Sustainable Asphalt Performance that Lowers Environmental Impact

23rd Annual Conference

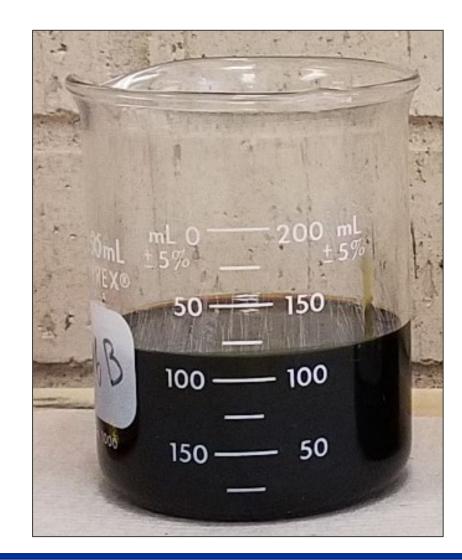
FEBRUARY 1-3, 2022 HOUSTON, TEXAS

SELECTION & USE OF REJUVENATORS

on of Modified Asphalt Producers

Amy Epps Martin, Texas A&M University

Rejuvenator


• Use in HMA

- Classification/Categorization
 - General
 - Specific: ASTM, NCAT, NE DOT, 09-58, Microstructural Analysis

• Evaluation Tools: 09-58, 09-65

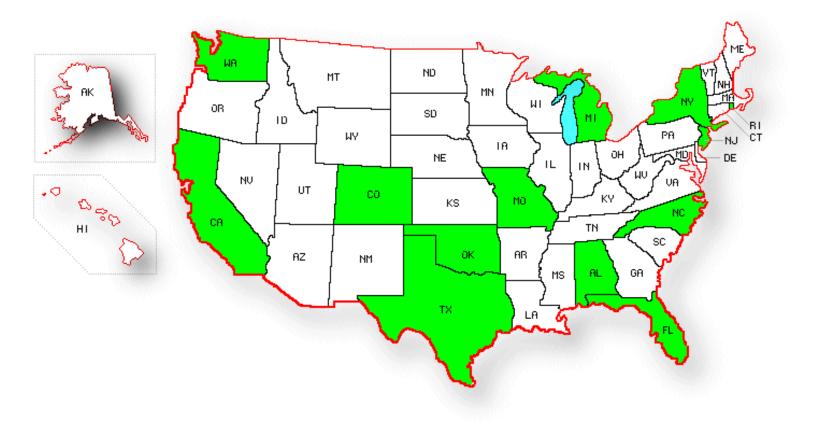
REJUVENATORS = strategy to **RAM** or improve cracking performance

MOTIVATION

- US in 2019
 - 422M tons HMA/WMA
 - 89M tons RAP
 - 0.9M tons RAS
- \$3.3B = materials savings
- 59M yd³ landfill space

CONCERN

- Workability
- Compaction


• Performance w/Aging

Use in HMA

- Web Search of Specs, APL/QPL
- Known Research

• 13 States

Terminology

• **RECYCLING AGENT**

- Softener
 - reduce stiffness

• Rejuvenator

- reduce stiffness & brittleness
- partially restore chemical balance
- improve aging sensitivity
- improve moisture susceptibility

• GENERAL CLASSIFICATION

- Petroleum-Based
- Bio-Based

ASTM D4552 - revised summer 2020

- Viscosity @ 60C & Ratio after RTFOT
- **FP**
- Saturates* & Wt Change after RTFOT

				-		-			-						
Test	ASTM	BA	0	RA	1	RA	5	RA 2	25	RA	75	RA 2	250	RA S	500
lest	Test Method	Min	Max	Min	Max	Min	Max								
Viscosity · 60 °C [140 °F], mm ² /s	D2170/D2170M	10	49	50	175	176	900	901	4500	4501	12 500	12 501	37 500	37 50 1	60 000
Flash Point, COC, °C [°F]	D92	219 [425]		219 [425]		219 [425]		219 [425]		219 [425]		219 [425]		219 [425]	
Saturates, wt, % ^A	D2007		30		30		30		30		30		30		30
Tests on Residue from RTFO	D2872														
163 °C [325 °F]															
Viscosity Ratio ^B	D2872		3		3		3		3		3		3		3
Wt Change, ±, %	D2872		4		4		4		4		4		4		4
Specific Gravity at 25 °C [77 °F]	D70 or D1298	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100	0.900	1.100

TABLE 1 Physical Properties of Hot-Mix Recycling Agents

^A The suitability of Test Method D2007 for measurement of saturates content and determination of compatibility of non-petroleum-based recycling agents has not been established. Additional testing may be required for assessment of the compatibility of non-petroleum-based recycling agents.

