PG Binder Grade Selection for Airfield Pavements

AMAP Annual Meeting February 11, 2009 Sedona, AZ

Advanced Asphalt Technologies, LLC

"Engineering Services for the Asphalt Industry"

Project Objective

Develop technical guidance for PG binder grade selection for civilian & military airfields

Consider tire pressure, channelization, load repetitions, pavement temperature, speed, depth in pavement, non-traffic areas, reliability, grade bumping, modified binders...

In a Nutshell...

Base PG grade: LTPPBind 3.1

<u>Technical Note</u>

- Revision of existing specification
- Equivalent highways ESALs
- EHEs from departures, tire pressure
- Table for speed adjustments

Final Report on NCAT/AAPTP website

<u>PMAs</u>

- Elastic recovery
- Required in some cases
- Encouraged for others

Selecting PG Binder Grades for Airfield Pavements: Current Practice

Current Practice: PG Grades for Airfields

P-401: Surface courses P-403: Base and leveling courses FAA Advisory Circular 150/5370-10A No grades higher than XX-22 No grades higher than 76-XX Grade bumping in some cases according to tire pressure/aircraft weight

Grade Bumping for Tire Pressure/Stacking

Bump only when stacking is anticipated Top 5 inches of pavement only Tire pressure 100 to 200 psi Bump 1 grade Tire pressure > 200 psi Bump 2 grades

Grade Bumping for Aircraft Gross Weight

Gross Weight, Ib	Runway	Taxiway/Apron
< 12,500		
12,500 to 60,000		1
60,000 to 100,000		1
> 100,000	1	2

Northwest Mountain Region PG Grade Selection

- Use local PG grade for 98% reliability, >10 million ESALS
- Bump one grade for GAW > 60,000 lb
- Bump two grades for GAW> 100,000 lb
- Table of PG grades
- Toughness/tenacity requirements for polymer-modified binders

Concern with Polymer-Modified Binders

PMAs exhibit many desirable characteristics for use in airfield pavements

- In Europe, use of PMAs in airfield surface course mixtures is common
- Little or no research on use of PMAs in airfield pavements in US
- Questionnaire to collect information

Proposed Method

Low-Temperature Grading

Airfields more open than highways Small airfields see little traffic Durability a problem Availability of alternative lowtemperature grades probably limited Use same grade as for highway pavements

Intermediate-Temperature Grading

- Current fatigue requirement is empirical and controversial
- But, no rational basis yet available for improving it
- Durability is a concern—FOD
- Avoid unnecessary bumping, especially on small airfields

High-Temperature Grading

Must consider many factors Increased tire pressure—to 300+ psi Much greater traffic wander Aircraft speed/stacking Impact, braking, turning Runway vs. taxiway/apron Mix composition & compaction

Equivalent highway ESALs

Tire pressure Pass to coverage ratio (PCR) Mixture composition Lab and field compaction Reliability **Design** life Growth in traffic

Equivalent Highway ESALs

 $EHEs = \sum_{i=1}^{m} \left| \P P_i \left\{ \frac{PDR_i}{PCR_i} \right\} \P_i \right] \P OMP >$ $(C) (REL) (1 + \frac{R}{100})^{0.51}$

Base Grade Selection

LTPPBind 2.1 + rutting resistivity model

- Existing software—but not widely used
- Flexible
- Complex

LTPPBind 3.1 + MEDG models for calculation of EHEs and adjustments

- New software

- Consistent with MEDG if not modified

Neither system is widely used by DOTs

Tire Pressure Adjustment

Critical issue is relationship between stress/pressure and rutting damage

MEDG predicts damage proportional to (tire pressure)^{2.09}

Analysis of flow number test data supports MEDG model—round stress exponent to 2.0

Aircraft Wander: Pass-to-Coverage Ratio

- Aircraft wander significantly greater than highway traffic
- Differences in landing gear arrangement also affects damage accumulation
- Both factors considered in pass-tocoverage ratio (PCR)
- The higher the PCR, the less damage done per pass

Aircraft Speed

- Enormous variation in aircraft speed
- Assume fast speed on central part of runways
- Taxiways and runway ends 10 mph
- Stacking varies: little or none, some, frequent
- Speed/grade adjustment based on MEDG model

Effects of Mix Composition and Construction

- HMA for highways and airfields differ significantly in composition
- Degree of compaction for airfield pavements generally higher than for highway pavements
- Both of these differences will affect rut resistance and must be considered
- Use resistivity-rutting model

For Eight Different Airport Runways...

Chart for EHEs

Maximum Gross Aircraft Weight, lb:

Polymer Modified Asphalts

- Many DOTs now use PG plus to address modified asphalts
- Many polymer modified asphalts exhibit performance beyond grade level
- Adjust PG grade for polymer modified asphalts meeting requirement
- Main test will be elastic recovery

Tests for Modified Binders: Superpave "Plus"

Elastic Recovery as a Temporary Surrogate for MSCR

Elastic Recovery, Ductilimeter, %

Use of PMAs

Design Traffic Level <i>EHEs</i>	Aircraft Stacking	Polymer Modified Binder Use in HMA	
< 10 million	None	No	
	Some	Suggested	
	Frequent	Required	
≥ 10 million	None	Suggested	
	Some	Required	
	Frequent	Required	

Note: PMAs should be specified in HMA for airfield pavements that have exhibited a history of excessive rutting unrelated to improper construction, regardless of the specific loading conditions. PG Grades used by State Highway Departments

- Not practical for refiners to produce large numbers of PG grades
- Large number of PG grades in given region would be confusing
- Most states work with a limited "slate" of PG grades
- Spec includes list of available grades

Final Grade Adjustments

	Typical Speed Mph			Grade Adjustment ${\mathscr C}$	
Aircraft Stacking	Runway Centers	Taxiways/ Runway Ends	Design Traffic EHEs	Non-Modified Binders	Polymer Modified Binders*
None	≥45	15 to < 45	< 300,000	0	
Little or none	≥ 45	15 to < 45	300,000 to < 3 million	+7	Not Required +4
			3 million to < 10 million	+7	Suggested +4
			≥ 10 million		Required +4
Occasional		5 to < 15	< 10 million	+14	Suggested +11
			≥ 10 million		Required +11
Frequent		< 5	Any		Required +17

Evaluation of Proposed Method

Facility	Runway	Predicted Grade	Actual Grade
Rantoul, IL	18-36	PG 58-28	PG 58-28
Memphis, TN	9-27	PG 76-22M	PG 76-22M
Louisville KY	6-24	PG 64-22	PG 64-22
Lexington, KY	6-24	PG 64-22	PG 64-22
Houston, TX	12R-30L	PG 76-16M	PG 76-16M
Niagra Falls, NY	10L-28R	PG 64-22	PG 64-22
JFK, NY	13R-31L	PG 82-22M	PG 82-22M

Acknowledgments

Acknowledgements

- Monte Symons of AAPTP
- Hussain Bahia of U. of Wisconsin
- Ray Bonaquist
- Roy McQueen
- Chuck Paugh and others at FHWA (SPT data)

