# The Development and Use of High Performance Thin Overlay Systems

13<sup>th</sup> Annual AMAP Meeting Albuquerque, NM February 9, 2012

Ronald Corun

Manager - Asphalt Technical Services

NuStar Asphalt Refining LLC





- Not New in use since the early 1900's
- Originally all fine aggregate – plus AC
  - Could work well in low stress application
  - But tended to rut and crack under higher traffic /stress



- City of Rockville,
   Maryland 1960's
  - Fine graded Marshall mix with AC-10
  - Named itSmoothseal



### Ohio DOT

- Borrowed Rockville idea and product name
- First use in 1960's
- Added polymers in 1990's
- Type A 5/8" thick
  - Sand mix with 8.5% AC
- Type B ¾" thick
  - 4.75 mm mix with 6.4%
     AC



### Ohio DOT

- Oldest Smoothseal pavement has lasted28 years
- Average life of Smoothseal overlay
  - Over Asphalt 16 years
  - Composite pavement 7-11 years (depending on traffic)



- Superpave research successful in reducing rutting on major highways – typically coarser and drier mixes
- Superpave mixes perhaps not suited for low volume secondary and subdivision roads – including 4.75 mm mix
  - Harder to place handwork issues
  - Harder to compact
  - Shorter life span
    - Durability
    - Fatigue life



- SP 4.75 mm mix
- Re-designed mix to produce <u>High</u>
   <u>Performance Thin</u>
   <u>Overlay</u>
- HPTO designed to overcome problems with older Thin Surface Mixes

### **HPTO Design**



#### Requirements

- Improve Durability
  - Higher AC/ film thickness mix (VMA)
  - Dense / nonsegregating mix (inplace density)
- Rut & CrackResistant
  - PMA Binder
  - High quality aggregates
  - Mix performance test

### HPTO - Developed to meet Two Applications

#### **Local & Secondary Roads**

- Suburban development
  - Higher traffic and stress on pavement
  - Intolerance of traffic interruption (get-in & get-out and don't come back)
  - Usual maintenance treatments no longer acceptable

#### **Primary & Interstate Hwy**

- Budget shortfalls require delays in some normal rehabilitations
- Need to provide a "maintenance" application until next major rehab
- HPTO can provide a solution

### **HPTO Applications**

**Local Use** 

**DOT Use** 

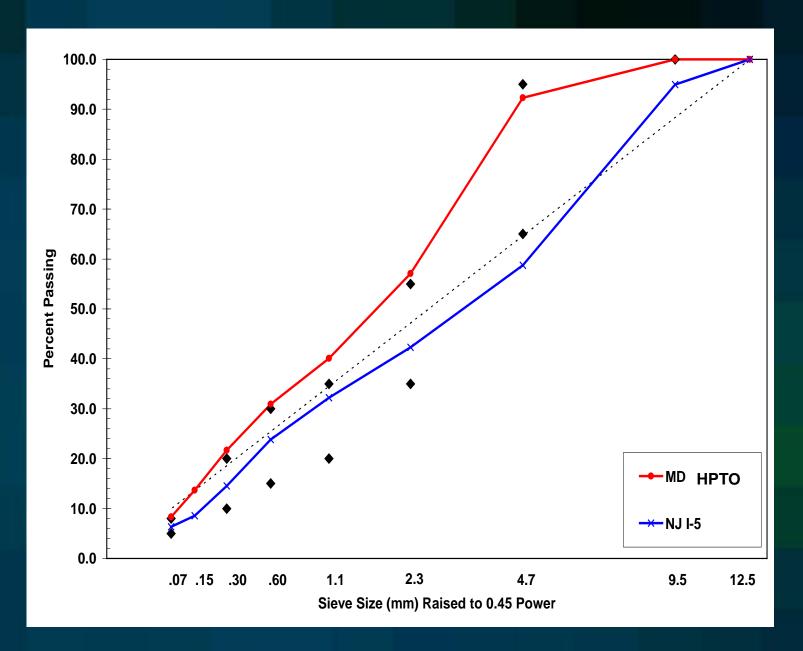






#### Research Objectives

- Longer life material
  - Adhesion to underlying pavement
  - Rutting
  - Fatigue cracking
  - Durability
- Use local aggregates
- Friendly to local contractors
- Good Constructability
- Cost effective product
  - Can be placed ¾" 1 ¼" thick
  - Little milling required