^BViscosity Ratio = Viscosity of residue from RTFO test at 60 °C [140 °F]

Original viscosity at 60 °C [140 °F]

GRADE for Bio-Based Rejuvenators (RA 0)

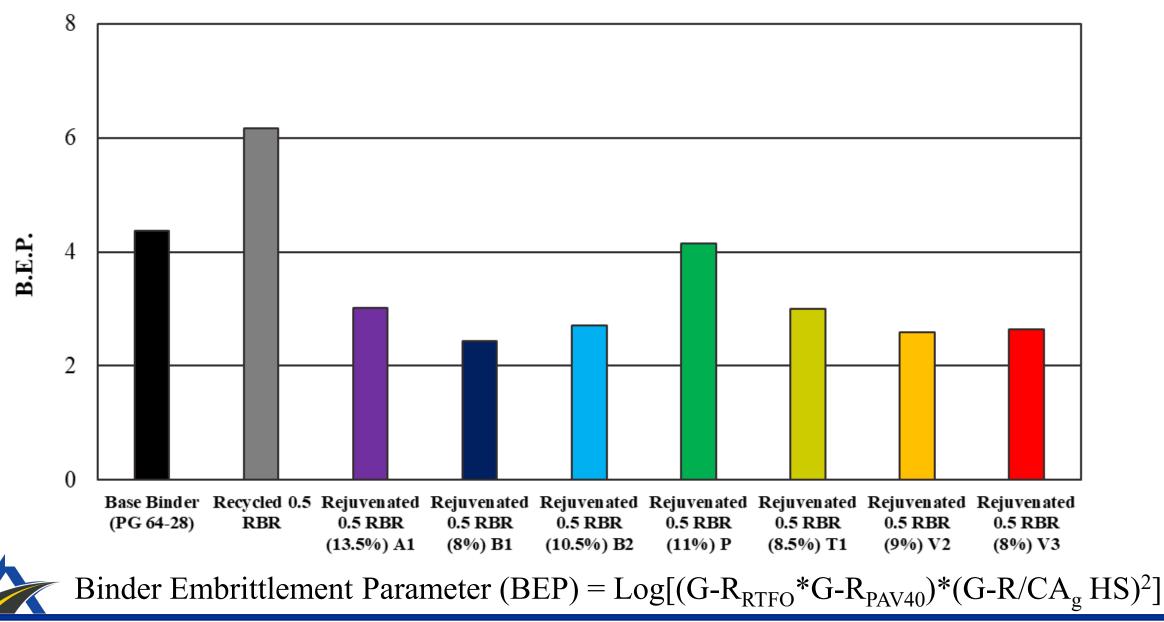
NCAT 2014

CATEGORY	EXAMPLES	DESCRIPTION	CONCERNS			
Paraffinic Oils	Waste Engine Oil (WEO) Waste Engine Oil Bottoms (WEOB) Valero VP 165® Storbit®	Refined used lubricating oils	Environmental concerns with WEO & WEOB			
Aromatic Extracts	Hydrolene® Reclamite® Cyclogen L® ValAro 130A®	Refined crude oil products with polar aromatic oil components	Potential health concerns			
Napthenic Oils	SonneWarmix RJ™ Ergon HyPrene®	Engineered hydrocarbons for asphalt modification				
Triglycerides & Fatty Acids	Waste Vegetable Oil Waste Vegetable Grease Brown Grease Oleic Acid Hydrogreen®	Derived from cooking oils	Odor problems			
Tall Oils	Sylvaroad™ RP1000	Paper industry byproducts Same chemical family as liquid antistrip agents and emulsifiers				
Table 1. Categories and examples of rejuvenators						

