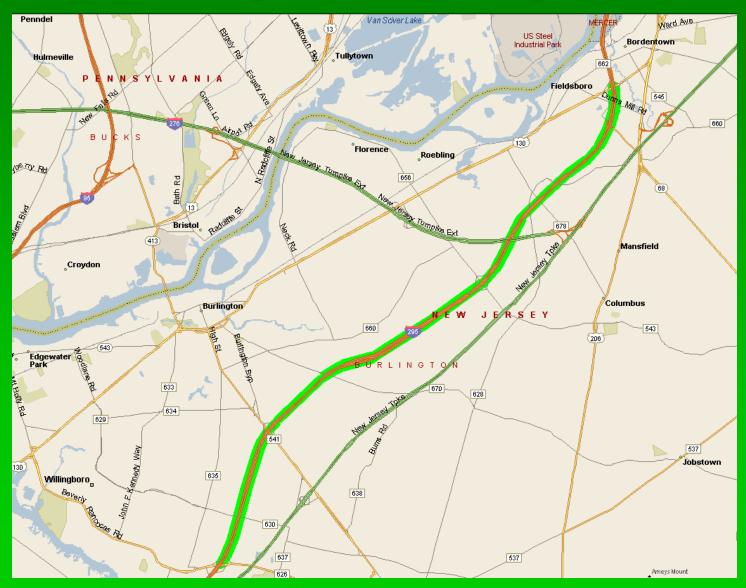
NJ I-295: A Perpetual Pavement Design and Construction Project

1000


Presented by:

- Robert Sauber, Executive Director
- NJ Asphalt Pavement Assoc.

Presented to:

- AMAP 12th Annual Meeting
- February 16, 2011

Rt I-295 MP 45 – 57 Burlington County, NJ

The I-295 Problem

- Rt I-295 constructed 1972 to 1974
- Reached terminal serviceability a decade ago, NJ 101.5 attacks
- PCCP with ASR (alkali-silica reaction)
- Limited pavement program funding
 90,000 ADT with 11% TT that must be maintained during construction

I-295 Project Specifics

- Rt. I-295 NB & SB MP 45 to 57.3
 - Three12' travel lanes with 4' inside and 12' outside shoulders
 - Total paved width 52 ft each direction
- 21 structures within project limits resulting in 20 undercut locations to maintain underclearance
- Full closure limited to 59 days during summer months when traffic is "lower"

Potential Solutions

- Patch and overlay, cost \$26 million
 <u>Short service life, not cost effective</u>
 - Ultimate fix will be more difficult
- Replace broken slabs
 - Slow and expensive, cost overrun risk
 - Not a long term solution, never ending
- Rubblization and HMA Overlay
 - Traffic control difficult: profile changes

Chosen Solution

- Rubblization with directional closure to increase contractor productivity and safety, reduces project duration and cost
- Hyperbuild to reduce traffic exposure and obtain public support for directional closure
- Sustainability Elements
 - Rubblization recycles PCCP in place, limits excavation and material hauling
 - Indicate a structure of the structure

Why Rubblization?

Rubblization \$1.46/sy vs. Removal \$5.76/sy

- Average of 3 lowest I-295 bids and typical
- Rubblization is cost effective when the amount of patching is approximately 10%
- Lower Risk to Owner and Contractor
 - Reduced subgrade exposure to moisture damage

• 4X faster than breaking, excavating, hauling and placing DGABC with traditional methods

