

### Understanding and Implementing the Multiple Stress Creep Recovery (MSCR) Test and Specification

Mike Anderson, Asphalt Institute

Association of Modified Asphalt Producers Annual Meeting Savannah, GA February









# Acknowledgments

- Federal Highway Administration
   John Bukowski
- Dr. John D'Angelo
- Asphalt Binder Expert Task Group
- Member Companies of the Asphalt
  Institute
  - Technical Advisory Committee



nstitute

asphali

# Discussion

- Background
- Basics of the MSCR test
- How do MSCR results (Jnr) relate to rutting?
- How can MSCR Recovery be used and what does it indicate?
- How does the proposed specification work?
- Educational activities
- Implementation activities



# Discussion

- · Background
- Basics of the MSCR test
- How do MSCR results (Jnr) relate to rutting?
- How can MSCR Recovery be used and what does it indicate?
- How does the proposed specification work?
- Educational activities
- Implementation activities



# **Repeated Shear Creep**



# **Repeated Shear Creep**

asphalt institute

#### NCHRP 9-10: PG 82 Binders Repeated Shear Creep (70C, 300Pa)



# **Repeated Shear Creep**





#### Time, seconds



### MSCR – Non-Recoverable Compliance $(J_{nr})$



### MSCR – Non-Recoverable Compliance $(J_{nr})$

asphalt institute



e're driven, www.asphaltinstitute.org

# Relationship between Jnr and ALF Rutting 25.6kPa



We're driven, www.asphaltinstitute.org

# Mississippi I55: 6yr rutting J<sub>nr</sub> 3.2 kPa



# Kentucky 70-22 Study

- Kentucky PG 70-22 Study (1996)
  - Evaluate PG 70-22 asphalt binders produced by different methods
    - SBS (2)
    - SBR
    - Gel
    - Select Crude
  - I-64 near Winchester
    - Duplicate 1-mile test sections using each asphalt binder
    - Asphalt binder and mixture testing

# Kentucky 70-22 Study



# **Statistical Comparison**

#### asphalt institute

#### **RSCH @58C, microstrain**





### Statistical Comparison by Binder Groups

asphalt institute

- Group A
  - 322
    - Average  $J_{nr} = 0.195$
    - Average  $\gamma_p = 9,750$  microstrain
- Group B
  - 330, 328
    - Average  $J_{nr} = 0.580$
    - Average  $\gamma_p = 12,125$  microstrain
- Group C
  - 326, 324
    - Average J<sub>nr</sub> = 1.78
    - Average  $\gamma_p = 17,250$  microstrain

Ave. MSCR Rec<sub>3.2</sub> = 18.8%

Ave. MSCR  $Rec_{3.2} = 11.4\%$ 

Ave. MSCR  $Rec_{3,2} = 5.2\%^*$ 



# M320 Table 3 (Proposed)

#### asphalt institute

| Original                              |                                                  |     |     |    |    |
|---------------------------------------|--------------------------------------------------|-----|-----|----|----|
| DSR G*/sinδ<br>Min 1.0                | 64                                               |     |     |    |    |
|                                       |                                                  | RTF | -OT |    |    |
| 64 Standard<br>MSCR3.2 <4.0           |                                                  |     | 64  |    |    |
| 64 Heavy<br>MSCR 3.2<2.0              | [(MSCR3.2 –<br>MSCR 0.1)/<br>_ MSCR 0.1] < .75 _ |     | 64  |    |    |
| 64 Very heavy<br>MSCR3.2 <1.0         | -                                                |     | 64  |    |    |
| PAV                                   |                                                  |     |     |    |    |
| S grade<br>DSR G*sinδ<br>Max 5000     | 28                                               | 25  | 22  | 19 | 16 |
| H & V grade<br>DSR G*sinδ<br>Max 6000 | 28                                               | 25  | 22  | 19 | 16 |

Low temp BBR and DTT remain unchanged

riven. www.asphaltinstitute.org

# MSCR What is % Recovery?

- MSCR J<sub>nr</sub> addresses the high temperature rutting for both neat and modified binders, but many highway agencies require polymers for cracking and durability.
- The MSCR % Recovery measurement can identify and quantify how the polymer is working in the binder.



institute

asphalt

What is % Recovered Strain?