- Achieving Research
   Objectives
  - Rutting Performance
    - Quality aggregates
    - Good aggregate gradation
    - Specially Engineered Polymer-Modified Asphalt (PMA)
    - Mix performance test (APA, Hamburg, AMPT)



- Achieving Research Objectives
  - Fatigue cracking
    - Increased asphalt content
      - Slightly gap-graded mix
      - Mix design at 3% air void target (SGC = 50 gyrations)
      - Minimum 7% asphalt content
    - Specifically designed to increase fatigue life
      - Thicker asphalt film coatings min. VMA = 18%
      - Greater resistance to aging

### **HPTO & 9.5 mm Mix Gradation Plot**

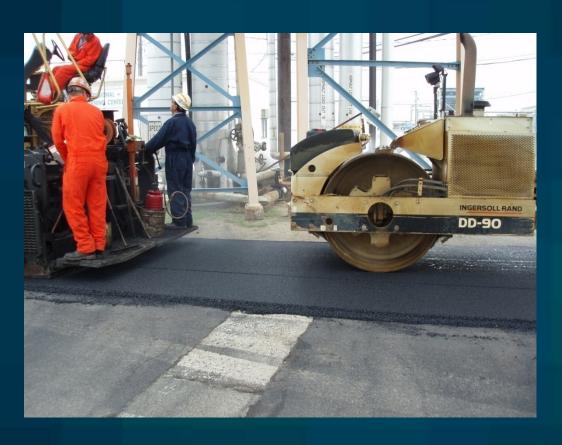




- Achieving Research Objectives
  - Balanced Performance
    - NCAT test track
    - Higher binder content possible with no rutting when PMA used
    - National study PMA
      - National study –
         increased pavement
         life of 5-7 years
      - Significant fatigue life improvement

### Initial Installation of the HPTO for Local Roads




- NuStar Asphalt Refinery in Paulsboro, NJ
  - Main entrance road
  - 20 year old existing HMA pavement
  - Approximately 5 loaded tanker trucks per day
  - Substantial fatigue cracking
  - Rutting not an issue
  - Minimal pavement deflection under loads



- NuStar Asphalt Refinery in Paulsboro, NJ
  - Full depth HMA patching section in one lane
  - Compare performance



- Construction objectives
  - Adhesion to underlying pavement
    - Require clean and dry pavement
    - Use PG 64-22 as tack coat material
    - Require complete and even coverage



- NuStar Asphalt Refinery in Paulsboro, NJ
  - Constructability
    - Specification density achieved easily
      - 7% AC content and 3% design air voids makes compaction easier



- NuStar Asphalt Refinery in Paulsboro, NJ
  - Constructability
    - Required laydown temperature is only 300° - 310°F

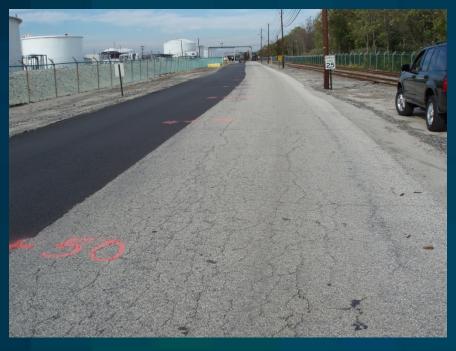


- NuStar Asphalt Refinery in Paulsboro, NJ
  - Constructability
    - Handwork not a problem



- NuStar Asphalt Refinery in Paulsboro, NJ
  - Constructability
    - Transverse and longitudinal joints are excellent
    - Project appearance is very good

