Sustainable Asphalt Performance that Lowers Environmental Impact

23rd Annual Conference

FEBRUARY 1-3, 2022 HOUSTON, TEXAS

REJUVENATED COLD RECYCLED MIXES

BENJAMIN F. BOWERS, PH.D., P.E., AUBURN UNIVERSITY


Cold Recycling 101

- A method of reconstructing the pavement base using 100% (or close to 100%) recycled material
 - Milled or stockpiled RAP
- Allows for tighter control of product compared to other similar processes
- Produced at *ambient* temperatures

So what materials are used?

- RAP
- Corrective aggregate
 - Sometimes used to achieve gradation target
- Water [what?!]
- Small percentage of Active filler
 - Lime, cement, fly ash, etc. sometimes used
- Recycling agent
 - foamed or emulsified asphalt
- This is a hybrid material

How is CCPR like HMA?

- It provides a flexible base material (viscoelastic)
- Contains asphalt binder
 - RAP binder
 - Foam and/or emulsified asphalt binder known as a "recycling agent"
- Can be placed using conventional paving equipment
- Use the Indirect Tensile Test or Marshall Stability Test

How is CCPR not like HMA?

- Add water to achieve an optimum moisture content
- An active filler is often added to help with strength, stiffness (i.e. lime, cement, etc.)
- Recommended to focus on density, not air voids, in design and construction
 - Variability of the RAP can lead to faulty air void estimates
- Allow the material to "cure" before placing an overlay
 - New rapid field test to identify whether its ready

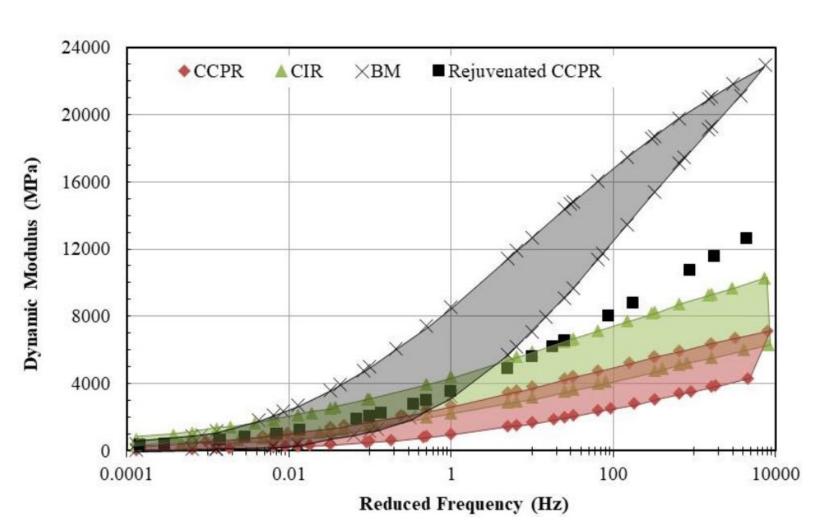
Mix Design Process

- 1. Check *black rock* gradation
- 2. Establish optimum moisture content
- 3. Evaluate recycling agent properties
- 4. Mix at minimum 3 binder contents (2-2.5% foam)
- 5. Compact to 30 gyrations
- 6. Cure in forced draft oven
- 7. Run Indirect Tensile Test (foam) or Marshall Stability (emulsion)

Rejuvenation... can we do it?

- The question has surfaced multiple times: Can we rejuvenate cold recycled mixes?
- Some work has been done in this area, but little has been published...

A little history...


- Rejuvenated mix produced by a contractor in Kansas City
 - Foamed binder + rejuvenator
 - 65% coarse RAP + 35% fine RAP
 - 1% foam, 50-50 blend of PG 64-22 and bio-based rejuvenator
- Mix placed in the contractor's yard
 - CCPR = two 3-inch lifts
 - HMA overlay = 2-inches
- Cores were sent to VTRC for testing

A little history...

- Among other tests, Dynamic Modulus test was conducted
- Compared to NCHRP 09-51 E* data for CCPR, CIR, and base mix HMA
- Rejuvenated CCPR was *somewhere in between...*

So, what now?

- This mix isn't CCPR... and it's not a typical asphalt mixture either... so what is it?
 - Rejuvenated Cold Recycled Mix (RCR)

Feeling an urge to investigate... Ben and Buzz devised a plan!

2021 NCAT Offramp Study

- Six sections were constructed on the offramp at NCAT
 - 4 in of asphalt
 - 4 in of foamed CCPR
 - 4 in of engineered emulsion CCPR
 - 4 in of CCPR with R1 rejuvenator
 - 4 in of CCPR with R2 rejuvenator
 - 4 in of CCPR with emulsion + R3 rejuvenator

Mix Design

- Used the same RAP for all designs that was used for production
 - RAP was processed, all < ³/₄ inch
- Foamed mixtures tested with ITS (45 psi minimum)

Mix Design Challenges

- Attempted to hold rejuvenated mixes to the same IDT standard as foam control mix...
 - Couldn't hit this target with the first rejuvenator tested
- Tried Marshall Stability testing and was able to achieve target for design (1250 lb_f min)

• Success!

