What is Special About My Asphalt? New Characterization Approaches to Better Capture it

J-P. Planche (PHD), Jeramie Adams (PHD), Ryan Boysen, Michael Elwardany (PHD), Joe Rovani - WRI

AMAP 2018, Feb 8, Phoenix, AZ

Based on TRB 2018 - Lectern Sessions # 215 and 278

jplanche@uwyo.edu

Acknowledgements

- FHWA
 - Fundamental Properties of Asphalts and Products Validation
 - Asphalt Research Consortium
 - J. Youtcheff
- NCHRP 9-60
 - E. Harrigan and the Panel
 - The Project Team
- Partners
 - WRI-Asphalt Industry Research Consortium
 - Paving and Roofing actors

WRI partners -Asphalt / Coal / Petroleum / Biomass materials

Others incl. DOE, MIT, ORNL, Solvay, SRI...

- What is special about my asphalt?
- What is really special about my asphalt?
- Why? Industry Context

- Examples from an industry study
- Summary and perspectives

- Example: 4 same PG grades (PG 70-22), but...
- **Different** Δ **Tc's and Black Space behaviors**
- Known production process different crudes and • base asphalts

Sample ID	Source/Description
А	SBS Modified
В	Straight Run
С	Air Blown (Lloydminster)
D	SBS Modified

5

"Buzz performance parameter"
Binder behavior – beyond PG
G-R, R, Crossover f, ∆Tc
> Not equivalent

Why is my asphalt special? Refinery Block Diagram - 1

"Simple" asphalt production process (US)

Adapted from Al-Eurobitume document

Why is my asphalt special? Refinery Block Diagram -2

Complex Asphalt production process (Europe-US)

Context: economics, geopolitics, societal, regulatory

- Changes in crude oils and processes
- Blends of various refining bases
- New world of additives polymers, biomass molecules, ...
- High rate recycling
 - RAP / RAS / REOB / GTR / Plastics, ...
- Impact of specifications
 - Asphalt: Superpave and empirical no true performance related
 - <u>Other petroleum products specs</u>: 2020 IMO on Marine fuel % Sulfur

Consequences: New problematic binders appearing

 \Box High Δ Tc, sensitive to aging

Out of balance" composition - incompatible, inhomogeneous blends (NCHRP 9-60 literature review)

Why is my asphalt special? Changes in binders / SHRP era

Examples of problematic binders

- Incompatible blends fracking crudes / heavy crudes
- Airblown, oxidized blends
- High RAP / RAS
- Hard SDA / soft blends
- Visbroken residues (IMO 2020)
- Waxy binders
- REOB blends
- Inhomogeneous modified binders
 - Polymers EVA, SBS, Terpolymers
 - Additives PPA, wax, biomass
- <u>Note</u>: these blends can be made suitable too!

Complex structure and rheological behavior

Why is my asphalt special? Is this important?

Field consequences

Pavement issues: lower durability

Superpave binder specs

- Binder variability inconsistent quality, not captured by current specs
- PG specs and test methods, designed in the 90's for asphalt from the 90's
- Not for today's / tomorrow's binders
- $\square \rightarrow NCHRP 9-58, -59, -60, -61 \text{ projects}$

INCHRP 9-60

- Improve current performance graded asphalt binder specifications & tests
- To prevent premature thermal cracking and raveling

Raveling - WI: Year 3

Cracking - ON: Year 5: 9% REOB

Block cracking - WY - Parking lot

Examples from an industry study

17

WRI-AIRC data

WRI-AIRC (Asphalt Industry Research Consortium)

- Goal: Asphalt binder fingerprinting to Understand and assess the source variability
- □ 8 partners: BE, CA, FR, MX, SP, US
 - □ Road administration
 - Road contractors
 - □ Additive supplier
 - □ Asphalt suppliers / producers

WRI-AIRC (Asphalt Industry Research Consortium)

□ Asphalt binders: 52 samples (Year-1) - worldwide

SHRP and ARC asphalts - references

Unmodified – straight run, airblown, SDA, and VB blends

□Modified with polymers / additives /...

Biobinder

18

What is really special about my asphalt?