# Paulsboro HPTO - Pavement Evaluation




- Evaluation each year
  - Rut & cracksurvey
  - Pavement coring

### Paulsboro HPTO - 3 years old

Original

After 3 years






### Paulsboro HPTO – after 3 years



### Paulsboro HPTO - Cores





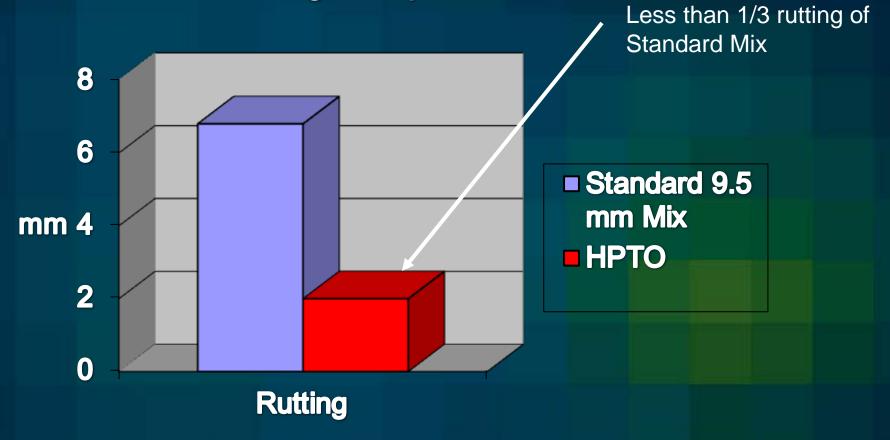




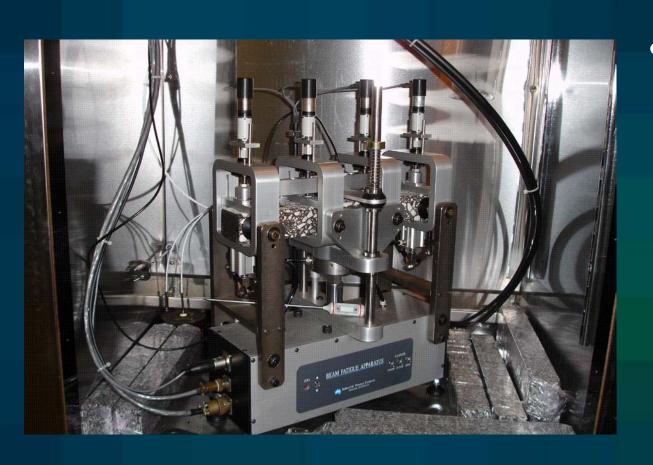




### Performance Testing of the HPTO Mix



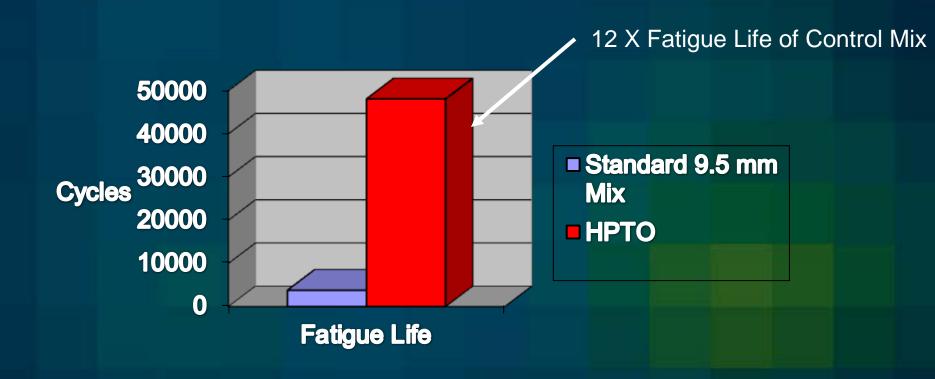

#### Laboratory Testing


- Rutting
  - Asphalt Pavement Analyzer (APA)
- Fatigue Cracking
  - Flexural Beam Fatigue Device
- Reflective Cracking
  - Texas Overlay Tester
- Permeability
  - Flexible Wall Permeability Tester
- Skid Friction
  - Skid Trailer