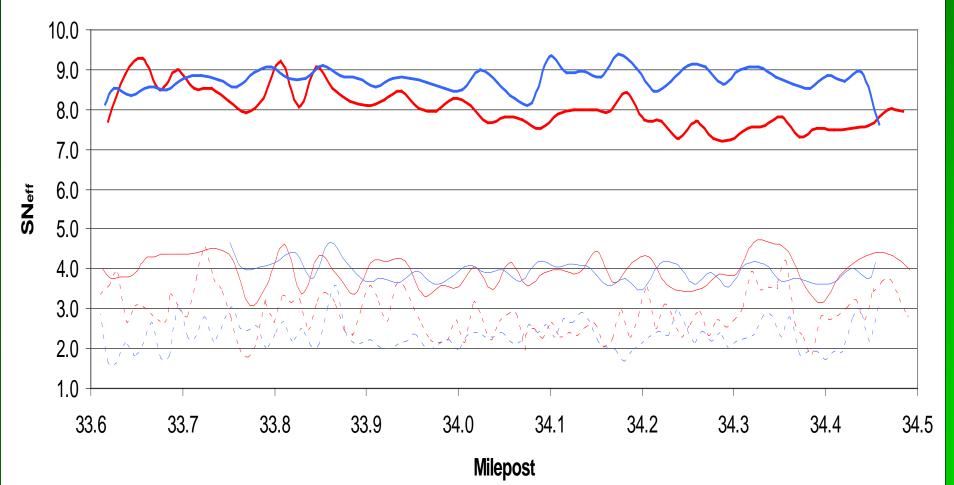
Route I-78 Express Lanes Essex & Union Counties

Route I-78 Local Lanes Essex & Union Counties

Route I-78 Essex & Union

Cross section of rubblized I-78

PCCP



Route I-78 PSPA Test Results

- Elastic modulus is evaluated from the average velocity of surface waves
- Seismic testing is a low strain modulus, reductions should be made to describe it as resilient modulus
- Modulus varied between 80 and 400 ksi
- Average modulus was 217 ksi

Effective Structural Number for Route I-295 Northbound & Southbound Left Lanes After Rubblization, After 3 in. Overlay, and After 14 in. Overlay

Rubblization Design Criteria

- AASHTO M-E Design Guide for Highways 150 ksi for PCCP 8 to 12 inches thick
- Asphalt Institute Airfield Project 2007
 Slabs 6 to 8 in. thick: Moduli from 100 to 135 ksi
 Slabs 8 to 14 in. thick: Moduli from 135 to 235 ksi
 Slabs >14 in. thick: Moduli from 235 to 400 ksi

Initial Pavement Design

- Initial design performed using 1993 AASHTO Pavement Design Guide
 - 12" thick HMA over rubblized PCCP, 4 lifts
 - Rubblized PCCP and subgrade modulus determined using PSPA and FWD data from previous rubblizion projects
 - The 59 day closure required extremely high HMA production and placement; up to15,000 tons/day

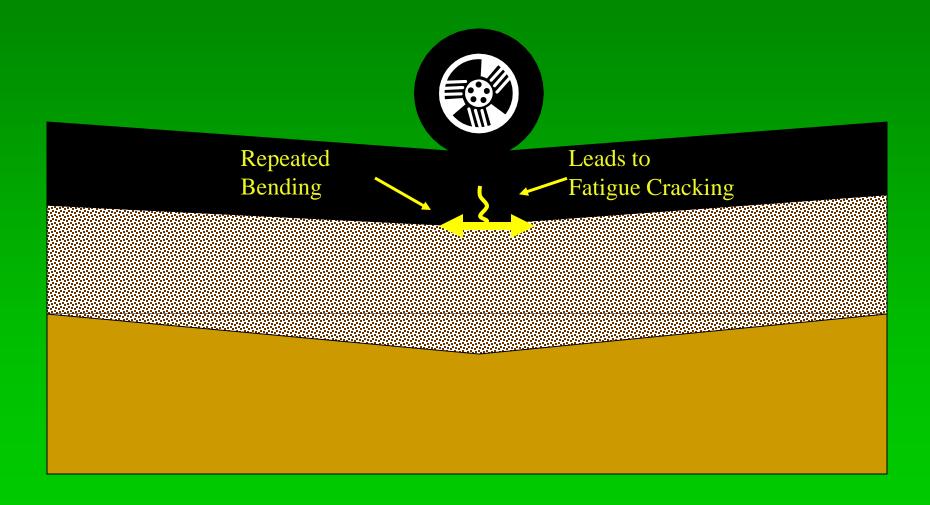
Initial Pavement Design

- For 12" thickness, 2400 linear feet (+ width of bridge) of PCCP excavation at each structure, 100' transition per inch thick
- From past experience, box outs problematic because they are usually at low points
- Most excavated areas required a 2 ft undercut (clay subgrade)
- Acid producing clay (pH 3.5) limited in-situ lime treatment

