Nanotechnology for asphalt modification

Geoffrey M. Rowe

Association of Modified Asphalt Producers AMAP 13th Annual Meeting February 7-9, 2012

Objectives

- To present some definitions relating to nanotechnology
- Work being conducted around the world
- o Some new materials
 - Many introduced to the market in last few years

What is it?

 Technologies being developed at a scale at or above the atomic scale but significantly below what we normally consider as fillers

⁽P. Redelius)

Relative scales

Typical size range

Asphalt and nanotechnology

- Work being conducted in two major area
 - Understanding behavior at nano range
 - Modeling
 - Observations
 - Development of new material technologies
 - Many being develop from nano-diamonds to nano-modified silica

Understanding behavior

Various meeting/groups

- RILEM meeting 2011
 Modeling Kringos
- ISAP

Meeting on various aspects

 Work being conducted to understand structures /chemistry

(Morphology - E. Chailleux)

New material technologies

- Note many of our older materials could be considered as nano-modification
 - PPA
 - Amines
 - Carbon black
 - Etc, etc.

- Some new products being proposed for asphalt
 - Terms and materials

Warm mix technologies

Materials being added to effect interface conditions

- Lubricity introduced by Reinke and Baumgardner
- Material introduced as warm mix technology

Some new technologies

- o 3 examples
 - Adhesion promotion
 - Tack coat application
 - Drain down prevention

1 - Adhesion promotion

- Bonding technology based on Siloxane bonds
 - Modifier dispersed in ethylene glycol
- Bond is very strong once established
- Good experience with contractors in Washington State

Anti-strip (and warm mix)

Siloxane bond

Siloxane bond is very strong

- "mothers nature's strongest bond"
- 90-140 Kcal/mole
- Stable to 300°C
- Water repellent

Evaluation of stripping potential

- AASHTO T 182 -Standard Method of Test for Coating and Stripping of Bitumen-Aggregate Mixtures
 - 60°C static immersion test
- Basalt Aggregate (DBM) : 45% 20 mm, 10% 10 mm, 45% less than 6 mm with stone dust
- Asphalt Grade: AC-20 (VG-30, 60-70 penetration grade)
- Specified standard typically less than 85% coating considered as failure

Evaluation of stripping potential

- ASTM D3625 96(2005) Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water
- Basalt Aggregate (DBM) : 45% 20 mm, 10% 10 mm, 45% less than 6 mm with stone dust
- Asphalt Grade: AC-20 (VG-30, 60-70 penetration grade)
- Specified Standards typically less than 75% considered as failure

Boil test results

 Boiling test – some of the modifiers have a very significant impact on the performance

Tensile strength ratio

 Work conducted 100 by NCAT on Lithonia Georgia aggregate 95 Lithia 90 Laboratory Evaluation of ZycoSoil as TSR, % an Anti-Stripping Agent on Superpaye Mixtures 85 Submitted to: Zydex Industries India 80 Submitted by Jaeseung Kim, Ph.D. al Center for Asphalt Technology Technology Parkway Auburn, AL 36830 Phone: (334) 844-4964 75 E-mail: jaeseung@auburn.edu and Jason R. Moore, P.E. National Center for Asphalt Technology 277 Technology Parkway 70 Auburn, AL 36830 Phone: (334) 844-7336 0.05% Nano E-mail moore02@auburn.edu PG64-22 Modified June 1, 2009

Hamburg wheel tracking

Implementation

- Materials being used extensively in Washington state
- Claims by contractors is that better coating is achieved
- Materials being added both a terminals and HMA plants

2 – tack coat application

- Tack Coats suffer from issues of poor / insufficient bonding, leading to decreased structural bearing capacity of pavement
- Slippage cracks, Topdown cracking & fatigue cracks

Hadleigh, Suffolk, England (1982)

Tack coat application

- Similar Siloxane technology used in non-tracking tack coat
 - Modifier dispersed in ethylene glycol
- Bond is very strong once established

Tack coat issues

- Poor spreading
 Inadequate bond
 Industry needs improvements
- Development of "trackless" tack or non- tracking – non-pickup tack coats needed