# Asphalt Pavement Analyzer Results - Test Project






# Performance Testing of the HPTO Mix

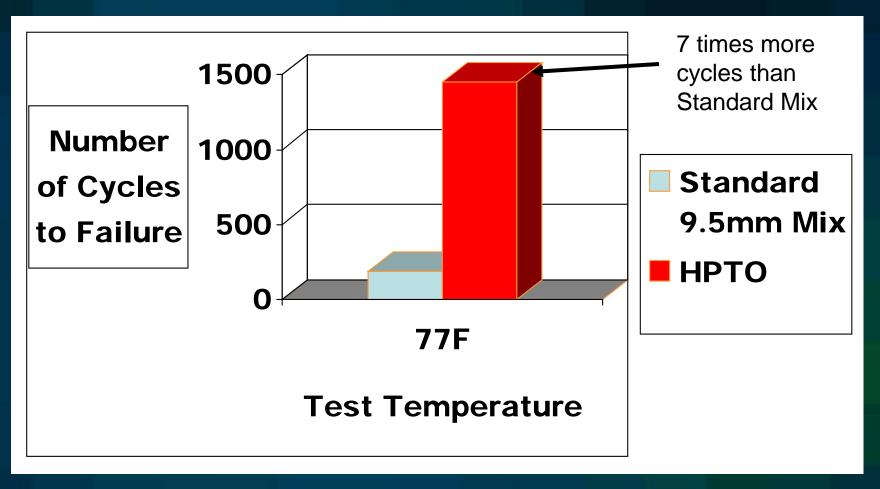


- Flexural Beam Fatigue Testing
  - Measure number of cycles to failure

# Flexural Beam Fatigue Results - Harford County Project

**Fatigue Life Comparison** 




# Climatic Loading – Horizontal Movement

**Hot Mix Asphalt Overlaid on PCC** 

Horizontal Tensile Stress due to Expansion/Contraction of PCC from Temperature

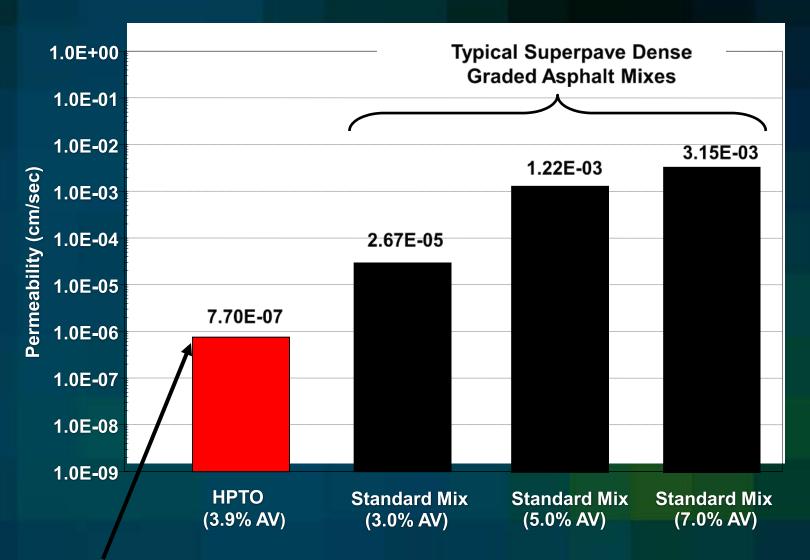
Horizontal Stress/Strain is modeled using Overlay Tester

### Overlay Tester Results - Harford County Project



Texas DOT requires minimum of 300 cycles to pass the test

## Flexible Wall Permeability Testing






- For Pavement Preservation, important to "seal" pavement to limit moisture
- Permeability on order of a silt/clay, required testing in "Flexible Wall" Permeability Setup

Samples cored from 6-inch diameter gyratory sample

#### **Typical Permeability Values**



## Surface (Skid) Friction, SN<sub>40</sub>

| Material Type      | Skid Number |
|--------------------|-------------|
| HPTO               | 53          |
| 9.5 mm Mix (New)   | 51.6        |
| 9.5 mm Mix (4 Yrs) | 54.3        |
| 19mm Mix (4 Yrs)   | 55.7        |
| 19mm Mix (5 Yrs)   | 47.7        |