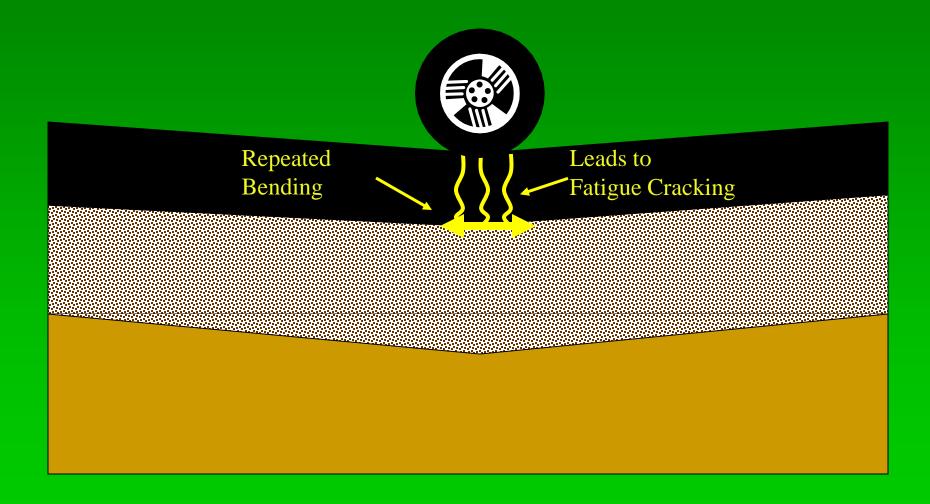
Acid Producing Clay

Rt. 295 NB Haul Road

<u>M-E Design Approach</u>

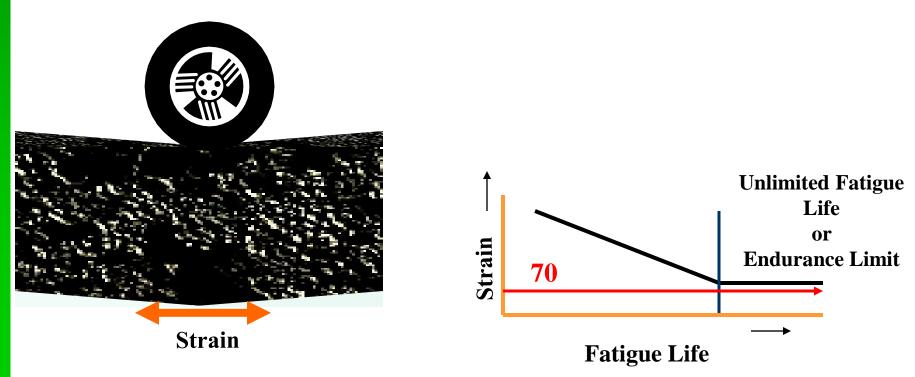

- Time and money could be saved by reducing HMA thickness from 12" to 8"
- Evaluated pavement response in MEPDG (typical NJ HMA materials) and revealed bottom-up cracking to be an issue at 8" thickness, also a rutting potential
- NJDOT decided on perpetual pavement design with "rich" bottom layer but need to develop a specification to insure that properties met design requirement

Ad Hoc Team Assembled


- NJDOT reached out to industry and academia to develop a solution
- Rutgers University- Tom Bennert
- NuStar Energy- Frank Fee
- NJAPA- Wayne Byard

 Also consulted with experts from NAPA, Kraton Polymer and a few others to develop a level of confidence

