Development of a CRM Binder Performance Spec.

John A. D'Angelo Ph.D. P.E. 8528 Canterbury Drive Annandale, Virginia 22003 571-218-9733 johndangelo@dangeloconsultingllc.com

Gaylon Baumgardner Paragon Technical Services

CRM Sizes

Rubber is delivered in different systems with supper sacks very prevalent.
 CRM comes in different sizes.

CRM

- Historically testing has been done with pen and vis.
- Viscosity was mostly rotational or vane shear.

Photomicrographs of CMCRA Transmitted and Fluorescent Light

Multi Stress Creep and Recovery Sample prep is exactly the same as the existing RTFOT DSR.

CRM DSR GAP Study

- Several 10% blends with 30 and 60 mesh binders
- **T**wo binders 64-28 and 76-22
- Minimum 10% CRM actual formulation unknown
- Two gap openings tested, 1mm and 2mm.

Gap study Several 10% blends with 30 and 60 mesh binders

base and CRM size Lion 64-22, 850 µm, 160°C Lion 64-22, 850 µm, 177°C Lion 64-22, 850 µm, 193°C Lion 64-22, 850 µm, 210°C Lion 64-22, 600 µm, 210°C Lion 64-22, 250 µm, 210°C Source A, 250 µm, 210°C Source B, 250 µm, 210°C Source C, 250 µm, 210°C Source D, 250 µm, 210°C Source E, 250 µm, 210°C Source F, 250 µm, 210°C

Comparison of measurements at 1 and 2 mm gaps

Terminal Blended CRM GAP study

	Con	Test Temp.,	l no re	0/ ****	% Change
Aspnait ID	Gap		Jnr	% rec	Jnr
PG 64-28	1mm	52	0.12	75.4	71.4
		58	0.36	64.4	125.0
		64	1.24	47.8	134.0
		70	3.14	29	204.9
		76	6.14	14	597.7
Paramount					
PG 64-28	2mm	52	0.07	83.7	40.0
		58	0.44	58.8	144.4
		64	0.82	56.5	46.4
		70	2.28	33.1	159.1
		76	6.39	11.9	257.0

Jnr % Rec comparison

Gap testing Comparison 1mm 2mm 52, 58, 64, 70, 76C

Terminal Blend CRM Gap Study

Asphalt ID	Gap	Test Temp., °C	Jnr	% rec	% Change Jnr
Paramount					
PG 76-22	1mm	52	0.024	89.2	26.3
		58	0.078	81	62.5
		64	0.222	70.6	103.7
		70	0.569	57.5	144.2
		76	2.067	28.9	164.3
Paramount					
PG 76-22	2mm	52	0.029	86.9	190.0
		58	0.085	78.5	57.4
		64	0.178	75.1	49.6
		70	0.502	61.8	128.2
		76*	1.53	35.7	267.8

Terminal Blend CRM Gap Study

Gap testing Comparison 1mm 2mm 52, 58, 64, 70, 76C

Terminal Blend CRM Gap Study

- DSR requirement that particles be less than ¹/₄ gap size works for CRM also.
- Binders tested would meet Jnr and % Recovery requirements, but both binders showed stress sensitivity.
- Stress sensitivity results marginal so minor adjustment of formulation could bring within requirements.

How to handle larger CRM

- 60 mesh material is easily handled in 1 mm gap.
- 20 mesh material may require 4 mm gaps.
- What is the limit of gap size?
- Are other geometries available to test larger particles?

