Emulsion Technology Trends

2019 AMAP Conference

Ft. Lauderdale, FL February 5-7, 2019

Arlis Kadrmas - Technical Specialist

Note: For narration of this presentation, click here to visit AMAP's technical library to download the PowerPoint show file.

Presentation Outline

- Introduction of polymers used in asphalt emulsions
 Current testing of modified residues
- Current testing of modified residues
- New test procedures for getting emulsion residues
- Trends in emulsion and residue testing

Polymers in Asphalt Emulsion Production

Polymer Modified Asphalt Emulsions Practical Benefits

Overall improvement in performance + durability

Reduced life cycle cost

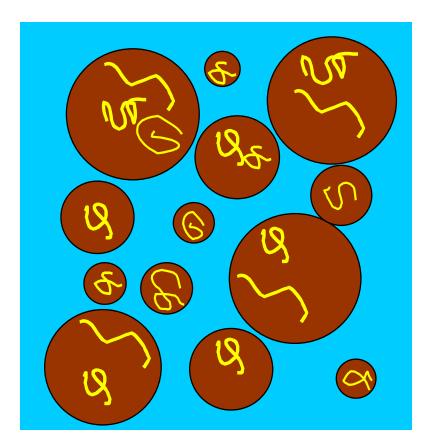
preventive maintenance

We create cher

Polymers for Asphalt Emulsion Modification

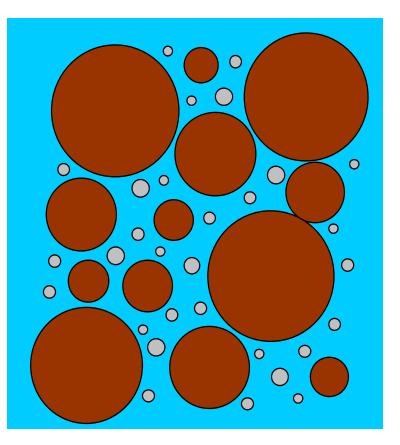
Dry

- SBS or SB
- EVA
- GTR or Crumb Rubber
- Latex
 - SBR
 - Neoprene
 - Natural Latex


Acrylics

Polymer Modification of Asphalt Emulsions

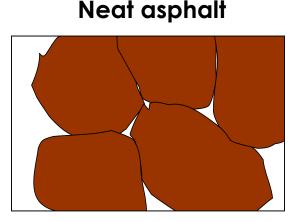
- "Pre-modified" emulsion
- Polymers SBS, SB-, EVA
- Higher mod. asphalt viscosity
 - higher asphalt + mill temp.
- Exit temp. > 100°C
- Heat exchanger, back press.
- Polymer inside asphalt droplet


BASF
We create chemistry

Polymer Modification of Asphalt Emulsions

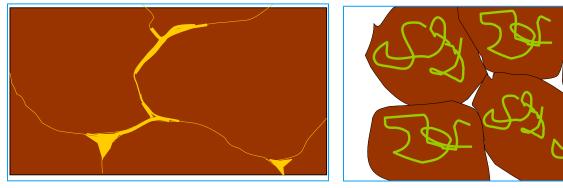
Add latex external to asphalt

- Methods
 - soap batching
 - co-milling asphalt or soap
 - post addition
- Polymers SBR, Natural latex, Neoprene
- Lower asphalt viscosity
- No special mill, handling
- Polymer in water phase
- Continuous polymer film formation on curing



Residue Evaluation – Polymer Modified Asphalt vs. Latex Modified Emulsions

Dried emulsion residues (coalesced asphalt particles)


Emulsion of polymer modified asphalt

BASF
We create chemistry

Asphalt rheology only

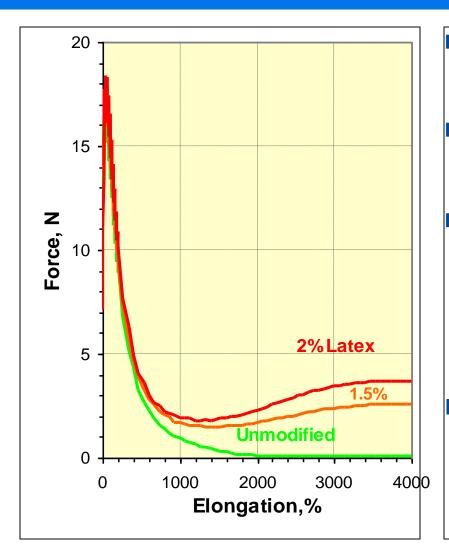
Latex modified emulsion

Improved binder properties

- Improved low temperature fatigue properties
- Reduced rutting at high temperature
- Improved early strength development