Bottom-up Cracking


Bottom-up Cracking

Fatigue Theory for Perpetual Pavements

High Strain = Short Life

Low Strain = Unlimited Life

<u>Goal of Perpetual Pavement</u> <u>Design</u>

- Design the structure such that there are no deep structural distresses
 - Bottom up fatigue cracking
 - Limit tensile strain at bottom of asphalt layer
 - Structural rutting
 - Limit compressive strain at top of subgrade
- All distresses can be quickly remedied from surface
- Result in a structure with 'Perpetual' or 'Long Life'

1295 - Designing for Perpetual Pavement

- Need to determine tensile strain at bottom of HMA
 - Use Elastic Layer Theory
 - Use "optimal" structure and thickness
 - Need to make sure HMA can withstand resultant tensile strain
- Need rut resistant HMA
 - New pavement section over rubblized PCC
 very stiff so likelihood of structural rutting minimal – more concerned with surface rutting

Change Design Methodology

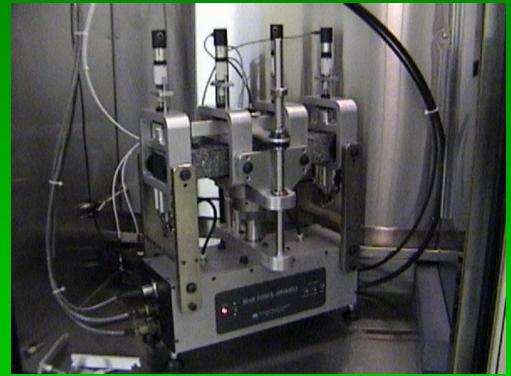
- Evaluated maximum tensile strain with 8" HMA over rubblized PCC
 - Used JULEA software same in MEPDG
 - Resulted in 82 micro-strains (rounded up to 100 microstrains to be conservative)
- Final design pavement cross-section
 - 2" SMA Surface
 - 3" 19M76 Intermediate Course
 - 3" of NJDOT Bottom Rich Base Course
 - Designed specifically for this project
 - Utilized Endurance Limit concept

Rt I-295 Pavement for Full Reconstruction

2" SMA 12.5 Surface Course
3" HMA 19M76 Intermediate Course
10" HMA 25M64 Base Course
8" Dense Graded Aggregate Base Course

Endurance Limit

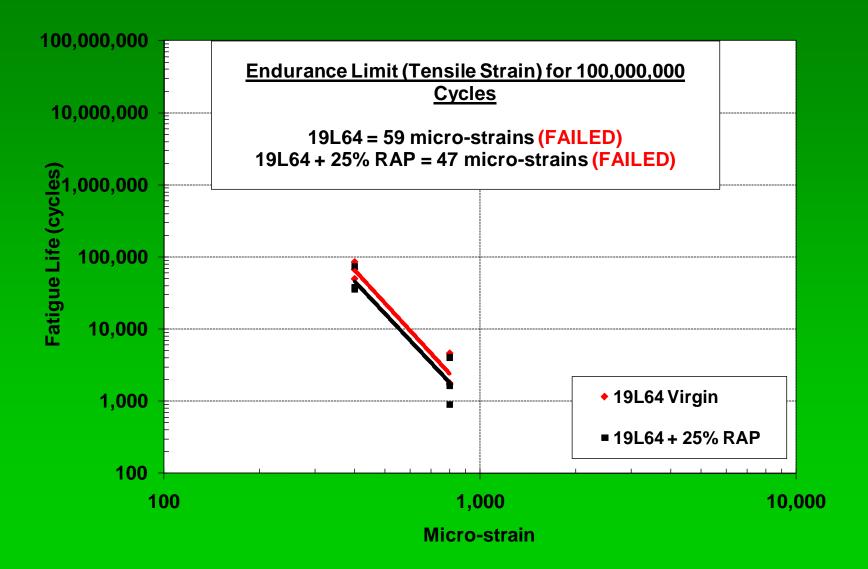
- Used methodology in NCHRP Report 646
- Conduct flexural beam fatigue at 400 and 800ms
 - 3 samples each
- Use 95% confidence interval with a selected # of repetitions