Background on Asphalt Chemistry – Help understand

- Asphalt (Petroleum): a very complex mixture of molecules (100,000s)
- Continuum of molecules from hydrogen-saturated to H-deficient
- Molecules with a continuum of solubility parameters

Saturates, Naphthenes	Aromatics	Polars / Resins, Pericondensed Structures with Side Chains	Asphaltenes Pericondensed Aromatic Structures	Pre-coke
--------------------------	-----------	---	--	----------

Increasing Aromaticity/Polarity/Heteroatoms and MW

Assessing hydrocarbons

Saturate, Aromatics, Resins-Asphaltene Determinator (SAR-AD)

WesternResearch

Assessing hydrocarbons

Saturates, Aromatics, Resins-Asphaltene Determinator (SAR-AD)[™]

SAR-AD and SARA

- Similarities: Correlation Gravimetric vs. SAR-AD Asphaltenes
- **Differences:** more and different information on subfractions

24

SAR-AD – Asphalt Finger Printing – Today's Asphalts

Examples of Compositional Diversity Sat 40.0 30.0 CH2Cl2:MeOH Nap Sat 20.0 **Polar asphaltenes** 10.0 ↗ With visbreaking **7** With oxidation Toluene Q_t Arom 1 Arom 2 CyC6 Resins WRI-AIRC data

Example of a visbroken residue - IMO 2020 possibility

WesternResearch

NSTITUTE

Example of a visbroken residue

Example of a visbroken residue

Example of a visbroken residue

Whole temperature, frequency rheological behavior – beyond PG

Physical – Chemical Test: Differential Scanning Calorimetry (DSC) to capture waxes and glass transition

Size Exclusion Chromatography / Gel Permeation Chromatography (RI Data) – Molecular weight and associations

Size Exclusion Chromatography / Gel Permeation Chromatography To capture air-blowing / polymers...

WRI-AIRC data

33

Assessing asphalt bases oxidation and additives

34

FTIR in multiple solvents to get the full picture

WesternResearch

- Capture asphalt /additive molecule functions and associations WRI-AIRC data

Assessing polymers in PMA's

Polymers

- Capture polymer nature / molecule functions – cases of SBS and EVA

So what? Quantitative Data **Western Research** towards Formulation Guidelines

SAR-AD – DSR Tm and TS Correlations using ExpliFit[™]

Note: Essentially reverse for Upper PG temperature

So what? Quantitative Data towards Formulation Guidelines

DSC - DSR Tm and TS Correlations using ExpliFit™

Interpretation

- S: more controlled by the middle temperature of the Tg (Tg(I) or Tg(H))
- m-value: more controlled by the Tg end point (sensitive to asphaltenes, increases upon oxidation consistent with aged binder m-control)

WRI-AIRC data

Work in progress ! Summary: Matrix				x of Tools and Binders
Character ization	Testing / Analysis			Formulation Parameters & Features
Rheological	PG- ∆Tc	Mastercurv Black Space	e MSCR, LAS	Binder complexity ase transitions for waxy materials PMA: Polymer plateau and ER
Solvent fractions	SARA	SAR-AD™	AFT EXPIRI	Asphalt blend compatibility Colloidal stability, asphaltene peptization Visbreaking residues – Oxidized – RAP, RAS
Chemical composition	FT-IR	ATR XRF	clemental Analysis	Chemical elements & functions Metals (crude oil, REOB) Oxidation, additives, polymers
Micro- structural	GPC	AFM etrics	Fluorescence or IR Micro	Sol-gel & Multi-phase structures Polar associations, airblown, bees, crystals, PMA: polymer phases and network
Thermal	DS	enom MDSC	TGA	Crystalline & Glassy materials waxes natural or added, SBS, REOB glass transition Volatiles – Mineral fillers
Mechanical	,cD	DTT	FD, SDENT	Ductile – fragile transitions Binder toughness Polymer – elastomer

- Asphalt production changes since SHRP: crudes, refining processes, blends, additives, higher recycling
- Superpave is not enough to assess the changes
- ➤ Rheological assessment beyond Superpave can give important insights: Black space representation, ∆Tc, ...
- Analyzing asphalt binder composition is powerful but tricky: requires association of several techniques
 - ✓ Slight differences between bases
 - Additives / asphalt interferences: need for calibration
- > Need to know what to look for to use relevant tools
- New tools are already here and more are coming
 - Quantitation possibilities of correlations and predictions
 - More universal combining various conditions, detectors
 - Or more specifically designed to assess specific formulation

Stay tuned!

WesternResearch

INSTITU

http://www.petersenasphaltconference.org/

Thank You!Come to the 55th PARCQuestions?2018 - July 15-18in Laramie!