Current Testing of Modified Residues

Traditional Testing



Force Ductility
Softening Point
Toughness/Tenacity
Torsional Recovery
Elastic Recovery

Force Ductility

Stress-Strain measurement

- Easier temp. to measure stress and strain
 - large elongation at break

■Faster elongation rate⇒Stronger elastic contribution

• Time-temp superposition

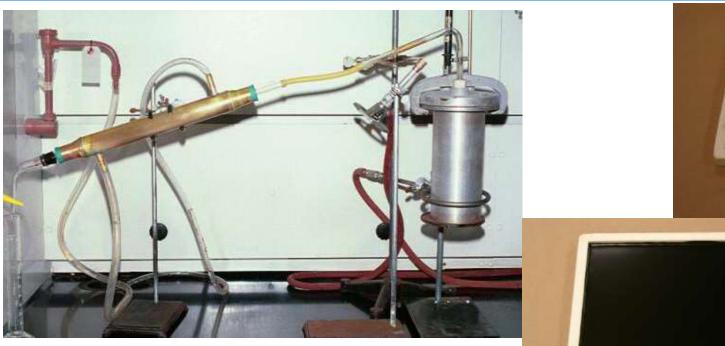
Elongation (Strain) = Permanent Deformation

- Area under the curve ∞ Total Energy Dissipated
- Large Area = More work needed to make a permanent deformation = Less permanent deformation per traffic loading?

Does not represent traffic load

- Too high elongation
- Cold Fracture<Temperature<Fatigue

New test procedures for getting emulsion residues


Creativity is problem solving with relevance and novelty. Anonymous

Residue Recovery

We create chemistry

Residue Recovery by Distillation

Recovery Methods (High Temperature)

Distillation Recovery procedures

 Modified ASTM D6997 to 350°F or 400°F with hold times either 15 or 20 minutes for modified emulsions

Temperatures can effect the polymers

High Temperature Evaporative procedures > 275°F

- Much higher than pavement temperatures that the emulsions see during application or service life
- Polymers can change or degrade in some of the high temperature recovery techniques

Recovery Method Trends (Low Temperature)

AASHTO R78

- Method A 24 hour ambient/24 hour 60°C
- Method B 6 hour at 60°C

ASTM Methods

- D7497 similar to AASHTO R78 method A
- D7944 similar to method B, but 3 hours in vacuum oven
- All methods use drawdown on silicone mats for ease of residue removal

Trends in Emulsion Residue Testing

Ash Content vs. Solubility Various methods in using the DSR for emulsion residues Sweep test comparison Tackiness Test High float residues

Ash Content test for emulsion residues

Solubility test does not work well with modified emulsion residues.

- Plugs filter due to polymer swell
- Solubility test was not designed for polymer systems

Ash content test performs well on all emulsion residues, whether they are modified or not

ASTM Standard D8078

Getting rid of solubility will remove a chlorinated solvent from some laboratories

Examples of Ash Content vs. Solubility

- One agency uses solubility for unmodified emulsion residues and ash content for modified emulsion residues
 - Solubility of 97.5% minimum for unmodified emulsion residues
 - Ash content of 0.2% maximum for modified emulsion residues
 - Example of solubility not working
 - Agency specification requiring minimums of 8% GTR and 2% SBS for a modified asphalt
 - Specification of 97.5% minimum solubility
 - How can this possibly be met?

Trends in Emulsion Residue Testing

Ash Content vs. Solubility Various methods in using the DSR for emulsion residues Sweep test comparison Tackiness Test High float residues

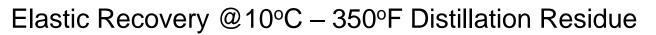
DSR Testing as viscosity alternative – Comparing residue recovery

SHRP TEST REPORT FORM SHRP SPECS 7527 7528 7529 Sample # **Recovery Method** LTR-A LTR-B LTR-BV C Tests on unaged material: Spec Limit 75.3 74.9 76.9 Phase Angle (delta) 58 11.32 13.24 7.61 G*/sin delta @ 10 rad/sec.kPa 58 1.0 mm 77.6 77.2 78.4Phase Angle (delta) 64 5.50 6.39 3.75 G*/sin delta @ 10 rad/sec.kPa 64 1.0 min. 78.8 79.3 79.2 70 Phase Angle (delta) 2.75 3.22 1.94 70 G*/sin delta @ 10 rad/sec.kPa 1.0 min. 80.3 79.7 79.4 Phase Angle (delta) 76 1.05 1.43 1.69 G*/sin delta @ 10 rad/sec.kPa 76 1.0 min. 80.5 79.8 79.1 82 Phase Angle (delta) 0.79 0.94 0.60 82 G*/sin delta @ 10 rad/sec.kPa 1.0 min. 81.3 76.5 **SHRP Grade** 79.6