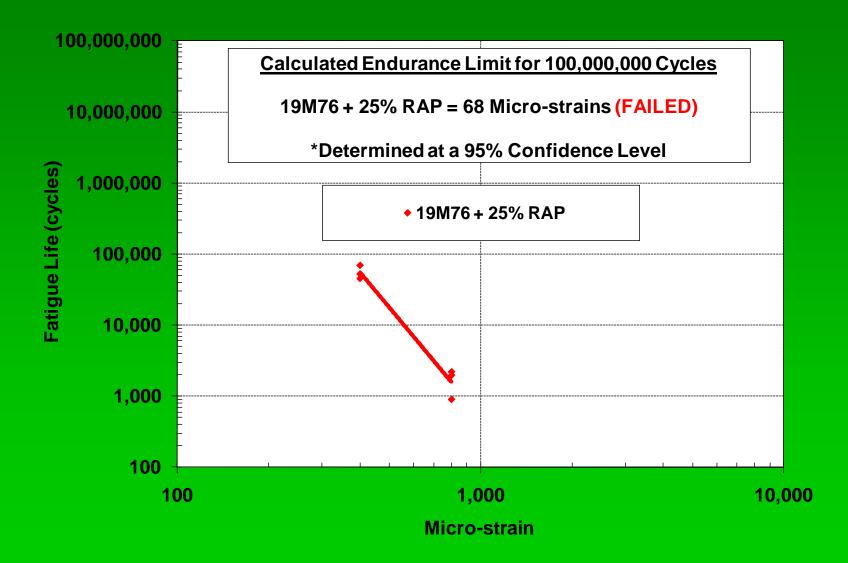

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Validating the Fatigue Endurance Limit for Hot Mix Asphalt

TRANSPORTATION RESEARCH BOARD

HMA Flexural Fatigue Test


- Flexural Beam Fatigue AASHTO T-321
- Tests mix's ability to withstand repeated bending
- Data = number of loading cycles to failure (Fatigue Life)
- Run at typical strain (deformation) to simulate anticipated pavement deflections


What Mix to Use?

- With performance evaluation in place, Rutgers University began testing plant produced mixes in Fall 2009
- Different base course mixes were evaluated – none were successful
 - Must achieve an Endurance Limit greater than 100 micro-strains at 100,000,000 cycles (NCHRP 9-38 had used 50,000,000 cycles)
- Required design of new mixture
 - Bottom Rich Base Course BRBC

Endurance Limit – 19L64

Endurance Limit – 19M76

BRBC Specification

Table 902.07.03-1 BRBC Grading of Total Aggregate				
Sieve Size	Percent Passing by Mass			
	minimum	maximum		
1"	100			
3⁄4''	90	100		
1/2"		90		
#8	23	49		
#200	2.0	8.0		
Minimum Percent Asphalt	5.	.0		
Binder by Mass of Total Mix				

Table 902.07.03-2 Volumetric Requirements for Design and Control of BRBC						
	Required Density (% of Max Sp. Gr.)	Voids Filled with Asphalt	Voids in Mineral Aggregate	Dust to Binder Ratio	Draindown AASHTO T 305	
	@ N _{des} (50 gyrations)	(VFA)	(VMA)			
Design	96.5	70 - 80	≥13.5 %	0.6 - 1.2	≤ 0.1 %	
Requirements						
Control	95.5 - 97.5	70 - 80	≥ 13.5 %	0.6 – 1.3	≤ 0.1 %	
Requirements						

Table 902.07.03-3 Performance Testing Requirements for BRBC			
Test	Requirement		
Asphalt Pavement Analyzer (AASHTO TP 63)	< 5 mm@ 8,000 loading cycles		
Flexural Fatigue Life of HMA (AASHTO T 321)	> 100,000,000 cycles@ 100 microstrains		

