

Chemically Modified Fiber Technology-Benefits For Modified Asphalt Applications

Eric Coffman The University of Akron

- Background
- Introduction of Surface-Treated Fiber Technology
- Coating Process
- Experimental
- Data
- Advantages
- Other Potential Uses
- Conclusions
- Acknowledgments
- Questions

Background

Asphalt Roofing Mastics

- Thixotropic in nature
 - Sag resistant, durable, and cost effective
- Self healing sealant
 - Joints, adhesives, and defects

Mastics Before 1989

- Asbestos used for gelling properties
 - Health concerns led to ban on the use of asbestos fibers

Asbestos Fibers

Background

Mastics of Today

- Attapulgite or other clays replace asbestos fibers
- Similar gelling properties with the use of a liquid surfactant
 - Hydrophilic end-clay
 - Hydrophobic end-asphalt

Typical Mastic Formula

- Cutback
- Surfactant
- Clay
- Cutback
- Fibers
- Cutback or other mineral fillers
- Cutback

Development of Technology

- Profit Reducing Steps
 - Transportation and storage of corrosive liquid surfactants
 - Agglomeration during packaging and storage
 - Requiring shredders
 - High levels of dust

DOT Class 8 Material

Surface-Treated Fibers

- Surface-Treated Fibers
 - Coat cellulose fibers with liquid surfactant
 - 15-20% by weight for roofing mastic applications
 - Mitigates profit reducing steps for end users
 - Improves properties and performance

Left-Uncoated Fibers Right-Coated Fibers

Coating Process - Developmental Stage

Spray Bottle

- Surfactant cutback with IPA at 15-30% by weight
 - Improve atomization of surfactant
- Cutback surfactant added incrementally to preweighed cellulose fibers in a mixing bowl
- Fibers mixed by hand after each incremental addition
- Repeated until desired coating achieved

Coating Process - Pilot Process

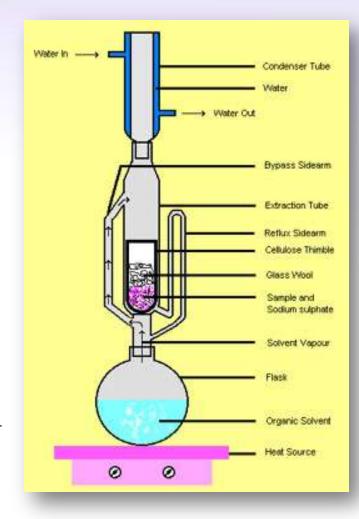
Insulation Blower Used to Transport Fibers

- Surfactant introduced into high velocity air stream created by the blower
 - Blower disperses surfactant

Required Mass Flow Rate =
$$\frac{\text{ProcessSpeed}}{1 - \text{Desired Coating Fraction}} - \text{ProcessSpeed}$$

Required Volumetric Flow Rate = $\frac{\text{Mass Flow Rate}}{\text{Surfactant Density}}$

Coating Process - Production Scale


- Modify preexisting process by applying surfactant through water spray nozzles just prior to entering mill
- Centri-Sifter[®] by Kason Corporation, Milburn, NJ
 - Flexible continuous process
 - Modified by spray nozzles mounted on center rotary shaft

Quality Control

- Soxhlet Extraction
- Required Equipment
 - Boiling flask
 - Extraction Solvent
 - IPA or ethanol
 - Soxhlet Extractor
 - Cellulose Thimble
 - Condenser

 $PercentSurfactant = \frac{Surfactant Extracted}{Total Inital Fiber Weight}$

Experimental Process

- Kitchen Aid Mixer Used For Mixing
- Formula
 - Cutback
 - Surfactant-treated fibers
 - Clay
 - Mineral fillers
 - Cutback

- Blends mixed using coarse fiber at 15-20% by weight surfactant
 - Added at 5-7% by weight of total blend to achieve C/S of 7-10:1
- Tests: Initially and 1 Week
 - ASTM D 5329
 - Cone penetration
 - ASTM D 6511-06
 - Behavior at 60 C