# MSCR % recovery can be added to validate polymer modification



#### For agencies with concerns about a variable scale it can be adjusted to a stepped scale



# Table for MSCR % Recoveryminimum values

| asp | halt | institute |
|-----|------|-----------|
|     |      |           |

| Minimum % Recovery for Measured J <sub>nr</sub> values |                    |  |  |  |
|--------------------------------------------------------|--------------------|--|--|--|
| J <sub>nr</sub> @ 3.2 kPa                              | Minimum % Recovery |  |  |  |
|                                                        |                    |  |  |  |
| 2.0 - 1.01                                             | 30%                |  |  |  |
| 1.0 - 0.51                                             | 35%                |  |  |  |
| 0.50 - 0.251                                           | 45%                |  |  |  |
| 0.25 - 0.125                                           | 50%                |  |  |  |

# Blending of binders and polymers Jnr, % recovery study

- PG 64-22 Base asphalt
- 4 % SBS polymer
  - Radial
  - Linear
- 0.5% PPA
- 2 blending temperatures

# Polymer Network Affects Response



### Effect of Polymer Network on Binder Response

| Sample<br>ID | Continuous<br>Grade | Polymer             | Acid  | Temp J <sub>nr</sub><br>3.2kPa = 1 | ER   | Temp C | % Recovery<br>3.2kPa |
|--------------|---------------------|---------------------|-------|------------------------------------|------|--------|----------------------|
| LC           | 66.7-24.1           |                     | 0     | 56.4                               | 5    | 64C    | 0                    |
|              |                     |                     |       |                                    |      | 70C    | 19.2                 |
| LC 4         | 75.7-22.3           | 4% SBS              | 0     | 65.1                               | 73.8 | 76C    | 5.96                 |
|              |                     |                     |       |                                    |      | 70C    | 28.4                 |
| LC P4        | 81.2-22.2           | 4% SBS              | 0.50% | 69.9                               | 93.8 | 76C    | 20.55                |
|              |                     | 4% SBS              |       |                                    |      | 70C    | 40.3                 |
|              | 76 6-25 2           | from<br>Concentrate | 0     | 60 1                               | 86   | 760    | 37 02                |
|              | 70.0-23.2           | Concentrate         | 0     | 09.1                               | 00   | 700    | 57.02                |
|              |                     | 4% SBS              |       |                                    |      | 70C    | 52.05                |
|              |                     | from                |       |                                    |      |        |                      |
| LOP 4P       | 81.6-24.5           | Concentrate         | 0.50% | 74.1                               | 91.6 | 76C    | 42.52                |



# **Validate Polymer Modification**



### Correlation of MSCR Recovery and Phase Angle



# Correlation of MSCR Recovery and Elastic Recovery



# Kentucky PG 70-22 Study: Correlation of Jnr and Recovery



# Kentucky PG 70-22 Study: Correlation of Jnr and Recovery



### Comparison of Modified Asphalt Binders

|                                  | CS_2H_4%SBS  | CS_6H_2.5%SBS-X         |
|----------------------------------|--------------|-------------------------|
| M320 Table 1 Grade               | PG 76-22     | PG 76-22                |
| Continuous Grade                 | PG 80.0-25.2 | PG 79.9-27.9            |
| Elastic Recovery                 | 65%          | 68%                     |
| J <sub>nr</sub> @ 0.1 kPa (64°C) | 0.306 kPa⁻¹  | 0.353 kPa <sup>-1</sup> |
| J <sub>nr</sub> @ 3.2 kPa (64°C) | 0.366 kPa⁻¹  | 0.452 kPa <sup>-1</sup> |
| Stress Sensitivity               | 0.20         | 0.28                    |
| Recovery @ 0.1 kPa (64°C)        | 34.1%        | 42.2%                   |
| Recovery @ 3.2 kPa (64°C)        | 24.7%        | 30.8%                   |
| PAV G*sin $\delta$ @ 25°C        | 4271 kPa     | 3145 kPa                |
| BBR Stiffness @ -12°C            | 183 MPa      | 158 MPa                 |
| BBR m-value @ -12°C              | 0.320        | 0.345                   |



# **Fatigue Evaluation**



# **ILS Design**

- Participating Labs
  - FHWA
    - Two Different Rheometers/Technicians
  - MTE Services
  - Paragon Technical Services
  - PRI Asphalt Technologies
  - Kraton Polymers
  - Nevada Department of Transportation
  - Asphalt Institute



# ILS Design – Materials

- Asphalt Binders
  - Verification
    - PG 76-22
  - Experiment
    - PG 64-22
    - PG 64-34
    - PG 70-28
    - PG 70-34
    - PG 76-22 (2)