- Some mixes leaked fluid in the gyratory and had to be recompacted at reduced fluid contents (water was removed)
 - Result of rejuvenator activating binder and densifying the mix

Mix Design

- RAP lab optimum moisture content ~4.5-5%
- Hydroscopic M.C. in field ranged from 4-5% during construction

Section	Recycling Agent	Rejuvenator	Active Filler	Add Water
Foam	2% PG 67-22	NA	1% Cement	2%
Engineered Emulsion	3%	NA	NA	NA
R1	NA	4.2%	NA	NA
R2	NA	0.9% by wt of RAP + Moisture	NA	NA
R3	3.5% emulsion	7% by wt of emulsion	NA	NA
CONTROL	Hot Mix Asphalt			

Mix Design Finding

- Three designs performed by NCAT
 - Foam; R2; Emulsion + R3
- Bulk dry density increased when rejuvenator was added
 - RAP gradation, etc. was the same
 - Activation binder is assumed to be the cause

Density	Foam	R2	Emulsion + R3
Bulk Dry Density (pcf)	126.6	134.4	130.9

Two Plant Options

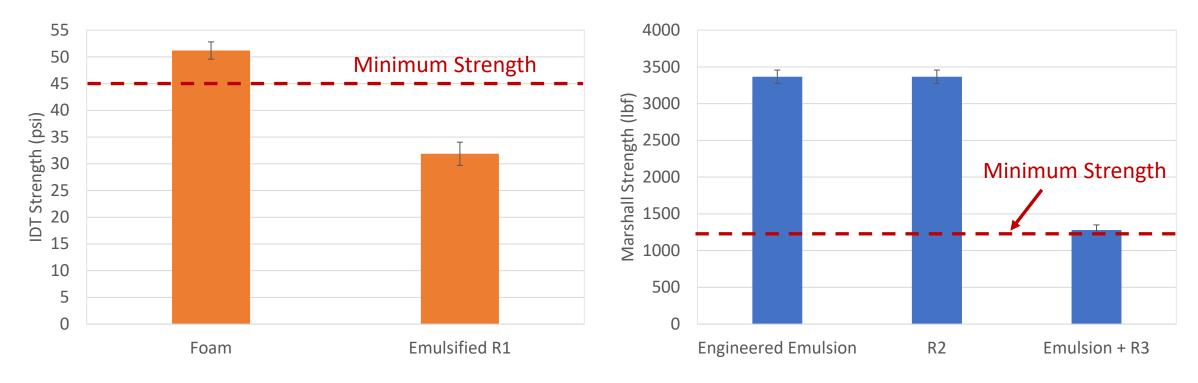
Wirtgen KMA 240i

Two Plant Options

Pugmill Systems Portable Pugmill

Construction

• Compacted until refusal for density; Checked with nuclear gauge.



Foam

Engineered Emulsified R1 R2 Emulsion + R3 Emulsion

Plant Produced, Lab Compacted Results

- One product didn't pass lab compacted results
 - Function of test? Mixing? Passed pre-construction tests.

NCHRP 09-62 Testing

- Tests to help identify when mix can be opened to traffic and/or overlay
 - Uses a DCP + Torque wrench
 - Short Pin = Raveling
 - Long Pin = Shear
- All mixes passed these tests
 - Note: Multiple replicates were not run on all mixes due to time constraints + not loading immediately

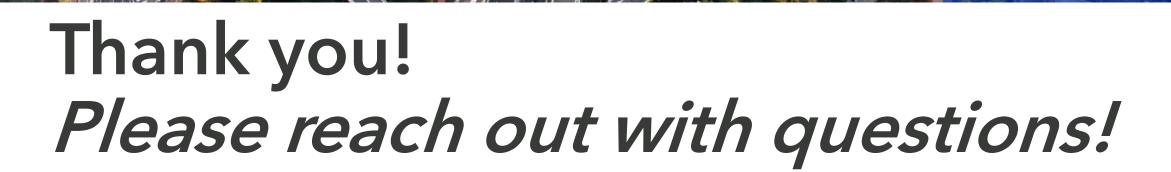
What's next?

- Extensive laboratory characterization
 - CT_{index} for cracking
 - High Temperature-IDT for rutting
 - Dynamic modulus for stiffness
 - Repeated Load Permanent Deformation for rutting
 - Cyclic fatigue for fatigue performance
- All materials were collected on site for laboratory mixing

Field Performance

- Monitoring of the site weekly using pathways van
- Falling weight deflectometer measurements 3x per month
- Density cores are taken quarterly
- Friction trailer testing monthly

Potential long-term benefits/applications?


- Moving toward the ability to make 100% RAP pavements that perform more like a typical asphalt mixture;
 - Lowers greenhouse gas emissions and energy consumption.
 - Enhances the resilience of the infrastructure.
- Option for lower volume roads
 - Higher density can we use this as a surface? Surface treatment?
 - Often thin structure, so a 2 to 5-inch CIR or CCPR with an overlay may not be possible

Sustainable Asphalt Performance that Lowers Environmental Impact

23rd Annual Conference

FEBRUARY 1-3, 2022 HOUSTON, TEXAS

Benjamin F. Bowers, Ph.D., P.E. Auburn University | Department of Civil and Environmental Engineering bfbowers@auburn.edu | @bfbowers | Web: aub.ie/bfbowers

on of Modified Asphalt Producers