Balanced Asphalt Mixture Design: Louisiana's Approach

Louay Mohammad, Ph.D. Department of Civil & Environmental Engineering Louisiana Transportation Research Center Louisiana State University

AMAP 14th ANNUAL WORKSHOP AND CONFERENCE March 19 – 21, 2013 San Antonio, Texas

My Story

- Asphalt Mixture Design
- Review performance Tests
 - High Temperature
 - Intermediate Temperature
- Mixture Design
 - Volumetric
 - Mechanistic
- Summary
- Recommendation

Materials Used In Asphalt Mixture

- Asphalt cement
- Aggregate
 - Coarse
 - Fine
- Increased use of Reclaimed Materials
 - RAP
 - CRM
 - Industrial waste

Objectives of Mixture Design

Perform

- permanent deformation
- fatigue cracking repeated load
- low temperature cracking
- moisture induced damage

Safety

- Resist skid

Constructable

Workability

What Are the Criteria -- Superpave? Volumetrics

- Voids in the Total Mix, VTM
- Voids in the Mineral Aggregate, VMA
- Voids Filled with Asphalt, VFA

Densification

 Stages during lab compaction process

Background

Superpave volumetric mix design

- Ensure satisfactory performance: did use strict requirement
 - » material specifications
 - » volumetric mix criteria.

-No mechanical "proof" test

» Marshall mix design

Mechanical tests

mix verification for intermediate and high volume traffic

- » advanced materials characterizations tests :
- » Superpave Shear Tester
- Not widely used

Overall Relative Rut Susceptibility Ranking Level I

The Search: Performance Mixture Testing

- Increase Use of Reclaimed materials
- Mechanistic Tests
 - Pavement Performance

Intermediate Temperature

- -Fracture/Fatigue
- High Temperature
 - Permanent deformation

Features

- Based on measuring fundamental properties
- Repeatability
- Simple, repeatable, easily-calibrated,
- quick, not requiring highly-trained personnel,
- Can utilize low-cost equipment.
- Sensitive to subtle changes in mixture properties

Laboratory Performance Tests

<u>Mixture</u>

- Rutting Performance of Mixtures
 - Loaded Wheel Tracking Test
 - Flow Number
- Fatigue Performance
 - Semi Circular Bend Test

Loaded Wheel Tracking Test

- AASHTO T 324
- Damage by rolling a steel wheel across the surface of a sample
- Cylindrical: Core or SGC
- Slab: 320- L, 260- W, and 80-mm thick
- 50 °C, Wet or dry
- Deformation at 20,000 passes is

LWT Test Results – 50C, Wet

Mixtures

- I-10 Vinton
 - SMA
 - 12.5 mm WC (Vinton WC)
- I-10 Egan
 - Superpave
 - 12.5 mm WC (Egan WC)
 - 25.0 mm BC (Egan BC)
- US 190 Port Allen
 - Superpave
 - 25.0 mm BC (190BC)
- LA 964
 - Marshall
 - 19.0 mm WC (964WC)
 - 25.0 mm BC (964BC)

LWT Test Results – 50C, Wet

Repeated Load Permanent Deformation Test -- F_N

Relationship B/W LWT Rut Depth & F_N

Permanent Deformation

Good correlation B/W LWT & FN

Recommend LWT

– LWT max. design rut, mm @ 50° C

Table 502-7 Asphalt Concrete General Criteria												
Nominal Max., Size <u>Agg</u> .	0.5 inch (12.5 mm)			0.75 inch (19 mm)			1.0 inch (25 mm)				1.5 inch (37.5 mm)	SMA8
Type of Mix	Incidental Paving¹	Wearing Course		Wearing Course	Binder Course		Binder Course		Base Course	ATB ⁷	Base Course	Wearing
Level ²	А	1	2	2	1	2	1	2	1	1	1	
LWT max. design rut, mm @ 50º C	10 @ 10,000 passes	10 @ 20,000 passes	6 @ 20,000 passes	6 @ 20,000 passes	10 @ 20,000 passes	6 @ 20,000 passes	10 @ 20,000 passes	6 @ 20,000 passes	12 @ 20,000 passes	10 @10,000 passes	12 @ 20,000 passes	6 @ 20,000 passes