# DOT Application for Interstate & Primary Roads

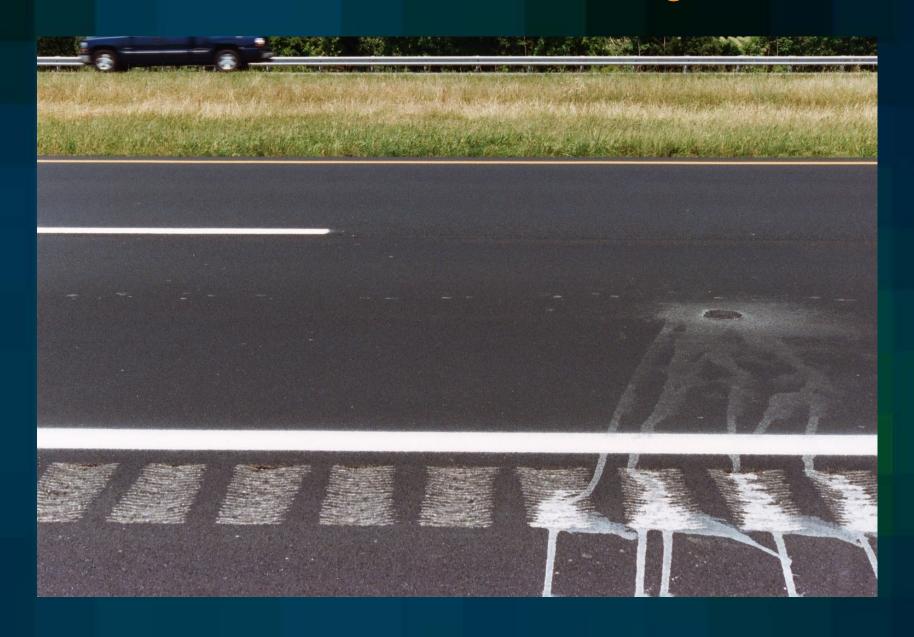


- Material needed for 'intermediate' maintenance application (one that extend pavement life but without impact on existing clearances)
- Prefer to use a 'nonproprietary' product
- HPTO can be a solution

### NJ DOT HPTO Materials



- New Jersey requirements
  - Thin-lift ≤ 25mm thick (Ideally)
    - eliminate change to existing infrastructure (bridge clearances, drainage, etc.)
  - Minimal Impact to Users (Coverage vs. Unit Time)
  - Re-new and upgrade road surface (Ride Quality serviceability)
  - No "Cure-time" dependent materials
  - Must withstand high stresses


#### **NJDOT HPTO - Specification**

| <u>Sieve Size</u>    |      | Percent Passing |                |                 |
|----------------------|------|-----------------|----------------|-----------------|
|                      |      | <u>HPTO</u>     | NJ HPTO        | NJ 9.5 mm (I-5) |
| 12.5 mm              | 1/2" | 100             | 100            | 100             |
| 9.5 mm               | 3/8" | 100             | 100            | 95              |
| 4.75 mm              | #4   | 65-95           | 65-85          | 60              |
| 2.36 mm              | #8   | 35-55           | 33-55          | 42              |
| 1.18 mm              | #16  | 20-35           | 20-35          | 32              |
| 0.60 mm              | #30  | 15-30           | 15-30          | 24              |
| 0.30 mm              | #50  | 10-20           | 10-20          | 15              |
| 0.075 mm             | #200 | 4-10            | 5-8            | 6.3             |
| Binder Type          |      | НРТО ХР         | PG 76-22 (PMA) | PG 64-22        |
| Minimum AC%          |      | 7.0%            | 7.0%           | 5.1             |
| % Air Voids          |      | 3.0%            | 3.5%           | 4.0             |
| VMA                  |      | > 18%           | > 18%          | 16.3            |
| SGC N <sub>des</sub> |      | 50              | 50             | 75              |
| APA Rutting          |      | Max. 5 mm       | Max. 4 mm      |                 |

## NJ I-295 HPTO Project



## NJ I-295 HPTO Project



## NJ I-295 HPTO Project



- Application- 1.25" overlay over PCC
- HPTO with PG 76-22 binder
- Construction scheduled for November
- DOT concern overheating of PMA mix
- Try WMA for late season paving
- Normally run at 340F with WMA ran at 290F




- Placed +10,000 tons in 9 days
- Used WMA binder additive Evotherm
   3G



- Average of 9 lots:
- 5.0 in-place % air voids
- 1.7" thickness
- Highest AV = 6.0%
- Lowest AV = 3.9%





# HPTO / HPTO System Summary



- Can be designed for county / municipal roads as well as Interstate highways
- Based on lab tests & project performance to date – should provide longer life than conventional mix (9.5mm)
- User friendly local materials and contractors
- Cost effective alternative to "mill & fill"
- Good performance to date for state agencies with PMA
  - Ohio DOT
  - NJ DOT HPTO
  - NYSDOT 6.3 mm mix

## **Questions?**