Design of emulsion

o Typical

- 100 gals 60% emulsion
- Dilute 100 gals of water
- Add 1.4 gals of modifier
- o Process
 - Start re-circulation of emulsion
 - Add water followed with modifier, continue recirculation for 10-15 minutes
 - Spray the Mix

NCAT study - rates of spread

o NCAT study

Surface	Material	Residual Mass (%)	Spray Application Rate-gal/sy (L/m2)		
			Low	Medium	High
HMA	Control	30	0.067 (0.303)	0.133 (0.602)	0.200 (0.906)
	Nano modifier	10	0.067 (0.303)	0.133 (0.602)	0.200 (0.906)
Milled Surface	Control	30	0.133 (0.602)	0.267 (1.209)	0.400 (1.811)
	Nano modifier	10	0.133 (0.602)	0.267 (1.209)	0.400 (1.811)

Bond strength data comparison

New Surface (3-day curing)

Sample	Residual	Bond Strength (PSI)						
	Asphalt	Ар	lication Rate					
	(%)	Low	Medium	High				
Control	30	225	160	150				
Nano modifier	10	175	125	160				
Milled Surface (3-Day curing)								
Sample	Residual	Bond Strength (PSI)						
	Asphalt	Application Rate						
	(%)	Low	Medium	High				
Control	30	250	175	190				
Nano modifier	10	1180	180	190				
Bond Strength Ratio (AASTO 230)								
Sample	BSR* One F	BSR* One Freeze Thaw		BSR* Two Freeze Thaw				
-	Cycle		Cycles					
	New HMA	Milled HMA	New HMA	Milled HMA				

Control 0.55 0.50 1.0 1.1 Nano modifier 0.65 1.1 0.80 1.18

* Ratio of conditioned and unconditioned Bond Strength

Bond strength data comparison

 The nano modified emulsion (10% AC residual) with a lower residual AC content provided equivalent bond strength to that of a control emulsion (30% AC residual) on an unmilled (new HMA) surface

Claims

- Nano modified tack coat keeps nozzles clean by improving stability of cationic bitumen emulsion
- Ensures uniform spraying at room temperature
- Heating of the emulsion not required, saving energy & time
- Allows substantial reduction in asphalt thickness due to better wetting & spraying
- Wets, penetrates & sets quickly (5-10 minutes)
- Reduces tackiness on the surface
- Eliminates Tire Pick-Up

3 – Drain down prevention

- In this example a amorous silica is reacted with a surface active agents
- Amorous silica is around 5 to microns – no not in the nano range
 - Modification to surface in nano range
- Product is Activated Mineral Bitumen Stabilizer

AMBS process and mechanism

- The raw silica mineral is ground to powder and activated by surfaceactive agents using a cation exchange mechanism
- The surface metal cations (Me) in the mineral particles are exchanged by the organic cations with long chains
- Activated by organic compound, mineral particles have the ability to swell organic liquids, like asphalt, due to the long chain molecules

Viscosity variation

- Brookfield viscosity is significantly more rate dependent when AMBS is added to a neat PG70-10 binder grade
- Material is shear thinning at high shear rates
 - At low rates more viscous than modified grade
 - At high rate viscosity similar to unmodified grade

AMBS rheological behavior

 This rheological mechanism of asphalt stabilization by the Shear Thinning effect is schematically described follows:

Stabilizer Net at Rest ("Card House")

Stabilizer Particles in Movement

Example of implementation

Paving and compaction

Work conducted

AMBS Investigation – CHINA Sample Results – Fatigue Test

Strian Level (e-6)

Claims

- Prevents excessive draindown
- o Improves resistance to water damage
- Creates better mechanical stability
- Strongly improves wearing resistance
- Greatly improves rutting & fatigue resistance
- Improves durability
- Lowers mixing & compaction temperatures
- Makes SMA/OGFC easier to produce & lay
- Reduces energy & emissions of greenhouse gases
- Makes SMA/OGFC more cost effective

Summary

- Many materials are being developed
- For our industry we must consider these as tools in our toolbox
 - Agencies will have different needs and the design tools that we have for our materials help us to target agency needs
- Nano-technologies provide an interesting avenue to explore and will help us develop better modified asphalt pavements

Thank you for your attention