#### Repeatability 12.0% Ο X 10.0% $\bigcirc$ X $\bigcirc$ 8.0% $\bigcirc$ d2s% Х 6.0% Х $\times$ Rec-0.1 4.0% O Rec-3.2 2.0% 0.0% 0.0 20.0 40.0 60.0 80.0 100.0 Average

#### Reproducibility 30.0% 25.0% $^{\circ}$ $\bigotimes$ 20.0% $\bigcirc$ d2s% 15.0% X $\times$ Rec-0.1 10.0% X O Rec-3.2 5.0% 0.0% 0.0 20.0 40.0 60.0 80.0 100.0 Average

- Precision
  - Variability in Recovery is unaffected by Recovery magnitude
    - Average repeatability and reproducibility for Precision Statement



#### asphalt institute

- Precision
  - Variability in  $J_{nr}$  appears to be a function of  $J_{nr}$  magnitude
    - Suggests tiered Precision Statement
      - $J_{nr} > 1.00 \text{ kPa}^{-1}$   $J_{nr} > 0.25 \text{ kPa}^{-1} \text{ and } \le 1.00 \text{ kPa}^{-1}$   $J_{nr} > 0.10 \text{ kPa}^{-1} \text{ and } \le 0.25 \text{ kPa}^{-1}$  $J_{nr} \le 0.10 \text{ kPa}^{-1}$

Note: only one asphalt binder was tested that fit into the highest ( $J_{nr} > 1.00$  kPa<sup>-1</sup>) and lowest ( $J_{nr} \le 0.10$  kPa<sup>-1</sup>) levels. More data will be needed to validate both the levels and the reported variability.

# Repeatability

| Condition                      | Coefficient of Variation (1s%) <sup>a</sup> | Acceptable Range of Two<br>Test Results (d2s%) <sup>a</sup> |
|--------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Single-Operator Precision:     |                                             |                                                             |
| Recovery <sub>0.1kPa</sub> (%) | 2.4%                                        | 6.7%                                                        |
| Recovery <sub>3.2kPa</sub> (%) | 3.0%                                        | 8.5%                                                        |
| J <sub>nr@0.1kPa</sub> (kPa⁻¹) |                                             |                                                             |
| >1.00                          | 4.6%                                        | 12.8%                                                       |
| 0.25 - 1.00                    | 5.4%                                        | 15.2%                                                       |
| 0.10 - 0.25                    | 13.7%                                       | 38.3%                                                       |
| ≤ 0.1 <sup>b</sup>             | n/a                                         | n/a                                                         |
| J <sub>nr@3.2kPa</sub> (kPa⁻¹) |                                             |                                                             |
| >1.00                          | 5.7%                                        | 16.0%                                                       |
| 0.25 - 1.00                    | 5.5%                                        | 15.3%                                                       |
| 0.10 - 0.25                    | 9.5%                                        | 26.6%                                                       |
| ≤ 0.1 <sup>b</sup>             | n/a                                         | n/a                                                         |



# Reproducibility

#### asphalt institute

| Condition                            | Coefficient of Variation (1s%) <sup>a</sup> | Acceptable Range of Two<br>Test Results (d2s%) <sup>a</sup> |
|--------------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Multilaboratory Precision:           |                                             |                                                             |
| Recovery <sub>0.1kPa</sub> (%)       | 5.4%                                        | 15.0%                                                       |
| Recovery <sub>3.2kPa</sub> (%)       | 6.5%                                        | 18.1%                                                       |
| $J_{nr@0.1kPa}$ (kPa <sup>-1</sup> ) |                                             |                                                             |
| >1.00                                | 9.1%                                        | 25.6%                                                       |
| 0.25 - 1.00                          | 12.7%                                       | 35.6%                                                       |
| 0.10 - 0.25                          | 16.7%                                       | 46.8%                                                       |
| ≤ 0.1 <sup>b</sup>                   | n/a                                         | n/a                                                         |
| J <sub>nr@3.2kPa</sub> (kPa⁻¹)       |                                             |                                                             |
| >1.00                                | 7.9%                                        | 22.0%                                                       |
| 0.25 - 1.00                          | 13.9%                                       | 39.0%                                                       |
| 0.10 - 0.25                          | 15.2%                                       | 42.6%                                                       |
| ≤ 0.1 <sup>b</sup>                   | n/a                                         | n/a                                                         |

<sup>a</sup> These limits represent the 1s% and d2s% limits described in ASTM Practice C670.