Jnr of a PG 76-22 measured @ 3 gaps

		COMPLEX 3.2 kPa STRESS		3.2 kPa STRESS
GAP(mm)	TEMP (°C)	MODULUS (kPa)	J _{nr} (1/kPa)	% Recovery
1	64	8.81	0.212	62.8
2	64	9.22	0.205	62.8
3	64	9.51	0.208	62.5

		COMPLEX	3.2 kPa STRESS	3.2 kPa STRESS
GAP(mm)	TEMP (°C)	MODULUS (kPa)	J _{nr} (1/kPa)	% Recovery
1	76	2.93	1.579	27.2
2	76	2.97	1.558	27.1
3	76	3.03	1.640	25.8

4 mm Gap Trial

Objective

 Identify suitable testing methods for GTR under the Superpave procedures
 Using smooth parallel plates for testing

Concerns

Large gap requirements due to large particle size
Trimming of parallel plates
Sedimentation of particulates
Deformation of Asphalt at geometry surface, rather than entire volume of GTR sample

Geometries Used

Parallel Plate Plate Diameter: 12.5 mm ■ Gap: 1 mm Couette Set (Cup and Bob) ■ Cup Diameter: 27.5 mm Bob Diameter: 14 mm Effective Gap: 6.75 mm Vane 14mm Set (Cup and Vane) ■ Cup Diameter: 27.5 mm ■ Vane Diameter: 14 mm

Parallel Plate

Cup & Bob

Top View

Malvern Instruments
 Kinexus Pro Rheometer
 Active Heated Chamber
 Used with 25mm parallel plates

Peltier Cylinder Cartridge
 Used with Cup & Bob and Cup & Vane

Validation Experiment for Cup and Bob and Vane

Binders

- 64-22, 76-22 SBS, 70-22PPA
- Master curves with PG 64-22
- Full PG binder grading and MSCR for all three binders.

G* Master Curves for 64-22 with different geometries

δ Master Curves for 64-22 with different geometries

Comparison of Geometries DSR

Control 0.1 kPa @ 70 C Cycle 1 with All 3 Geometries

New Geometry Evaluation

Preliminary testing indicates that new geometry may give similar results.
More extensive evaluation is needed to fully

- validate geometries.
 - Multiple grade binders
 - Full PG grading and MSCR

Evaluation of New Geometries

- Plate Pate provides similar results to cub and bob.
- Cup and vane will require unique calibration for individual binders and may not be ideal for specification testing.

Rubber Grading Experiment for Cup and Bob

Binders 64-22, 76-22, 70-22PPA Full PG grading and MSCR; PP1, PP2, CB 64-22, 30 mesh rubber 10%, 15% Full PG grading and MSCR; PP2, CB 64-22, 20 mesh rubber 15%, 20% Full PG grading and MSCR, CB 64-22 60 mesh rubber 10%, 15% Full PG grading and MSCR, PP1, PP2, CB ALF AC rubber Full PG grading and MSCR, CB ALF Terminal blend Full PG grading and MSCR, PP1, CB

New CRM spec to match MSCR Binder Spec

Original						
DSR G*/sinδ Min 1.0	64					
		RTI	FOT			
64 Standard MSCR3.2 <4.0			64			
64 Heavy MSCR 3.2<2.0	[(MSCR3.2 – MSCR 0.1)/ MSCR 0.1] < .75 _		64			
64 Very heavy MSCR3.2 <1.0			64			
PAV						
S grade DSR G*sinδ Max 5000	28	25	22	19	16	
H & V grade DSR G*sinδ Max 6000	28	25	22	19	16	

Low temp BBR and DTT remain unchanged

Other Issues

- Solubility What values should be considered?
 - 99%
 - 93%
 - No solubility
- MSCR % Recovery Rubber and polymers are not the same. Do we have a separate spec?

Summary

- Control for all plate plate and cup and bob geometries showed similar results for T-315 and TP-70 at 2 different temperatures
- Trimming of samples not required when using cup and bob geometries
- GTR at 64C exhibited differences between the Bob and Vane geometries
- Accurate measurements can be generated if sedimentation of particulates occur during the test when using Bob geometry

Summary

- **CRM** binder is sensitive to crude source.
- Rubber size will effect test results. Particles should be ¹/₄ gap size or less.
- Careful formulation is needed to meet all Jnr specs, but it can be done successfully.
- CRM Binders can be produced to meet PMA specs.
- Large CRM particle sizes can be tested in DSR

Summary

- There may be some differences for CRM binder spec and PMA Spec
 - Solubility for CRM binder may be different.
 - Stress sensitivity may be different.
 - Most other properties will be the same.

Thank You