

Highly Modified Binders for Enhanced Pavement Performance

 Dallas Little, P.E., Kraton Polymers
AMAP → Savannah, GA – February 1-3, 2010

- Kraton Polymers
 - Willem Vonk
 - Erik Jan Scholten
 - Bob Kluttz

Technical University Delft – Road & Railways

- Andre Molenaar
- Martin van de Venn
- Tariq Medani
- Technical University Delft Mechanics
 - Tom Scarpas
 - Xueyan Liu

Delft University of Technology

Outline

- Kraton Polymers
- How SBS Works in Bitumen and Asphalt Pavement
- Background of the Study
- Framework
- Testing phases
- Results
- Advanced Modeling
- Conclusions

- Inventor and world's leading producer of styrenic block copolymers ("SBCs")
 - First commercialized as part of Shell Elastomers in the 1960s
- Produces over 1000 products from six plants in the US, Europe, Latin America and Asia
- Serves three groups of enduses:
 - Paving & Roofing
 - Adhesives, Sealants & Coatings
 - Advanced Materials

SBS in Bitumen

Phase Morphology

Bitumen + 2¹/₂% polymer

Bitumen + 5% polymer

Bitumen + 7¹/₂% polymer

Crack Propagation in Toughened Composite

Source: www.scielo.br/img/fbpe/mr/v4n3/a13fig5a.gif

- Higher traffic intensities and pavement loadings require more durable pavements
- Higher traffic intensities also command longer maintenance intervals to increase availability of the road
- Environmental pressure is increasing; reduction of use of natural resources such as aggregate and less emissions are highly desired
- SBS modification has proven benefits in wearing courses over the past decades in every relevant property
 - Use the benefits of SBS to create a polymer modified base course asphalt that can fulfill the requirements of today and tomorrow

Technical challenge: compatibility and workability with relatively hard base bitumen

- 2004: start of a joint research program with Road Engineering Section of Delft University of Technology
- Asphalt mix knowledge of DUT combined with polymer-bitumen technology of Kraton Polymers to investigate whether SBS modification of base layers would increase life time and/or enable layer thickness reductions of the asphalt pavement

2004 (phase 1):

Asphalt mix testing by DUT of base course asphalt containing standard Kraton[®] polymer grades

2005:

Binder testing by Kraton Polymers Research of best performing mixes Selection of additional polymer grades for testing in phase 2

Recent Beam Fatigue Results

2004 Data with rerun of mix 41 and new data for mix 48 (very similar to mix 45)

Full sinusoidal loading. Cited strains are 1/2 amplitude

2006 (phase 2):

Fundamental asphalt mix testing using standard base course mix with selected binders: monotonic uniaxial compression and tensile tests, indirect tensile tests

▶ 2007:

Use of fundamental asphalt mix data in advanced modeling to compare damage development in pavement

- Asphalt Concrete Response (ACRe) model developed at Delft University
- Desai response surface for hardening and softening
- Crack plane response simulation with Hoffman surface
- CAPA 3D Finite Element Code developed at Delft University

Scarpas, A, Gurp, C.A.M.P. van, Al-Khoury, R.I.N. and Erkens, S.M.J.G., Finite Element Simulation of Damage Development in Asphalt Concrete Pavements. 8th International Conference on Asphalt Concrete Pavements, Seattle, Washington, U.S.A., 1997.

Three layers structure:

- Bound layer E1 = 1000 MPa (145,000 psi); h = 6" or 10"
- Unbound subbase E2 = 300 MPa (43,500 psi); h = 12"
- Subgrade E3 = 100 MPa (14,500 psi); h = 50'

Constant temperature: T = 20 °C (68 °F)

Stationary dynamic load: 800 kPa (115 psi) – 25 ms

Proposed System

old

new

This an example; depending on local conditions other types may apply

Cost Comparison: Base Case with Modified Wearing Course

					cost reduction	% cost
mix type	thickness	cost per ton	per sq yd	total	per sq yd	reduction
modified wearing course	1.75 "	\$84.00	\$16.52			
unmodified binder course	1.75 "	\$70.00	\$13.77			
unmodified base course	6.5 "	\$65.00	\$47.48			
total	10.0 "			\$77.77		
modified wearing course	1.75 "	\$84.00	\$16.52			
modified binder course	1.75 "	\$84.00	\$16.52			
modified base course	6.5 "	\$91.00	\$66.48	\$99.52	-\$21.75	-29%
	5.5 "	\$91.00	\$56.25	\$89.29	-\$11.52	-15%
	5.0 "	\$91.00	\$51.14	\$84.18	-\$6.41	-9%
	4.5 "	\$91.00	\$46.02	\$79.07	-\$1.29	-2%
	4.0 "	\$91.00	\$40.91	\$73.95	\$3.82	5%
	3.5 "	\$91.00	\$35.80	\$68.84	\$8.94	12%
	3.0 "	\$91.00	\$30.68	\$63.73	\$14.05	19%

based on example from previous slide, material costs only

base data:

SMA unmodified wearing mix: \$70/ton unmodified base mix: \$65/ton

assumptions:

PMA wearing mix + 20% PMA base mix + 40%

Kraton Polymer Modified (6")

total damage

Unmodified (10")

total damage

Rutting Profile

>4X reduction in permanent deformation at 60% thickness

40-2 = 10" unmodified asphalt 45-1 = 6" SBS modified asphalt

Initial Wheel-Tracking Results Deviatoric Deformation

Deviatoric damage distribution in thicker unmodified pavement

Max = 2.05E-2

Deviatoric damage distribution in thinner modified pavement

Max = 0.78E-2

Distress	10″ unmodified	6" highly modified
Shear deformation	2.05E-2	0.78E-2
Compressive deformation	1.27E-2	0.70E-2
Longitudinal cracking	1.31E-3	0.02E-3
Vertical cracking	7.72E-4	4.41E-4
Transverse cracking	8.65E-4	0.79E-4

June, 2009 – Thirteen city streets in Belpre, OH. Two 1" lifts, 3/8" NMAS fine mix. No production or construction problems despite inclement weather.

July, 2009 – Section N7 (part of pooled fund group program) at NCAT test track. Again, no problems with production or construction. Mix behaved like conventional PG 76-22 asphalt concrete.

Control (7" HMA)

1¼" (PG 76-22; 9.5mm NMAS; 80 Gyrations)

2¾" (PG 76-22; 19mm NMAS; 80 Gyrations)

3" (PG 67-22; 19mm NMAS; 80 Gyrations)

Experimental (5¾" HMA)

1¼" (Kraton Modified, 9.5 mm NMAS)

2¹/₄" (7¹/₂% polymer;19mm NMAS; 80 Gyrations)

2¹/₄" (7¹/₂% polymer;19mm NMAS; 80 Gyrations)

Dense Graded Crushed Aggregate Base $M_r = 12,530 \text{ psi}$ v = 0.40

Lift thicknesses limited by 3:1 thickness:NMAS requirement

6"

Test Track Soil $M_r = 28,872 \text{ psi}$ v = 0.45

Courtesy Prof. David Timm, Auburn U.

Master Curve Comparison

Courtesy Prof. David Timm, Auburn U.

Kraton

- Binder, PG 67-22 + 7½% SBS polymer, shipped 6+ hours. No issues with handling.
- Mixing temperature 340°F (same used for PG 76-22 surface mixes), delivered to track 335°F, temperature behind screed 300°F.
- Mix came out of truck cleanly. Density easily achieved with conventional rolling pattern.
- No issues with shoving, however mixture appeared to "knead" as a unit under the roller.
- Truck trafficking commenced 8/28/09.

- Evaluations for TX DOT specs on Hamburg wheel track and TX DOT overlay tester.
- Evaluations for NJ DOT specs on APA and high strain beam fatigue.

NCAT binder, based on PG 67-22

NCAT binder, based on PG 67-22

Asphalt Pavement Analyzer: 64 $^\circ\text{C},$ 100 lb Wheel Load, 100 psi Hose Pressure Courtesy Tom Bennert, Rutgers U.

- Discussions underway with several agencies in US, Europe, Middle East and Asia for potential test sections.
- Wheel tracking trials in planning at TRL, the UK Transportation Research Laboratory and/or TFHRC accelerated loading facility
- Bridge deck project and full depth construction project in New Jersey.
- Overlay projects in Louisiana and Georgia.

- Advanced mix testing and modeling based on NCAT mixtures – FHWA work will be presented at ETGs.
- Evaluation in softer binders to define value in high strain environments such as overlays on cracked pavements.
- Development of suitable binder specifications for purchase specifications.
 - ▷ MSCR
 - ABCD / M320 Table 2
 - Force ductility energy
 - Fatigue torture test (?)

QUESTIONS