<sup>b</sup> For J<sub>nr</sub> below 0.1 kPa<sup>-1</sup> high variability is likely due to the very low measured strain magnitude. If an asphalt binder has a J<sub>nr</sub> below 0.1 kPa<sup>-1</sup> at a specified temperature, then consideration should be given to testing at a temperature that is 6°C higher.

- MSCR Workshops
  - Understanding and Implementing the MSCR Test and Specification
  - Rocky Mountain Asphalt User Producer
    Group
    - March 2009
  - Northeast Asphalt User Producer Group
    - September 2009
    - Webcast, Recorded
      - www.ct.gov/dot video on demand



- MSCR Workshops
  - Understanding and Implementing the MSCR Test and Specification
  - Background
    - Why do we need a new high temperature parameter?
  - Justification
    - How does the MSCR test meet the needs?
  - Basics
    - How do the MSCR test and specification work?
  - Testing Considerations
    - If it is important in T315 then it is important in TP70

asphalt institute

### MSCR Workshops

- Understanding and Implementing the MSCR Test and Specification
- Other UPGs?
  - May not be necessary with streaming video availability
- Proposed TRB Webinar
  - AFK20
  - State DOT participation
  - 60 minute condensed version



- Technical Bulletin/Brief
  - Use and Purpose of the MSCR test and specification
    - 4-page designed bulletin
- On-Demand Video Presentations
  - Re-create videos similar to NEAUPG
    Workshop



# **Implementation Activities**

- Precision of AASHTO TP70
  - Presented to ETG
  - Forwarded to ASTM, AASHTO
  - Technical report
- Communication with DSR Manufacturers
  - User interface and reporting

nstitute

asphali

# **Implementation Activities**

- Implementation Guidance Document
  - For user agencies
    - Describing how to implement the MSCR test and specification
    - Why?
      - 17 years since the last major national specification changes



- Table 3
  - Recommended specification for all asphalt binders
    - Expect Table 1 to eventually be deleted
  - Approval and Publication in 2009



- Implementation
  - Beginning in 2010...
    - Determine climatic high temperature
    - Users and producers conduct Table 3 shadow testing



- Implementation
  - Beginning in 2010...
    - Require producers to supply Table 3 test data and identify grade
      - MSCR (AASHTO TP70) on RTFO-aged binder
        - » Conducted at climate temperature
        - » Report  $J_{nr}$  at 3.2 kPa,  $J_{nr}$  Diff, Recovery at 3.2 kPa
      - G\*sin  $\delta$  on PAV-aged binder at actual intermediate temperature
        - » Some users already require this
      - G\*/sin  $\delta$  on original binder at actual climatic high temperature (optional)



- Implementation
  - Beginning in 2011...
    - Replace the use of AASHTO M320 Table 1 with Table 3



- Notes to User Agencies
  - Shadow testing is only indicative of current products and formulations. Products are likely to change once the full specification is implemented.
  - AASHTO M320 Table 3 should be used in its current form without modification.



- Notes to User Agencies
  - MSCR Recovery is not included in Table 3 as a specification, but could be used by agencies to indicate elastomeric modification.
    - Will not recommend any changes to current agency policy regarding "Plus" tests.
      - If a user agency is not currently requiring "Plus" tests for the identification of elastomeric modification in Table 1, then they shouldn't necessarily require MSCR recovery in Table 3.



- Notes to User Agencies
  - MSCR Recovery, if required, should replace other "Plus" tests that are intended to have a similar purpose.
    - Recommend against requiring Elastic Recovery, Force Ductility, or Toughness and Tenacity tests.
       MSCR Recovery can be used to replace these tests. Separation tests may still be required.
    - User agencies should not expect to see a strong correlation between MSCR Recovery and Table 1 "Plus" tests.



- Notes to User Agencies
  - Regional Implementation is preferred.
    - Piecemeal implementation will create need for multiple tanks or production of the asphalt binder grade with the most restrictive specifications



- Notes to User Agencies
  - Table 3 is an improvement to the current system (Table 1)
    - Provides a parameter  $(J_{nr})$  that is better correlated with rutting potential
    - Can be used with modified and unmodified asphalt binders.
      - Eliminates the need for additional tests to properly characterize modified asphalt binders





# Thanks!