Laboratory Test Methods to Characterize Fatigue/Fracture Resistance

- Four-Point Bending Fatigue Test
- <u>Asphalt Mixture</u> <u>Performance</u> <u>Test</u>
- <u>D</u>isk-shaped <u>Compact tension</u> <u>Test</u>
- Texas Overlay Tester
- <u>D</u>issipated <u>Creep</u> Strain <u>Energy</u> Test
- Indirect <u>Tensile</u> Strength Test
- Simplified Viscoelastic Continuum Damage
 - Pull-Push Test
- IDT Fracture Energy
- Semi-circular bending (SCB) test

Laboratory Test Methods to Characterize Fatigue/Fracture Resistance

- Four-Point Bending Fatigue Test
- <u>Asphalt Mixture Performance Test</u>
- <u>D</u>isk-shaped <u>Compact tension</u> <u>Test</u>
- Texas Overlay Tester
- <u>D</u>issipated <u>Creep</u> <u>Strain</u> <u>Energy</u> <u>Test</u>
- Indirect tensile strength (IDT) test
- Simplified Viscoelastic Continuum Damage
 - Pull-Push Test
- IDT Fracture Energy

Semi-circular bending (SCB) test

Semi Circular Bend (SCB) Test

Fracture mechanics

- used for evaluating fracture resistance in rock mechanics
- Temperature: 25°C
- Half-circular Specimen
 - Laboratory prepared
 - Field core
 - 150mm diameter X 57mm thickness
 - simply-supported and loaded at mid-point

Notch controls path of crack propagation

- 25.4 -, 31.8-, and 38.0-mm

Loading type

- Monotonic
- 0.5 mm/min
- To failure
- Record Load and Vertical Deformation
- Compute Critical Stain Energy: Jc

SCB Test - Sample Preparation

SCB Test – Analysis

- Calculate Energy at failure (U) for each notch depth
- Plot U vs. a and determine slope (dU/da)
 Compute Critical Stain Energy

Advantages of SCB Test

Utilize laboratory SGC specimens or field cores

- multiple specimens can be obtained from one core
 - reducing the error caused by heterogeneities among samples
- Test setup is very simple
- Testing time is around 10 minutes per specimen
 - Ease of sample preparation

Stress field resembles pure tensile conditions

Draft Standard Test Method

Standard Method of Test for

Evaluation of Hot-Mix Asphalt (HMA) Crack Propagation using the Semi-Circular Bend Test (SCB)

AASHTO Designation X XXX-XX

1. SCOPE

- 1.1. This test method covers procedures for the preparation, testing, and measurement of fracture failure of semi-circular HMA mixture specimens loaded monotonically.
- 1.2. This standard may involve hazardous material, operations, and equipment. This standard does not purport to address all safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

2. REFERENCED DOCUMENTS

2.1. AASHTO STANDARDS

- PP 2, Practice for Mixture conditioning of Hot Mix Asphalt (HMA)
- TP 4, Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the SHRP Gyratory Compactor
- T 67, Standard Practices for Load Verification of Testing Machines
- T 166, Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens
- T 168, Sampling Bituminous Paving Mixtures
- T 209, Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt (HMA)
- T 269, Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures
- T 312, Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor

Equipment

SCB Test Results – 25C

SCB Test Results – 25C

2013 TRB: Laboratory Evaluation of Asphalt Mixtures Containing Bio-Binder Technologies

SCB Test Results – 25C

Laboratory Results vs. Field Performance

TRB 2012: Characterization of Fracture Properties of Asphalt Mixtures As Measured by Semi-Circular Bending Test and Indirect Tension Test

Development of a Laboratory Criteria

LWT Test Results

SCB Test Results

Balanced Asphalt Mixture Design: Louisiana's Approach

Summary

LWT and SCB tests have been selected

- Performance tests
- High temperature and Intermediate temperature cracking performance
- Good correlation B/W LWT and Fn test results
- Semi-Circular Bending (SCB) test
 - Draft standard test method
 - Specimen: laboratory, field
 - Equipment: adopted to low-cost equipment, AMPT
 - Analysis
 - Lab vs. field performance
- Jc was sensitive to mixture parameters considered
- reasonably effective laboratory tool for evaluating fracture resistance
- Good correlation b/w SCB test results and field cracking rate
- Further validation with more field and laboratory data is underway

Thank you