

Development of a Modified High Performance Thin Overlay HMA for NJDOT

Thomas Bennert Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University, NJ

Association of Modified Asphalt Producers (AMAP) AMAP 8th Annual Meeting Boston, MA February 12th to 14th, 2007

NJ's Thin-Lift Requirements

New Jersey requirements

- ◆ Thin-lift ≤ 25mm thick (Ideally)
 - Minimal change to existing infrastructure (bridge clearances, drainage, etc.)
- Minimal Impact to Users (Coverage vs Unit Time)
- Re-new and upgrade road surface
 - Ride Quality (Smoothness)
- No "Cure-time" dependent materials (i.e. cold applications)
 - Typical high ESAL's limit use

High Performance Thin-Overlay

Focused Applications

Preventative Maintenance – NJDOT

- Placed after signs of initial surface distress
- Also potential use of "Shim" course on PCC prior to Wearing Course

Pavement Overlay – Locals/Municipalities

- Place immediately on surface of pavements showing signs of surface distress with or without milling
 - Low severity wheelpath alligator cracking (base issues)
 - Surface cracking with minimal rutting

Potential Areas of Application

Low Severity Wheelpath

Low to Mod. Transverse Cracking

Direct Overlay – No Milling

High Performance Thin-Overlay

Job Mix Formula Requirements		
Sieve Size	Percent Passing	
3/8"	100	
#4	65 - 85	
#8	33 - 55	
#16	20 - 35	
#30	15 - 30	
#50	10 - 20	
#100	5 - 15	
#200	5 - 8	
Min. % Binder	7.0	

FAA > 45% (AASHTO T304) Fine aggregate of stone sand (no natural sands)

Sand Equivalency > 45% (AASHTO T176)

Volumetric Requirements for Design and Control of HPTO							
Requirem ents	Required Density (% of Max. Sp. Gr.)		Voids in Mineral	Dust to	Draindown,		
	Ndes (50 Gyrations)	Ndes (100 Gyrations)	Aggregate (VMA)	Ratio	T305		
Design	96.5	< 99.0	> 18.0%	0.6 - 1.2	< 0.1 %		
Control	95.5 - 97.5	< 99.0	> 18.0%	0.6 - 1.2	< 0.1 %		

High Performance Thin-Overlay

- Asphalt Binder
 - Polymer-modified binder
 - PG76-22 (NJDOT Spec)
 - RTFO Elastic Recovery > 65% @ 25°C (AASHTO T301)
 - Separation Test < 4.5°C after 4 hrs (ASTM D5976)</p>
- Performance Specification
 - Utilize the Asphalt Pavement Analyzer (AASHTO TP 63) for stability check

 Mix design verification and production control (1st Lot and every other Lot after)

Asphalt Pavement Analyzer

RIJ

GERS

- AASHTO TP 63

- 100 lb wheel load; 100 psi hose pressure
- Tested at 64°C for 8,000 loading cycles
- Samples at 5 +/- 0.5% air voids
- APA Rutting < 4 mm to PASS

HPTO Lab Performance Evaluation

Mixture properties relative to field performance

- Permanent Deformation Stability
 - Asphalt Pavement Analyzer (AASHTO TP63)
 - Repeated Load Simple Performance (NCHRP Report 465)
- Fatigue resistance
 - Flexural Beam Fatigue (AASHTO T321)
- Resistance to PCC Slab Horizontal Movement
 - Overlay Tester
- Dynamic Modulus (AASHTO TP62)
 - HMA stiffness at various temperature and loading speeds
- Permeability
 - Flexible Wall Permeability (ASTM D5084)

Rutting Stability – APA

Repeated Load Test – NCHRP Report 465

Fatigue Evaluation

- Flexural Beam Fatigue Device, AASHTO T-321
- Tests mix's ability to withstand repeated bending which causes fatigue failure
- Data = number of loading cycles to failure (loss of stiffness)
- Run at high level of tensile strain (1000 µ-strain) to simulate excessive bending, similar to movements @ PCC joints

Climatic Loading – Horizontal Movement

Hot Mix Asphalt Overlaid on PCC

Horizontal Tensile Stress due to Expansion/Contraction of PCC from Temperature

Horizontal Stress/Strain is modeled using Overlay Tester

RIJ

I5HD from Garden State Parkway

NJDOT 12H76 from Rt 31 & I95

Dynamic Modulus Testing

 For Mechanistic Design procedures, Dynamic Modulus (E*) is main material input parameter

Test method determines the modulus of HMA under
 various temperatures and loading frequencies

Dynamic Modulus Testing

Loading Frequency (Hz)

Flexible Wall Permeability Testing

- For Pavement
 Preservation, important
 to "seal" pavement to
 limit moisture
- Permeability on order of a silt/clay, required testing in "Flexible Wall" Permeability Set-up

Samples cored from 6-inch – diameter gyratory sample

Typical Permeability Values

Pavement Distress Simulations Using MEPDG

Predicted Distresses (Flexible)

IR auc adah Longitudina Cracking Thermal Rutting Cracking

MEPDG Simulation Inputs

- 2 Lane Highway; AADT = 8,840
 - 2.7% Light Trucks (FHWA Class 4 and 5)
 - ◆ 5.7% Heavy Trucks (FHWA Class 6+)
- Design: 8" HMA; 8" Unbound Base Agg.
- Materials Used
 - 2" mill and replace using I4-HD (12.5mm Superpave PG64-22) – current surface mix on AC Expressway
 - 1" mill and replace using HPTO
- Evaluating Rutting and Wheelpath Surface Cracking over a 15 year design life
 - Surface conditions prior to milling
- CA / The second second

RUTGESS0.5" Total Rutting (0.4" in HMA, 0.1" in Unbound Base)

HMA Rutting Evaluation

HMA Rutting Evaluation

Surface (Wheelpath) Cracking Evaluation

Total Surface Cracking = Alligator in New Overlay + Reflective Cracking from Existing HMA

Mill 2"/Pave 2" with 12H64 = \$8.80/yd²
 Mill 1"/Pave 1" with HPTO = \$6.35/yd²
 Pave HPTO on Existing = \$4.35/yd²

* Based on local material cost estimates

Surface (Skid) Friction, SN₄₀

Material Type	Skid Number	
HPTO (New)	53	
12.5mm SP (New)	51.6	
12.5mm (4 Yrs)	54.3	
19mm SP (4 Yrs)	55.7	
19mm SP (5 Yrs)	47.7	

Conclusions

NJDOT investing time and money into Pavement Preservation

- Preserve infrastructure and improve ride quality
- "Get in/Get out"
- NJ Municipalities looking for similar preservation/rehabilitation treatments
- Laboratory comparisons show HPTO
 - Rut resistant
 - Durable flexural fatigue and overlay tester

CAI Low permeability to seal existing cracks

Conclusions

- Design simulations using MEPDG verify laboratory test results
- Thin lift provides cost effective alternative
 - Whether mill 1"/replace or direct overlay
- Initial skid resistance shows good resistance and comparable to NJ's DGA surface mixes

"Safe, Durable Highway Materials"

Thank you for your time!

Thomas Bennert Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University, NJ

Association of Modified Asphalt Producers (AMAP) 8th Annual Conference Boston, MA February 12th to 14th, 2007