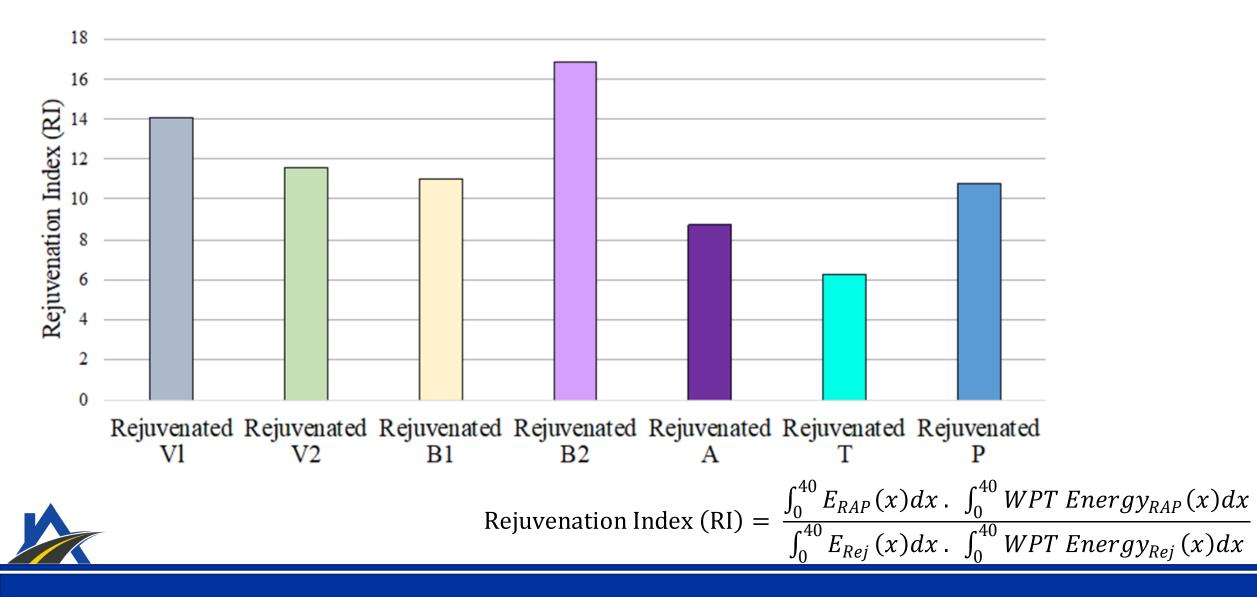
Table 1 Categories and examples of rejuvenators

NCAT, "NCAT Researchers Explore Multiple Uses of Rejuvenators," <u>Asphalt Technology News</u> 26 (1), p. 7-8, Spring 2014, 2014.

NE DOT


Class	Effect	tiveness (I	Benefits)			Cautionary (Limitation		Advisory (Modifications)	
	PG	Prevent Rut @ T _{high}	Prevent Crack @ T _{int}	Prevent Crack @ T _{low}	CI	Moisture	Long-Term Aging	Improve Moisture Susceptibility	Improve Aging Resistance
I Paraffinic Oils	√ PGH	\checkmark		✓			Х		Х
II Aromatic Extracts	✓	\checkmark	~	√ w/aging	~				
III Napthenic Oils	\checkmark	\checkmark		~			Х		Х
IV Triglycerides & Fatty Acids	✓	\checkmark	×	~	~	Х	Х	Х	Х
V Tall Oils	√ PGH	\checkmark	✓	✓	~	Х	Х	Х	Х

Haghshenas, H.F., R. Rea, G. Reinke, and D. F. Haghshenas "Chemical Characterization of Recycling Agents," Journal of Materials in Civil Engineering 32 (5), 2020. + 3 Submitted Papers by Haghshenas et al.


NCHRP 09-58 (Bulk)

Lower BEP = More effective

Microstructural Analysis

Higher RI = More effective

Classification/Categorization

□Must utilize CA_g

- BEP captures oxidation & rheological stiffening, embrittlement
- **Q**RI captures aging resistance & roughness/inhomogeneity
- Recycling Agent Classification
 - $\Box P = only SOFTENER w/poor compatibility despite low CA_g$
 - □A = sufficient *REPLENISHER* for some combos @ higher dose
 - $\Box V \& B = EMULSIFIER$ to compatabilize, oxidize but less rheological effect
 - T = **EMULSIFIER** that is more sensitive to aging, more volatile (early gen)
- □Specifications for blends & characterization with aging needed

NCHRP 09-58: Draft AASHTO Standard Practice for 0.3-0.5 RBR + Rejuvenator

- Component Materials Selection & Proportioning Guidelines
- Rejuvenator Dose Selection & Incorporation Methods (restore continuous PGH, replacement)
- □ Binder Blend Rheological Evaluation Tools
- □ Mixture Performance Evaluation Tools
- **RAP Binder Availability Factor**

NCHRP 09-58: Component Materials Selection & 13 Proportioning

□ Base Binder □ PGH $\leq 64^{\circ}$ C □ ΔT_{c} @ PAV20 $\geq -3.5^{\circ}$ C

 $\Box RAP$ $\Box PGH \leq 100^{\circ}C$ $\Box \Delta T_{c} @ PAV20 \geq -7.5^{\circ}C$