Asphalt Pavement Analyzer

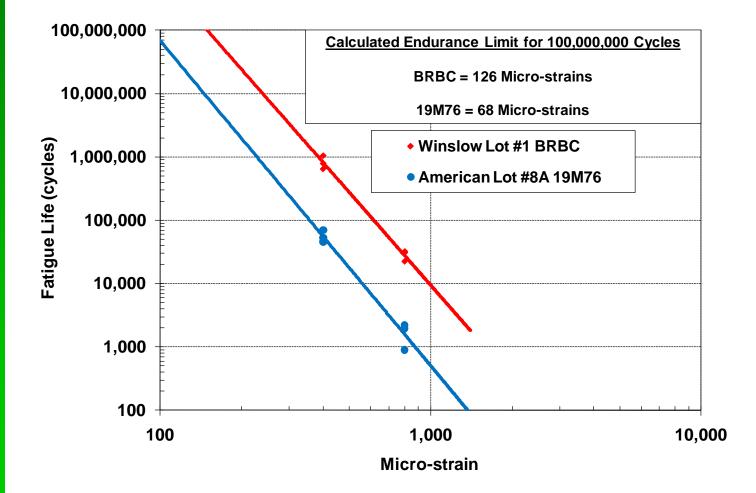
AASHTO TP 63 100 lb wheel load; 100 psi hose pressure Tested at 64°C for 8,000 loading cycles

BRBC Specification

- No RAP, it reduced fatigue life
- No natural sand, it reduced VMA
- Binder
 - PG76-28 by addenda (NJDOT Spec)
 - RTFO Elastic Recovery > 60% @ 25°C (AASHTO T301)
- Performance Specification
 - APA and Flexural Beam
 - Testing for mix design verification and control (1st Lot and every 5th Lot after)

Required BRBC Protocol

- Conduct volumetric mix design
- Supply loose mix for performance testing (fatigue and rutting)
- If pass, conduct test strip
 - Loose mix sampled and again tested (fatigue and APA)
- If pass, allowed to produce for project
 - 2 suppliers had passing designs
 - 1 supplier had failing design



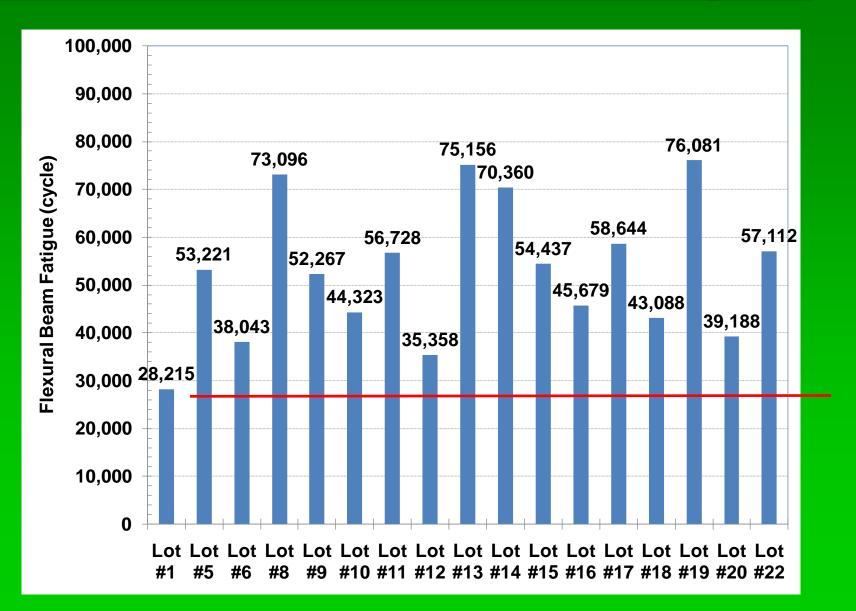
Bid price for BRBC lower than cost of SMA on the project

