New Jersey Solutions to Complex Paving Challenges

- Presented by:
- Robert Sauber
- Supervising Engineer
- Pavement Design and Pavement Management
- Design Services Division
- NJ Dept of Transportation
- Presented to:
- AMAP Annual Meeting
- Boston, February 2007

- Approximately 36,000 centerline miles of roadways in New Jersey
- NJDOT maintains approximately 2,344 centerline miles, 6% of total
- Two-thirds of all traffic, including a high percentage of heavy trucks, is carried on state-owned roads

Current Functional Adequacy of NJ State Highway System (Based on Roughness and Distress)

Total Deficiency of State Highway System

ASCE's Costs Per Motorist in Extra Vehicle Repairs and Operating Costs Due to Poor Road Conditions

Source: ASCE, 2005 Report Card for America's Infrastructre

ASCE's % of Major Roads in Poor or Mediocre Condition

Source: ASCE, 2005 Report Card for America's Infrastructre

Concept of Pavement Preservation (P²)

Time / Traffic

Pavement Preservation Budgets

<u>Category</u> <u>Lane Miles</u>

- Hwy Capt'l Maint 162
- Hwy Resurfacing 652
- Hwy Rehab Recon <u>146</u>
- TOTAL = 960

Percentage of State Highway System Deficient Based on Roughness

CIS for Pavement Preservation

- Increasing need to repair and maintain rapidly deteriorating infrastructure leads to:
 - More work zones
 - More public dissatisfaction with work zone traffic congestion, delay and safety
- Facing the challenge of balancing essential roadway repairs and maintenance with mobility and safety concerns
 - Non-traditional construction method to balance essential roadway repairs and maintenance with mobility and safety → Full Road Closure

Considerations with Full Road Closure

- Not amendable to all construction situations
 - The availability of adequate alternate routes
- A solid management plan
 - Done on an accelerated schedule
 - Scheduled on a 24-hr. work basis, potential for impacts to local residents are concerned.
 - Ensure all the needs to be met throughout project duration
 - Balance the increased load on the network
 - Increased traffic densities on alternate routes must be assessed, planned for, and managed.

Benefits of Full Closure

- Reduced project duration
- Increased worker productivity
- Improved safety
- Improved product quality
- Positive public sentiment
- Increased workspace and flexibility
- Reduced Impact on construction travelers
- Cost savings

Full Road Closure Time Savings

Partnership between the NJDOT and Rutgers University: Pavement Resource Program

Fatigue Studies

NJ's 12H76 HMA Reflective Cracking Studies (Research Sections and Rich Bottom Layers)

Flexural Beam Fatigue Device

- Evaluate the fatigue properties of HMA compacted beam samples
- Test under variety of stress and strain conditions, as well as temperature

Superpave, 12.5mm (H), 5.1% AC

Determination of Beam Fatigue Deflections (Rt 34N)

Applied Tensile Microstrain

 $\varepsilon_{t} = \frac{12 \ \delta \ h \ x \ 1E6}{(3Go^{2} - 4Gi^{2})}$

 δ = peak deflection at the center of beam (mm) h = average beam height (mm) G_o= Outer gauge length (typically 355.5 mm) G_i = Inner gauge length (typically 118.5mm) (ϵ_t needs to be specified prior to starting test in µ-strains)

For typical sample – every 0.1 mm of beam deflection $\approx 200 \ \mu$ -strain (1 mil = 0.0254 mm)

Ex: Rt 34N Largest $\delta_{max} = 17.3$ mils = 817 μ -strains

Flexural Beam Fatigue – Modeled Joint Deflections of Rt 34N

- Sample size: 6" long by 3" wide by 1.5" high
- Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading
- Standard Test Conditions (TxDOT)
 - Opening displacement: 0.025 in.
 - Room temperature: 77 F
- Definition of failure
 - Discontinuity in Load vs Displacement curve
 - Visible crack on surface

Overlay Tester (Modeled Rt 34N Horizontal Joint Movement)

Rich Bottom Layers (Anti-Reflective Cracking) – Overlay Tester

Flexural Beam Fatigue – RBL Mixes

Water Proof, Wearing Courses (WP-WC) for Bridge Decks

Fatigue and Rut Resistant Mixes (GWB Designs)

WP-WC (Fatigue Testing)

WP-WC (APA Testing)

64°C Test Temp.; 100 psi Hose Pressure; 100 lb Wheel Load