□RAS □ PGH ≤ 150°C

 $\Box RBR \leq 0.5$ $(RAP_{BR}+RAS_{BR})$

 $\Box RAS_{BR} \leq 0.15$

NCHRP 09-58: Binder Blend Evaluation

T & Aging Conditions	Test	Parameter	Suggested Performance Threshold	
T _{high} Unaged, Short-Term	DSR	PGH	Target Climate	
T _{int}	DSR	G-R	< 180 kPa after 20-hr PAV < 600 kPa after 40-hr PAV	
Track w/Aging	DSR	T _{δ=45} ∘	≤ 32° after 20-hr PAV ≤ 45° after 40-hr PAV	
T _{low} Long-Term	BBR	ΔT_c	<u>></u> -5.0 after 20-hr PAV	
Shor	t-Term Aging =	RTFOT; Long-Terr	n Aging = PAV @ 100°C	

NCHRP 09-58: Mixture Evaluation

T & Aging Conditions	Test	Parameter	Suggested Performance Threshold				
T _{high} Short-Term	HWTT or APA	N _{12.5}	 ≥ 5,000 for PG 58-XX ≥ 7,500 for PG 64-XX (cold) ≥ 10,000 for PG 64-XX (warm) ≥ 15,000 for PG 70-XX 				
T _{int} Track	E*	G-R _m	< 8,000 MPa after STOA < 19,000 MPa after LTOA				
w/Aging & Short-Term	I-FIT	FI	≥ 7 after STOA				
T _{low}	BBR _m	S_m , m-value _m	<u>< Utah threshold after STOA</u>				
Short- & Long-Term	UTSST	CRI _{Env}	> 17 after LTOA				
Short-Term Aging = STOA = 2hr @ 135°C loose mix Long-Term Aging = LTOA = 5d @ 85°C compacted specimen							

NAPA QIP 131: Practical Guide for Using ¹⁶ Recycling Agents in Asphalt Mixtures

	Performance	ı Risk	: Needs		Bind	ler Evalua	tion	Mixture	Evaluation
Approach	Field Perfo Risk	Mix Design	Time and Equipment I	Cost	Virgin	RAP and/or RAS	Blend	Rutting	Cracking
Simplest	Mod	High	Low	Low	No	No	No	Yes	Yes
Intermediate	Mod	Mod	Mod	Mod	Yes	Yes	No	Yes	Yes
Comprehensive	Low	Low	High	High	Yes	Yes	Yes	Yes	Yes

NCHRP 09-65: Revised Draft AASHTO Standard Practice to Capture Durability

NCHRP 09	9-65 Dry-Freeze	Wet-Freeze 18
Int Cracking	Shorter Mid-Term Critical Aging	Shorter Mid-Term Critical Aging
Low Cracking	Shorter Mid-Term Critical Aging	Shorter Mid-Term Critical Aging
	after STOA	after STOA
Raveling	Conditioned (Shorter Mid-Term Aging +	Conditioned (Shorter Mid-Term Aging +
	Moisture w/F/T) to Unconditioned	Moisture w/F/T) to Unconditioned
Moisture	after STOA, after Moisture w/F/T	after STOA, after Moisture w/F/T
Rutting	after STOA	after STOA
	Dry-No Freeze	Wet-No Freeze
Int Cracking	Longer Mid-Term Critical Aging	Longer Mid-Term Critical Aging
Raveling	after STOA Ratio (Conditioned/Unconditioned) Conditioned= Longer Mid-Term Aging	after STOA Ratio (Conditioned/Unconditioned) Conditioned= Longer Mid-Term Aging + Moisture w/out F/T
Moisture	after STOA	after STOA, after Moisture w/out F/T
Rutting	after STOA	after STOA

Remaining Challenges

Classification/Categorization = Selection

Effectiveness with Aging

Recycled Binder Availability (NCHRP 09-68)

Sustainable Asphalt Performance that Lowers Environmental Impact

23rd Annual Conference

FEBRUARY 1-3, 2022

HOUSTON, TEXAS

Thank You!

Amy Epps Martin (979) 458-8531

a-eppsmartin@tamu.edu

Acknowledgements

DOTs, APAs, Contractors, & Material Suppliers NCHRP 09-58 Team Eyad Masad, Gayle King Amal Abdelaziz, Akash Bajaj NCHRP 09-65 Team