Multi-Stress Creep and Recovery Test Method A New Specification

> John D'Angelo Federal Highway Administration Phone 202-366-0121 fax 202-493-2070 John.D'angelo@dot.gov

Determination of Jnr

What is % Recovered Strain

Standard Test Procedure developed for AASHTO

Standard Method of Test for

Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)

AASHTO Designation: TP 70-08

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

MSCR and **Rutting**

- Any new specification must be blind to modification.
- A new specification must identify the rutting potential of all binder types under multiple conditions.

7 Asphalt Binders

AZ
CRM
70-22PG
70-22Air
BlownAir
SBSSBSTX
TBCRPG
70-22PG
70-22SBSAir
FibersSBSTP70-22PGSBSAir
FibersSBSTPFibersSBSTP

Relationship between Jnr and ALF rutting 25.6kPa

Hamburg Rut testing MINN Road mixes

Jnr 12.8kPa

Effect of Gradation on Rutting

09/14/08 19:45:43 C:\DRIVE_E\PMW 2008\NUSTAR\NuStar Analysis, 64-22S, 64-22H, 64-22V @ ~64°C, 158#.spf

NuStar Rutting Study Dry Hamburg WI E10 fine mix

Rut test temp	PG GRADE	PG GRADE (Jnr)	Jnr at Rut Test Temp	%RECO VERY	MIN %RECO VERY	RUT DEPTH 10000 PASSES
64	76-22	64-22V	0.24	55.8	50.6	1.68
64	64-22	64-225	3.4	3.4		7.1
64.4	70-22	64-22H	1.35	4.4	33.7	3.57
64	82-22	64-22E	0.082	78.5	66.1	1.55
70	70-22	70-225	2 92	1.5		51
			2.92			201
74.7	70-22	70-22<5	5.74	0.5		13.2

NuStar Rutting Study Dry Hamburg WI E10 fine mix

Miss I55 6yr rut Jnr 3.2 kPa

Affect of Jnr on Rutting

- Reducing J_{nr} by half typically reduced rutting by half.
- This affect is seen on ALF sections and Hamburg Rut Testing
- But most importantly this is seen on the Mississippi I 55 sections.
- For all mix types and loadings Jnr less than 1 had minimal rutting.

New high Temp Spec

- PG 64 (Standard, Heavy, Very heavy) based on traffic.
 - PG 64S-XX $J_{nr} = < 4.0$
 - PG 64H-XX $J_{nr} = < 2.0$
 - PG 64V-XX $J_{nr} = < 1.0$
 - Special Cases Port Facilities, Quarry Entrances, Etc. a PG 64E-XX J_{nr} =< 0.5 can be considered.</p>

Neat PG58-28 at multiple temperatures

SBS PG 70-28 SBS

New MSCR Binder Spec AASHTO M320 Table 3

Original								
DSR G*/sinδ Min 1.0	64							
RTFOT								
64 Standard MSCR3.2 <4.0		64						
64 Heavy MSCR 3.2<2.0	[(MSCR3.2 – MSCR 0.1)/ MSCR 0.1] < .75	64						
64 Very heavy MSCR3.2 <1.0	,	64						
PAV								
S grade DSR G*sinδ Max 5000	28	25	22	19	16			
H & V grade DSR G*sinδ Max 6000	28	25	22	19	16			

Low temp BBR and DTT remain unchanged

Experiment Design Time Temperature study

Incompatible 67-22 base binder mixed with 4% linear SBS elemental sulfur as a cross linker.

Blending Time, hours	2 h 4 h 6 h		h	6 h + x-linking				
Blending Temperature, °C	188	200	188	200	188	200	188	200
M320 High Temp DSR	X	Х	Х	X	X	X	X	Х
UDOT Elastic Recovery	X	Х	X	Х	X	X	Х	X
MSCR Test	Х	Х	Х	Х	Х	X	X	X
UV Microscopy	X	X	X	X	X	X	X	X

Changes in M320 High Temp PG with Processing

Changes in J_{nr} with Processing

Changes in UDOT Elastic Recovery with Processing

Changes in % Recovery MSCR test with Processing

polymer strands developing

polymer strands developing

More uniform dispersion almost cross-linked

polymer strands developing

More uniform dispersion almost cross-linked

More uniform dispersion almost cross-linked

188 6h + x-link Uniform dispersion cross-linked

Continuation of Blending Study

PG67-22 - Incompatible							
% Sulfur/% polymer	Percent polymer (linear SBS)						
	0	1	2	4			
None	CS	CS1 nxl	CS2 nxl	CS4 nxl			
0.02		CS1s002	CS2s004	CS4s008			
0.04		CS1s004	CS2s008	CS4s016			

2% SBS .2% sulfur/%SBS different processing temps, multiple test temp

1% SBS in a 67-22 will produce a PG76-22 and an ER of 60%
2% SBS in a 67-22 will produce a PG 76-22 and an ER of 75%

1% SBS in a 67-22 will produce a PG64 -22 V and an MSCR % Recovery of 22%
2% SBS in a 67-22 will produce a PG 64-22 E and an MSCR% Recovery of 45%

Conclusions and Recommendations

- Mixing Temperature and X-linking effect the properties of polymer modified binders.
- The Elastic Recovery showed little difference between the different processing methods.
- Both SHRP G*/sinδ and MSCR indicated the differences between the different processing methods, but results are different for each.
- The MSCR both J_{nr} and MSCR % Recovery indicated larger differences than the SHRP and ER tests.
 The Larger differences were verified by the Florescence Microscopy.

Implications

MSCR test is more discriminating and a fundamental property test
New practice for SBS blend optimization?
For research
For spec.

Implementation

MSCR can replace the ER
Single protocol
Quick and easy
Fundamental property

MSCR % recovery can be added to validate polymer modification

New MSCR Specification

- MSCR test procedure TP-70 published Spring 2008.
- New Table 3 accepted by AASHTO. To be published Spring 2009.

Thank You

Blend study interrelations % SBS, % x1/%SBS, % Recovery