Similar Polymer – Micro-surfacing Residue

BASF
We create chemistry

DSR Testing as viscosity alternative – Comparing residue recovery


AASHTO Method A and B along with 350°F Distillation

		24h air dry 24h 60C oven		thin film 6h 60C oven		ASTM 6997 20 min hold		
SHRP TEST REPORT FORM SHRP SPECS								
Modifier			Polymer A	Polymer B	Polymer A	Polymer B	Polymer A	Polymer B
Tests on unaged material:	°C	Spec Limit	AUT-W301	Aut W 414				
Phase Angle (delta)	52		73.4	61.2	72.1	61.8	68.8	66.0
G*/sin delta @ 10 rad/sec,kPa	52	1.0 min.	7.77	7.85	0.38	6.05	5.70	2.98
Phase Angle (delta)	58		75.4	61.8	74.3	62.9	69.6	66.9
G*/sin delta @ 10 rad/sec,kPa	58	1.0 min.	4.04	4.32	4.73	3.27	2.98	1.63
Phase Angle (delta)	64		76.9	63.2	75.7	64.7	69.9	57.9
G*/sin delta @ 10 rad/sec,kPa	64	1.0 min.	2.14	2.47	2.50	1.83	1.65	0.90
Phase Angle (delta)	70		77.7	65.2	76.2	67.0	69.7	
G*/sin delta @ 10 rad/sec,kPa	70	1.0 min.	1.18	1.40	1.37	1.04	0.98	
Phase Angle (delta)	76		77.8	68.0	75.9	69.8		
G*/sin delta @ 10 rad/sec,kPa	76	1.0 min.	0.68	0.81	0.79	0.61		

Two different polymers – chip seal emulsion residue

DSR Testing – Polymer comparison Elastic Recovery and Sweep Testing

SAMPLE #	AUT-W	Reference	Polymer A	Polymer B
ER 10C SS 20cm 5mn, %	103	D113 Mod	70.0	78.8
ER 10C SS 20cm 5mn, %	103	D113 Mod	70.0	78.8
ER 10C SS 20cm 5mn, %	103	D113 Mod	70.0	77.5
AVG			70.0	78.3

- - - 74

We create chemistry

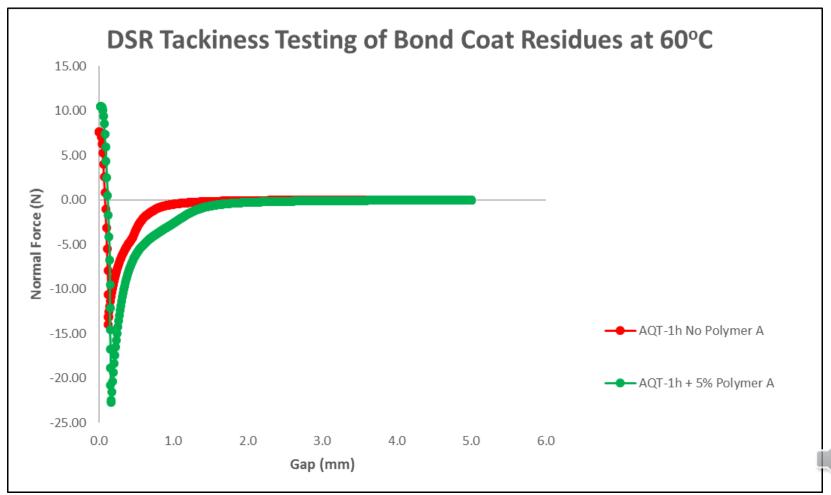
Sweep Testing @35°C

Sweep Testing		Polymer A	Polymer B
Mass loss % - 2.0 hours	D-7000 - mod	12.05	28.09
Mass loss % - 2.0 hours	D-7000 - mod	20.36	28.32
AV	/G	16.2	28.2