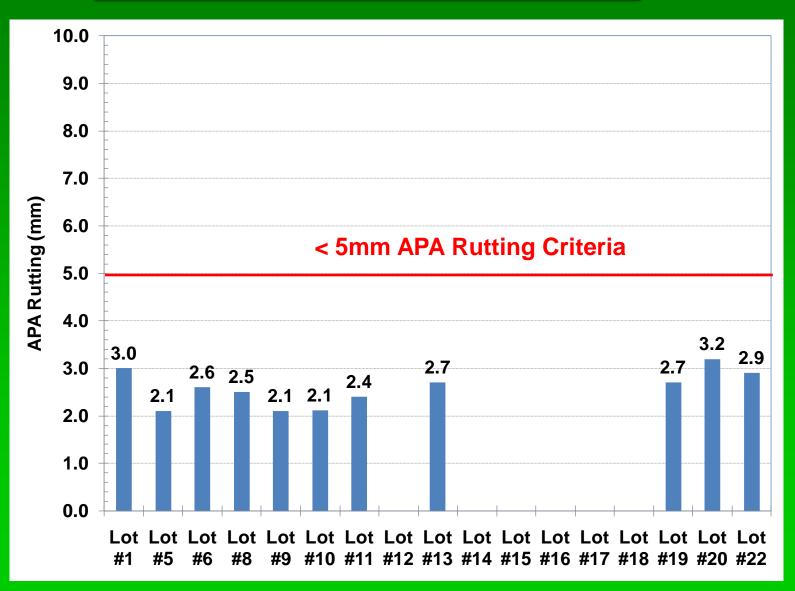
 Polymer modification kept at a cost effective price point that could be mass produced in large quantities

		(1) I5964		(2) S6836		(3) C7444	
		INTERCOUNTY PAVI	NG J/V H. &	SOUTH STATE INC		CRISDEL GROUP,	INC
LINE NO / ITEM CODE / AI	1						
ITEM DESCRIPTION	QUANTITY	UNIT PRICE	AMOUNT	UNIT PRICE	AMOUNT	UNIT PRICE	AMOUNT
0078 408003P	177628.000 T	85.75000	15231601.00	90.90000	16146385.20	91.20000	16199673.60
BOTTOM RICH BASE COURS	SE		i i		i		
0079 401099M	155975.000 T	54.75000	8539631.25	62.35000	9725041.25	63.40000	9888815.00
HOT MIX ASPHALT 25 M 6	64 BASE COURSE	I			1		
0080 401108M	950.000 U	72.85000	69207.50	500.00000	475000.00	112.68000	107046.00
CORE SAMPLES, HOT MIX	ASPHALT	1					
0081 404006M	82228.000 T	97.75000	8037787.00	82.00000	6742696.00	97.53000	8019696.84
STONE MATRIX ASPHALT 1	12.5 MM SURFACE	I. I					
COURSE							

Endurance Limit -19M76 vs BRBC

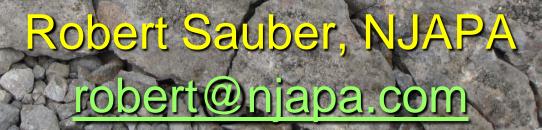
BRBC in Field


BRBC Core Sample


BRBC Core Samples

<u>OC Test Results - Fatigue</u>

Final Project Quantities


- Project cost: \$79 million (significantly lower than engineers estimate)
 - BRBC eliminated 170,000 tons of HMA
 - Reduced PCCP removal and replacement material by 64,000 SY, 3 miles x 3 lanes
- BRBC = 177,628 T, 3" min to 5" max
- 19M76 Intermediate = 127,078 T, 3" lift
- 12.5 SMA = 82,228 T, 2" lift
- 25M64 Base = 156,000 T

- NJDOT utilized a performance-based approach to design and build a "perpetual pavement" out of an aging I-295 PCC pavement
 - Engineered an asphalt material to meet a project specific performance requirement
- Consisted of the final development of the NJDOT BRBC mix specification
 - Saved NJDOT over \$7 million
 - Performance testing required for acceptance

Thank you for your time!

IN THE PARTY OF TH