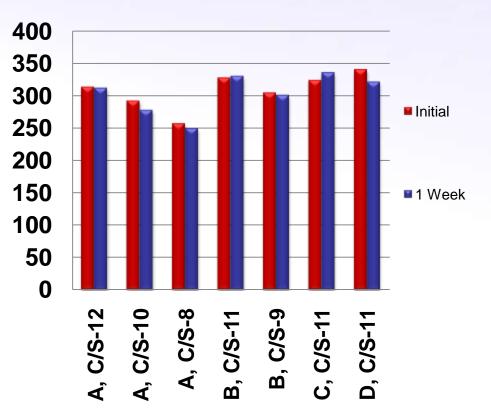
Cutbacks Used in Testing

Control Blend

D 5329 - 330 dmm

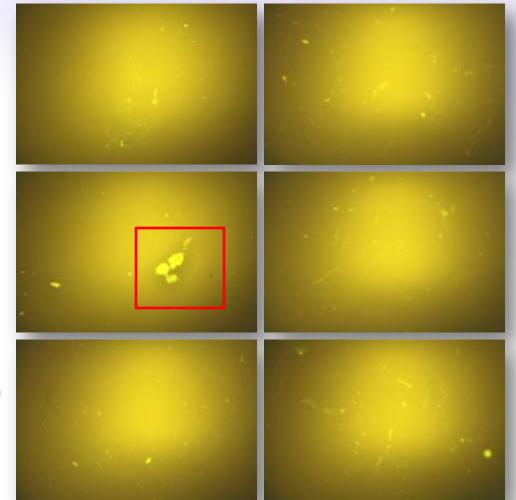
	Initial		1 Week	
	D 5329, dmm	D 6511-06	D 5329, dmm	D 6511-06
A, C/S-12	313	Pass	311	Pass
A, C/S-10	291	Pass	277	Pass
A, C/S-8	256	Pass	249	Pass
B, C/S-11	327	Pass	329	Pass
B, C/S-9	304	Pass	300	Pass
C, C/S-11	323	Pass	335	Pass
D, C/S-11	340	Pass	320	Pass

Cone Penetration and Slump Test Results



 5 out of the 7 batches had a decrease in cone penetration or a viscosity increase within 1 week

Characteristic of good gel


- Samples B & C at C/S-11 cone penetration results were within error of test
 - Could also be due to high C/S ratios used

Cone Penetration

Improved Fiber Uptake in Cutback

- Samples taken
 - 18 seconds
 - 30 seconds
 - 1 minute
- Analyzed under UV microscopy
- Surfactant-coated fibers display good dispersion
- Neat fibers display some agglomeration

Left Neat Fibers Used Right- Surfactant-Coated Fibers Used

Dust Level Analysis

- Pictures taken after 18 seconds of mixing
 - Neat fibers clearly produce more dust during mixing process
- 15-20% by weight coating reduces the high dust levels commonly observed

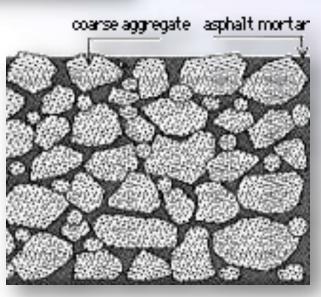
Neat Fibers Used

Surfactant Coated Fibers Used

Advantages

- Processing flexibility
- Fewer processing steps for end users
- Improved dispersion
- Dust reduction
- Potential anti-blocking characteristics
- Less additives required
- Lower manufacturing costs

Surface-Treated Fiber Uses


APO

- Coatings
 - Fine fibers

SMA's

- Fibers used to prevent "draining" of the asphalt
- Anti-stripping agents added at 0.3-0.5% by weight of asphalt to promote asphalt/aggregate adhesion

SMA Applications

- SMA Composition (w/w%)
 - 93.6-93.7 percent coarse aggregate
 - 6 percent asphalt binder
 - 0.3-0.36 percent cellulose fibers
 - 0.02-0.03 percent anti-strips

- Fibers could act as a carrier for the antistripping agent if coated with 6-8 percent by weight
 - Improved properties observed in mastic applications makes this a promising option

Conclusions

Surface-treated fibers

- Offer improved properties
 - Processing flexibility
 - Improved dispersion
 - Displays gelling properties w/o clay
- Offer cost savings for end users
 - Reduction in additives
 - Material handling of corrosive liquids
 - Fewer processing steps

Improved properties seen in roofing mastics with the use of surface-treated fibers makes SMA an area of interest for expanding the use of fiber technology

Acknowledgments

- Momentum Technologies Team
- John Sullivan
- Terry Mleczewski
- Bob Berkley
- AMAP Committee