Mass loss % - 1.0 hour	D-7000 - mod	44.8	44.6

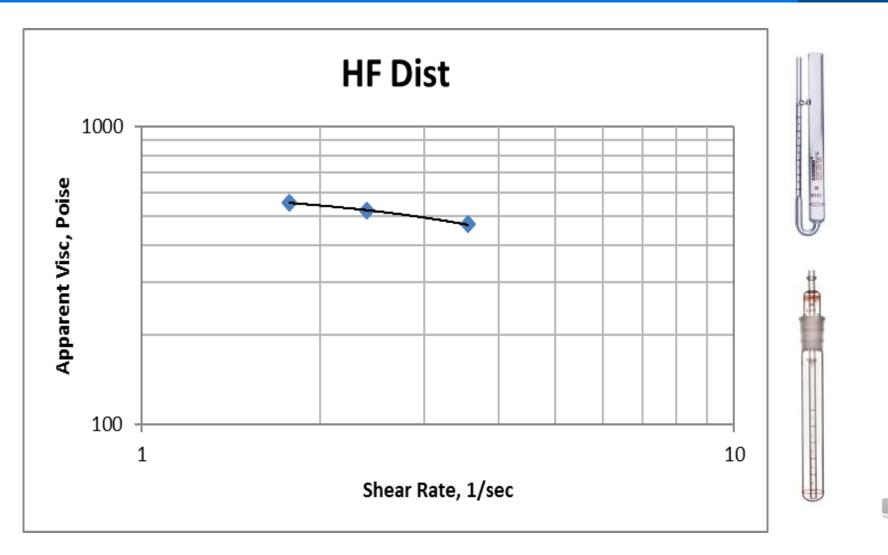
DSR Testing on Scrub Seal Residues

SHRP TEST REPORT FORM SHRP SPECS						
Base Asphalt			Blend	Blend		
Grade			81.2/18.2	81.2/18.2		
Modifier			Polymer A	Polymer B		
% Modifier			3.5	3.5		
Tests on unaged material:	°C	Spec Límit				
Phase Angle (delta)	46		80.3	78.7		
G*/sin delta @ 10 rad/sec,kPa	46	1.0 min.	5.08	4.21		
Phase Angle (delta)	52		78.8	78.7		
G*/sin delta @ 10 rad/sec,kPa	52	1.0 min.	2.29	1.92		
Phase Angle (delta)	58		79.0	77.7		
G*/sin delta @ 10 rad/sec,kPa	58	1.0 min.	1.11	0.98		
Phase Angle (delta)	64		78.0			
G*/sin delta @ 10 rad/sec,kPa	64	1.0 min.	0.58			

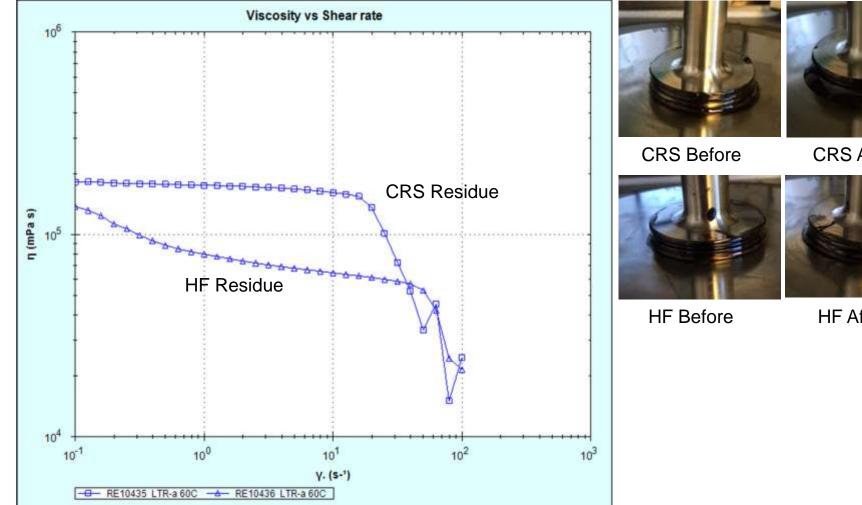

Two Different Polymers – LTR - A

We create chemistry

DSR Testing for Tackiness



ASTM Procedure in the balloting process


High Float Emulsion Distillation (AI Tube)

U = BASF We create chemistry

25 25

DSR Testing – Comparing CRS and HF Residues (LTR-A or D7497)

🗆 = BASF We create chemistry

CRS After

HF After

DSR Testing – Comparing Modified CRS and HF Residues (LTR-A or D7497)

Viscosity vs Shear rate 106 CRS Residue + 3% polymer 105 HF Residue + 3% polymer n (mPa s) 104 10³ 100 101 10-1 10² 103 V. (s-')

BASF
We create chemistry

Questions?

Acknowledgements: Bill Kirk – BASF Charlotte Technical Center John Casola – Malvern Panalytical

We cannot solve our problems with the same level of thinking that created them. *Albert Einstein*

