORRELATION BETWEEN MIX FLOW TIME TO FAILURE AND THE CUMULATIVE % STRAIN OF THE BINDER

Comparison of 2 aggregate structures with 3 binders Mix types •e-3 •75 gyration @ N_{design} 1 to < 3 million ESAL's •PG 58-28, PG 64-34, PG 70-28; 6.0% binder •E-10 •100 Gyrations @ N_{design} •3 to < 10 million ESAL's •PG 58-28, PG 70-28; 5.4% binder content

Recommendations

- Use 10 mm thick slices to minimize testing variability
- Test should be conducted at the appropriate climatic temperature, not the PG Grade temperature
- Use 68 kPa stress level whenever possible, lower stress levels can be used but relationship to 68 kPa results is not known
- Dynamic creep testing should be used, especially for polymer modified mixes

- Conclusions
 The DSR dynamic creep test can identify performance differences between
 - Aggregate structure
 - Mix type
 - Binder grades
 - Impact of polymer or other additives (fillers/fibers)
 - Service temperature variations
- The DSR dynamic creep test correlates well to the rutting behavior in the field for the two test road projects investigated (MNROAD & ALF)

CONCLUSION

- The DSR dynamic creep test results correlate well to SST RSCH results for the project investigated
- Testing of field cores yields lower response values than testing lab specimens
 - Due in part to differences in air voids
- DSR creep testing of SMA mixes not yet as robust as testing of Superpave mixes
 - Due to aggregate skeleton
 - Inability to apply confining pressure

CONCLUSION

- THE BINDER CUMULATIVE STRAIN RESULTS WERE PREDICTIVE OF DSR CREEP RESULTS FOR MIXTURES
 - BINDER CUMULATIVE STRAINS BELOW 1500% MEASURED AT THE CLIMATE TEMPERATURE USING 300 Pa OF STRESS RESULTED IN MIXES WITH IMPROVED DYNAMIC CREEP TEST RESULTS COMPARED TO CONTROL BINDERS

 IT IS SUGGESTED TO USE A BINDER STRAIN OF <2000% AS A STARTING POINT TO BEGIN EVALUATING THE IMPACT OF BINDER STRAIN ON MIX PERFORMANCE

TO BE CONSIDERED

- The DSR dynamic creep test is suitable as a mix design tool, however more study needs to be conducted to determine appropriate response levels for field performance
 - Select a test response and monitor the field rutting behavior of mix
 - Time to 5% strain
 - Compliance or % strain at 100 or 200 seconds
 - Zero shear viscosity of mix at 100 or 200 cycles
 - Flownumber to tertiary failure

TO BE CONSIDERED

- The DSR dynamic creep test is suitable as a HMA QC tool. Volumetric QC specimens could be prepared for creep testing within a 6 hr time period
 - Creep response data available on the same day as mix laydown. Match with mix design values
 - Field lab installation is feasible, although most logically used on major projects
 - Equipment cost, including saws, is approximately \$75,000

ACKNOWLEDGEMENTS

Shangtao Dai, MN DOT Research Samples and Rutting Data

> Kevin Stuart, FHWA ALF Samples

If you were unable to obtain a CD copy and would like one I can be reached at: greinke@mathy.com

